楊坪坪,張玉珊,李 瑞,張會(huì)蘭,王云琦
基于診斷函數(shù)的薄層流對(duì)數(shù)律研究
楊坪坪1,2,張玉珊1,2,李 瑞1,2※,張會(huì)蘭3,4,王云琦3,4
(1.貴州師范大學(xué)喀斯特研究院,貴陽(yáng) 550001;2.國(guó)家喀斯特石漠化防治工程技術(shù)研究中心,貴陽(yáng) 550001;3.北京林業(yè)大學(xué)水土保持學(xué)院重慶三峽庫(kù)區(qū)森林生態(tài)系統(tǒng)教育部野外科學(xué)觀測(cè)研究站,北京 100083;4.北京林業(yè)大學(xué)水土保持學(xué)院重慶縉云山三峽庫(kù)區(qū)森林生態(tài)系統(tǒng)國(guó)家定位觀測(cè)研究站,北京 100083)
薄層流是一種特殊形態(tài)的明渠流,其特點(diǎn)是水深淺薄。為探討薄層流流速分布是否滿(mǎn)足對(duì)數(shù)律,該研究利用高分辨率粒子圖像測(cè)速(Particle Image Velocimetry,PIV)技術(shù),分析8組薄層流(水深0.49~1.1 cm,雷諾數(shù)835~2 877)及1組深水明渠紊流(對(duì)照)床面至水面的流速分布、紊動(dòng)強(qiáng)度及雷諾應(yīng)力。并基于診斷函數(shù),研究薄層流流速是否滿(mǎn)足對(duì)數(shù)律、對(duì)數(shù)區(qū)的范圍及卡門(mén)常數(shù)變化規(guī)律。結(jié)果表明,薄層流的無(wú)量綱流速?gòu)倪^(guò)渡區(qū)開(kāi)始偏離深水明渠水流中的理論曲線;薄層流的流向紊動(dòng)強(qiáng)度大于深水明渠紊流,但垂向紊動(dòng)強(qiáng)度小于深水明渠紊流,隨著水深的增加,兩者的紊動(dòng)強(qiáng)度逐漸重合;雷諾應(yīng)力的特征表明,隨著水深的增加,受黏性力影響的范圍越來(lái)越小。薄層流診斷函數(shù)曲線的特征說(shuō)明薄層流中不存在嚴(yán)格意義的對(duì)數(shù)區(qū),但當(dāng)水深極淺時(shí)(水深≤0.53 cm),流速基本滿(mǎn)足對(duì)數(shù)律,且卡門(mén)常數(shù)在0.2~0.3范圍內(nèi)。當(dāng)水深和雷諾數(shù)增加,薄層流診斷函數(shù)曲線出現(xiàn)波動(dòng)而不再近似水平。為方便實(shí)際計(jì)算,若允許診斷函數(shù)有一定的傾斜,對(duì)數(shù)區(qū)在極大值與極小值之間的范圍,薄層流的卡門(mén)常數(shù)隨著雷諾數(shù)的增加而增加。此外,薄層流對(duì)數(shù)區(qū)的范圍并非穩(wěn)定,隨著雷諾數(shù)的增加,對(duì)數(shù)區(qū)影響的范圍變大。該研究可為薄層流的理論研究和流速計(jì)算提供參考。
流速;粒子圖像測(cè)速;渠道;薄層流;卡門(mén)常數(shù);診斷函數(shù);對(duì)數(shù)律
明渠流具有水面和床面2個(gè)邊界,流速的分布受到2個(gè)邊界的影響。深水明渠紊流具有受床面黏性主導(dǎo)的內(nèi)區(qū)以及受水面慣性力主導(dǎo)的外區(qū)[1-2]。黏性作用從床面至水面逐漸減弱,而慣性作用從水面至床面逐漸減弱。深水明渠紊流中存在著受黏性力和慣性力影響皆不顯著的區(qū)域,該區(qū)域的流速符合對(duì)數(shù)律[1-3]。根據(jù)對(duì)數(shù)律,深水明渠紊流中某點(diǎn)的流向流速與該點(diǎn)距床面的距離成正比,與卡門(mén)常數(shù)成反比。很多研究對(duì)卡門(mén)常數(shù)的取值和對(duì)數(shù)律的適用范圍進(jìn)行了探討[4-7]?;诩す饬魉賰x測(cè)量試驗(yàn)和總結(jié)前人數(shù)據(jù)的基礎(chǔ)上,Nezu等[1]得到卡門(mén)常數(shù)為0.412,在無(wú)量綱水深大于30且相對(duì)水深小于0.6的范圍內(nèi)對(duì)數(shù)律適用。該研究結(jié)果受到了廣泛的應(yīng)用[8-10]。對(duì)數(shù)律的發(fā)現(xiàn)對(duì)明渠流速的研究具有重要意義,指導(dǎo)了工程應(yīng)用中流速的計(jì)算。
薄層流是一種特殊形態(tài)的明渠流,其特點(diǎn)是水深淺,一般在毫米量級(jí)[11]。薄層流常見(jiàn)于坡面漫流和地表徑流,是坡面水力侵蝕的動(dòng)力源,不僅剝離土壤,還能搬運(yùn)松散的土壤顆粒,從而產(chǎn)生水土流失,歷來(lái)受到廣泛關(guān)注[12-13]。相較于深水明渠紊流,薄層流水面與床面的距離非常近,因而是否存在受水面和床面影響都很微弱的區(qū)域,薄層流流速是否滿(mǎn)足對(duì)數(shù)律成為亟需確定的問(wèn)題。為研究薄層流的流速分布,Li等[14]采用熱膜流速儀測(cè)量床面至水面的流速分布,結(jié)果表明薄層流流速分布基本滿(mǎn)足對(duì)數(shù)律。安翼等[15]分析前人的數(shù)據(jù),利用實(shí)測(cè)數(shù)據(jù)擬合對(duì)數(shù)律,擬合效果較好,認(rèn)為光滑床面上的薄層流流速符合對(duì)數(shù)律。然而,對(duì)數(shù)律的分離是一個(gè)漸進(jìn)的過(guò)程,采用回歸的方法很難判斷流速分布與對(duì)數(shù)律完全吻合的范圍。針對(duì)常規(guī)方法很難準(zhǔn)確判斷對(duì)數(shù)區(qū)范圍的問(wèn)題,Osterlund等[2,16]采用診斷函數(shù)對(duì)明渠流流速分布進(jìn)行分析,從理論上嚴(yán)格檢驗(yàn)了對(duì)數(shù)區(qū)的范圍。根據(jù)該思路,為研究薄層流中對(duì)數(shù)律的規(guī)律,本研究利用粒子圖像測(cè)速(Particle Image Velocimetry,PIV)技術(shù)測(cè)量了床面至水面的薄層流流速分布,并基于診斷函數(shù)檢驗(yàn)薄層流流速是否滿(mǎn)足對(duì)數(shù)律,確定卡門(mén)常數(shù)的取值和對(duì)數(shù)律的適用范圍,以期深入理解薄層流的特征,為薄層流的理論研究和流速計(jì)算提供參考。
試驗(yàn)在玻璃水槽中開(kāi)展,水槽長(zhǎng)為12 m,寬和高均為0.3 m。整個(gè)水槽是自循環(huán)的系統(tǒng),水槽入口有計(jì)算機(jī)系統(tǒng)控制的變頻水泵和流量計(jì),用以測(cè)量和控制流量。水流入口處放置穩(wěn)定水流的裝置,使進(jìn)入水槽的水流順直。水槽沿程等間距布設(shè)了6個(gè)超聲波水位計(jì)(型號(hào)為Baumer S14,精度±0.01 cm),水位計(jì)距水流入口分別為0.5、2.5、4.5、6.5、8.5、10.5 m。調(diào)節(jié)尾門(mén)及觀測(cè)水位沿程變化可以使水流達(dá)到恒定均勻流的狀態(tài)。水流溫度由數(shù)顯溫度計(jì)測(cè)量,精度可達(dá)±0.1 ℃。為保證水流充分發(fā)展,試驗(yàn)測(cè)量段距離入口7 m,并由PIV測(cè)量試驗(yàn)段的流場(chǎng)。
圖1所示為試驗(yàn)段的試驗(yàn)裝置示意圖。PIV由示蹤粒子、激光器以及高速相機(jī)組成。示蹤水流所采用的粒子為空心玻璃珠,直徑為10m,密度為1.06×103kg/m3??招牟Aе榈拿芏群退髅芏认嘟軌蛴行У厥聚櫵?,避免出現(xiàn)粒子與水流不同步的現(xiàn)象。激光由8 W的連續(xù)激光器發(fā)射以照亮示蹤粒子使其能夠被相機(jī)捕捉。高速相機(jī)640×480像素,頻率高達(dá)452 Hz(1 s能夠拍攝452張圖片)。
圖2展示了PIV的測(cè)速過(guò)程,在試驗(yàn)開(kāi)始前向水體中施用示蹤粒子,相機(jī)拍攝得到圖2a所示的圖片,軟件系統(tǒng)將圖片劃分為若干大小相等的流速單元(圖2b),用同樣的方法得到相鄰幀的流速單元,計(jì)算兩幀間流速單元灰度值的自相關(guān)系數(shù),具有最大自相關(guān)系數(shù)的認(rèn)定為同一流速單元,如圖2b和2c所示為同一流速單元分別在兩幀圖像的位置,根據(jù)其流向和垂向的位移,結(jié)合相機(jī)的頻率,可計(jì)算得到流向流速()和垂向流速(),每個(gè)流速單元的流速組成了整個(gè)流場(chǎng)。本試驗(yàn)為適應(yīng)薄層流水深淺薄的特殊條件,借鑒鐘強(qiáng)等[17]的方法,增加了相機(jī)與鏡頭之間的距離,以增加相機(jī)分辨率,相機(jī)的分辨率高達(dá)64像素/mm。在該分辨率下,若流速單元的像素為8,則1 mm水深包含8個(gè)測(cè)點(diǎn)。通過(guò)該操作可將視域放大,從而滿(mǎn)足淺水深的流速測(cè)量。本試驗(yàn)拍攝相片的大小為1.3 cm×0.8 cm。楊坪坪等[18-21]的試驗(yàn)結(jié)果表明該套高分辨率的PIV系統(tǒng)能夠較好地測(cè)量薄層流流速。
本試驗(yàn)每隔40張拍攝1對(duì)流場(chǎng),為滿(mǎn)足采樣要求,捕獲5 000對(duì)流場(chǎng),共拍攝20萬(wàn)張相片。流速單元為16×16像素,重疊率為50%,共迭代3次,因此實(shí)際2個(gè)相鄰流速單元間的距離為8像素。所得的瞬時(shí)流場(chǎng)由高斯濾波法剔除錯(cuò)誤的信息及圖像噪音。本試驗(yàn)采用笛卡爾坐標(biāo)系,坐標(biāo)原點(diǎn)位于測(cè)量區(qū)域的左下角并在圖1中用“”表示,軸平行于水流方向,軸垂直于床面。相應(yīng)地,方向的流速分量為,方向的流速分量為。時(shí)均流場(chǎng)由5 000對(duì)瞬時(shí)流場(chǎng)相對(duì)應(yīng)點(diǎn)平均而得,隨后將同一高度的流速平均求得該高度的平均流速,從而計(jì)算得到流速輪廓線,詳細(xì)的提取步驟見(jiàn)楊坪坪等[21]的研究。
1)對(duì)數(shù)律
根據(jù)Nezu等[1]的研究,對(duì)數(shù)律的計(jì)算如式(1)所示:
式中為重力常數(shù),9.8 m/s2;為水深,m;為水力能坡,≈,為坡度,%。
雷諾數(shù)和傅汝德數(shù)的計(jì)算[11]分別如式(3)和式(4)所示:
式中為平均流速,m/s;為水力半徑,m。
無(wú)量綱全水深H的計(jì)算[20]如式(5)所示:
紊動(dòng)強(qiáng)度表示流體質(zhì)點(diǎn)的脈動(dòng)強(qiáng)度,流向流速和垂向流速的紊動(dòng)強(qiáng)度[1]計(jì)算分別見(jiàn)式(6)和式(7)。雷諾應(yīng)力是流體質(zhì)點(diǎn)2個(gè)方向脈動(dòng)強(qiáng)度乘積,表示2個(gè)流體質(zhì)點(diǎn)間碰撞的強(qiáng)弱程度,雷諾應(yīng)力的計(jì)算[1]見(jiàn)式(8)。
2)診斷函數(shù)
該函數(shù)的倒數(shù)同時(shí)也表示無(wú)量綱流向流速分布的斜率,且=。若某一區(qū)間內(nèi)滿(mǎn)足對(duì)數(shù)律分布,則診斷函數(shù)為常數(shù),且等于卡門(mén)常數(shù)。
本試驗(yàn)共設(shè)計(jì)了8組次的薄層流,表1所示為本試驗(yàn)水流的條件,表中每組次按照水深排序,并以C加序號(hào)表示,其中C1~C8為薄層流;CK為深水明渠紊流,CK的作用為對(duì)比薄層流與深水明渠紊流的差異性。Yang等[20]研究表明當(dāng)無(wú)量綱的全水深H<550時(shí),薄層流雷諾應(yīng)力分布、阻尼系數(shù)以及積分常數(shù)與深水明渠紊流具有差異,因此得到當(dāng)H<550時(shí)滿(mǎn)足薄層流的條件。本試驗(yàn)中各組次薄層流的H≤180,因而水深滿(mǎn)足薄層流的條件。為避免水深過(guò)淺而出現(xiàn)滾波,從而影響薄層流特性,本試驗(yàn)設(shè)計(jì)水深>0.45 cm,C1~C8的水深變化范圍為0.49~1.1 cm。薄層流C1~C8的雷諾數(shù)變化范圍為835~2 877,皆<5 000,屬于過(guò)渡流;而傅汝德數(shù)<1,屬于緩流。C1~CK組次,和逐漸變大而沒(méi)有明顯的變化。各組次寬深比皆>5(槽寬與水深的比值,本試驗(yàn)的槽寬為30 cm),因此邊壁對(duì)測(cè)量區(qū)域的水流沒(méi)有顯著影響,可視為準(zhǔn)二維流動(dòng)[26]。
表1中各組次的相機(jī)分辨率具有差別的原因是C1~CK組次水深逐漸增加,導(dǎo)致超過(guò)相機(jī)的測(cè)量范圍,因此需要擴(kuò)大相機(jī)與測(cè)點(diǎn)之間的距離,距離越遠(yuǎn)則分辨率越低,所以C1~CK組次的相機(jī)分辨率越來(lái)越小。此外,相機(jī)的頻率越高越消耗計(jì)算資源,在CK組次的小分辨率下,相機(jī)頻率在208 Hz時(shí)能測(cè)量出其瞬時(shí)流速,因此降低了CK組次的相機(jī)頻率。
表1 本研究水流條件
注:=/(),為流量,m3·s-1;為水槽寬度,為30 cm。
Note:=/(),represents flow discharge, m3·s-1;represents the width of flume andis 30 cm.
2.1.1 水 深
表2所示為本試驗(yàn)沿程水位的變化特征。由表可見(jiàn)在距入口2.5 m之前,水位逐漸下降,隨后保持穩(wěn)定;在10.5 m,受尾門(mén)的影響,水位下降??傮w而言,沿程大部分的水位保持穩(wěn)定,試驗(yàn)段的水流可認(rèn)為是恒定均勻薄層流。平均水位的值由水位計(jì)3~5平均所得,代表試驗(yàn)段處的水位值,與表1一致。
表2 超聲波水位計(jì)測(cè)量的沿程水深變化
2.1.2 流 速
圖3所示為各組次時(shí)均流速分布,圖3a為實(shí)際的流速輪廓線,從C1至CK組次,增加,流速剖面也逐漸向右移動(dòng),流速變大,同時(shí)C1至CK組次的流速曲線也越來(lái)越平緩。為進(jìn)一步說(shuō)明時(shí)均流速分布的規(guī)律,圖3b所示為無(wú)量綱化的流速輪廓線分布圖,通過(guò)式(2)計(jì)算出摩阻流速*后得到u和y。為清晰展示各組次的分布規(guī)律,圖中除C1外每組依次向上移動(dòng)5個(gè)單位。圖中的線段表示了Nezu等[1]得到的深水明渠紊流流速的理論曲線,分別為黏性底層、過(guò)渡區(qū)和對(duì)數(shù)區(qū)。CK的分布與Nezu等[1]得到的分布規(guī)律較為吻合,表明本次試驗(yàn)的可靠性及準(zhǔn)確性。不論薄層流還是深水明渠紊流,在靠近床面時(shí),流速的分布均滿(mǎn)足u=y,稱(chēng)之為黏性底層[1,20]。由圖3b所示薄層流黏性底層的范圍為y<10。然而,從過(guò)渡區(qū)開(kāi)始,薄層流u與深水明渠紊流的理論曲線逐漸偏離,不再滿(mǎn)足深水明渠水流中流速的分布規(guī)律。
Nezu等[1]得到當(dāng)y>30時(shí),深水明渠紊流的對(duì)數(shù)分布規(guī)律為u=2.42lny+5.28,卡門(mén)常數(shù)=0.412。當(dāng)y>30,本試驗(yàn)CK組次部分?jǐn)?shù)據(jù)點(diǎn)滿(mǎn)足深水明渠紊流的對(duì)數(shù)律,本試驗(yàn)薄層流C1~C2組次部分?jǐn)?shù)據(jù)點(diǎn)滿(mǎn)足深水明渠紊流的對(duì)數(shù)分布規(guī)律,而C3~C8的數(shù)據(jù)點(diǎn)并不滿(mǎn)足該規(guī)律,甚至有較大的偏離。導(dǎo)致該現(xiàn)象的原因?yàn)椋?)由于薄層流與深水明渠紊流具有差異,因此其對(duì)數(shù)律的分布范圍以及的取值可能與深水明渠紊流的不同,導(dǎo)致本試驗(yàn)的數(shù)據(jù)點(diǎn)不滿(mǎn)足Nezu等[1]得到的規(guī)律;2)薄層流水深較淺,床面與水面之間的間距較小,因此尚不清晰是否存在受黏性和水面影響都不顯著的區(qū)域,從而不能確定是否存在嚴(yán)格滿(mǎn)足對(duì)數(shù)律的區(qū)域。
2.1.3 紊動(dòng)強(qiáng)度和雷諾應(yīng)力
圖4表示了流向和垂向的紊動(dòng)強(qiáng)度分布。圖4中的實(shí)線表示鐘強(qiáng)等[17]利用PIV在深水明渠紊流中得到的實(shí)測(cè)數(shù)據(jù)。本試驗(yàn)中CK組次和實(shí)線較好吻合再次表明此次測(cè)量可靠。觀察流向和垂向無(wú)量綱紊動(dòng)強(qiáng)度的特征,薄層流的無(wú)量綱流向紊動(dòng)強(qiáng)度大于明渠紊流,而薄層流的無(wú)量綱垂向紊動(dòng)強(qiáng)度小于明渠紊流,隨著水深的增加,薄層流靠近水面部分曲線與深水明渠紊流的曲線逐步重合??梢灶A(yù)見(jiàn),隨著水深進(jìn)一步的增加,薄層流曲線靠近床面的部分也會(huì)逐漸與深水明渠紊流的重合,此時(shí),薄層流已發(fā)展為深水明渠紊流[20]。圖5表示了無(wú)量綱雷諾應(yīng)力的分布。Nezu等[1]的研究表明,靠近床面部分流體受黏性作用顯著,而當(dāng)遠(yuǎn)離床面的流體其無(wú)量綱雷諾應(yīng)力會(huì)與圖中實(shí)線重合,此時(shí)流體受黏性作用微弱。由圖5可見(jiàn),水深較淺時(shí),少部分?jǐn)?shù)據(jù)與實(shí)線重合,受黏性作用顯著部分的流體較多;隨著水深的增加,大部分?jǐn)?shù)據(jù)與實(shí)線重合,受黏性作用顯著的流體占比顯著減小,表明隨著水深的增加,受黏性力影響的范圍越來(lái)越小。隨著水深的進(jìn)一步增加,最終拐點(diǎn)與深水明渠水流的一致,拐點(diǎn)位置在/≈0.2[1,17,27-28]。
為研究薄層流對(duì)數(shù)區(qū)的特征,本研究采用診斷函數(shù)以檢驗(yàn)薄層流是否存在對(duì)數(shù)律區(qū)域,以及對(duì)數(shù)律的分布范圍。圖6所示為所有組次的診斷函數(shù)隨y的分布特征,圖7所示為與相對(duì)水深/間的變化關(guān)系。圖中虛線表示Nezu等[1]得出的深水明渠紊流卡門(mén)常數(shù)=0.412。曲線表示鐘強(qiáng)等[16]利用PIV在深水明渠紊流中的研究結(jié)果,并標(biāo)示了其雷諾數(shù)的數(shù)值。對(duì)于深水明渠紊流,呈現(xiàn)出減小至最小值后逐漸增加至極大值,后緩慢下降至極小值,最后在水面附近急速攀升。對(duì)比本研究CK組次和鐘強(qiáng)等[16]的研究結(jié)果,CK組次與其=15 895的曲線較為吻合,因兩組次的數(shù)值接近。通過(guò)對(duì)比圖6i中3條深水明渠紊流的曲線,表明隨著的增加曲線的極大值與極小值之間的線段逐漸趨于平緩。鐘強(qiáng)等[16]指出隨著的增加,曲線中極大值之前的曲線和極小值之后的曲線會(huì)被逐漸壓縮,極大值與極小值之間曲線被逐漸拉伸,雖然在他們的試驗(yàn)中未出現(xiàn)嚴(yán)格的對(duì)數(shù)區(qū),但其推測(cè)當(dāng)足夠大時(shí),極大值與極小值之間曲線將會(huì)水平,即出現(xiàn)了嚴(yán)格的對(duì)數(shù)區(qū),且在[0.334, 0.415]范圍內(nèi),對(duì)數(shù)區(qū)的范圍在y>76,且/<0.5。
總體而言,本試驗(yàn)條件下的薄層流C1~C8組次的<0.412,且其曲線沒(méi)有出現(xiàn)嚴(yán)格的水平段,表明在本次薄層流試驗(yàn)條件下未出現(xiàn)嚴(yán)格意義的對(duì)數(shù)區(qū)。此外,當(dāng)水深足夠大已發(fā)展為明渠紊流的CK組次時(shí)也未出現(xiàn)嚴(yán)格的對(duì)數(shù)區(qū),表明薄層流條件下并不會(huì)出現(xiàn)嚴(yán)格的對(duì)數(shù)區(qū)。然而,值得注意的是C1和C2的曲線,雖然沒(méi)有嚴(yán)格的水平段,但當(dāng)y>10時(shí),曲線段的斜率較小,近似為一條水平直線,該段基本上滿(mǎn)足對(duì)數(shù)律,C1的卡門(mén)常數(shù)在[0.22, 0.27]范圍內(nèi),均值為0.25;而C2的在[0.23, 0.30]范圍內(nèi),均值為0.27??傮w而言,當(dāng)水深較淺時(shí)(本試驗(yàn)條件下≤0.53 cm),y>10段流速基本滿(mǎn)足對(duì)數(shù)律,其在[0.2, 0.3]范圍內(nèi)。出現(xiàn)該對(duì)數(shù)區(qū)的原因?yàn)楫?dāng)水深極為淺薄時(shí),遠(yuǎn)離床面區(qū)域受床面黏性作用的影響較小,同時(shí)慣性作用的影響也微弱,導(dǎo)致在遠(yuǎn)離床面的流體中存在這樣的區(qū)域,即受黏性和慣性作用影響都很微弱,其流速分布滿(mǎn)足對(duì)數(shù)律,但其顯著小于深水明渠紊流中的。
當(dāng)>0.53 cm,隨著和的增加,慣性帶來(lái)的作用逐漸凸顯,C3~C8的曲線不再近似水平而出現(xiàn)波動(dòng)。C3~C8的曲線同樣呈現(xiàn)了最小值,極大值,極小值,與深水明渠紊流曲線的變化趨勢(shì)類(lèi)似。C3~C8的曲線先減少至y≈10達(dá)到最小值,之后逐漸上升至/≈0.75處達(dá)極大值,隨后又逐漸下降至/≈0.95處達(dá)極小值,最后在水面附近有上升的趨勢(shì)。在達(dá)到極大值之前,C3~C8的曲線變化相似,在該區(qū)域均由黏性主導(dǎo),從而服從相同的規(guī)律[16]。而極大值到極小值之間的曲線段具有差異,該段受慣性力影響,若慣性力的作用較大則受慣性力影響的范圍越廣。圖7所示從C3~CK極大值的相對(duì)位置逐漸靠近床面,表明隨著和的增加,慣性力增強(qiáng),受慣性力影響的范圍越來(lái)越大而受黏性力影響的范圍越來(lái)越小,呼應(yīng)了圖5展示的結(jié)果。
圖8表明薄層流的>0.25,但小于深水明渠紊流的=0.415,薄層流極大值處的max和極小值處的min隨著雷諾數(shù)的增加呈現(xiàn)出增加的趨勢(shì)。秦榮昱等[29-30]分析得出實(shí)質(zhì)上是反映流速分布變化的參數(shù),越大,則流速分布越均勻;反之,越小,流速分布越不均勻。結(jié)合圖3a所示的流速分布曲線,在薄層流條件下,其較小,流速質(zhì)點(diǎn)之間的碰撞較小導(dǎo)致動(dòng)量的交換較小,流速分布越不均勻,因此較小;而隨著的增加,流體之間的碰撞越激烈,導(dǎo)致相互之間的動(dòng)量充分交換,流體質(zhì)點(diǎn)間流速趨于一致,則流速分布越均勻,因此也逐漸變大。前人對(duì)深水明渠紊流中的研究表明,是一個(gè)不隨變化的常數(shù)[1,4,6,26,31],這說(shuō)明隨著的增加,當(dāng)水流發(fā)展成為深水明渠紊流時(shí),流體質(zhì)點(diǎn)間進(jìn)行了充分的動(dòng)量交換,此時(shí)的增加已不能進(jìn)一步引起流體質(zhì)點(diǎn)間的動(dòng)量交換,因此不隨變化。
將每組次max所處的y和/的值作為對(duì)數(shù)區(qū)下邊界,而min所處的y和/的值作為對(duì)數(shù)區(qū)上邊界(從圖6和圖7中獲得),結(jié)果如圖9所示,以探討對(duì)數(shù)區(qū)的適用范圍。如圖9a所示,對(duì)于薄層流而言,上邊界的+隨著雷諾數(shù)的增加而增加,表明隨著水深的增加,對(duì)數(shù)區(qū)上邊界距床面的距離越來(lái)越遠(yuǎn)。而下邊界的+隨著增加而增加,距床面越來(lái)越遠(yuǎn),但當(dāng)發(fā)展到一定程度時(shí),下邊界的+又隨著的增加而減少,最終穩(wěn)定在+≈76。該現(xiàn)象的原因是隨著的增加,黏性力的影響范圍擴(kuò)大,同時(shí),增加也會(huì)導(dǎo)致慣性力的作用逐漸占據(jù)主導(dǎo),當(dāng)增加到一定程度時(shí),黏性力影響的范圍被壓縮,導(dǎo)致對(duì)數(shù)區(qū)下邊界逐漸靠近床面,最終會(huì)趨于穩(wěn)定。如圖9b表明對(duì)數(shù)區(qū)上邊界和下邊界的/隨著增加而變小,表明慣性力的作用大則受慣性力影響的范圍越廣,但對(duì)數(shù)區(qū)的影響范圍也會(huì)越來(lái)越大(即極大值和極小值間的曲線),例如在C3組次時(shí)對(duì)數(shù)區(qū)影響范圍約為20%,C8約為25%,而CK約為50%。當(dāng)薄層流發(fā)展為深水明渠紊流后其上邊界將會(huì)穩(wěn)定在/≈0.5。一般而言,下邊界用y的值描述,而上邊界用/的值描述。鐘強(qiáng)等[16]認(rèn)為深水明渠紊流對(duì)數(shù)律的范圍不隨著而變化,圖9中的虛線和實(shí)線分別表示他們?cè)谏钏髑闪髦械膶?duì)數(shù)區(qū)范圍,y>76,/<0.5。相較于深水明渠紊流,薄層流下邊界y的值較大且上邊界/也較大。然而,薄層流對(duì)數(shù)區(qū)的范圍并非穩(wěn)定,而是隨著的增加,下邊界y先增大后逐漸減小,上邊界/則逐漸減小。
通過(guò)分辨率高達(dá)64 像素/mm的粒子圖像測(cè)速(Particle Image Velocimetry,PIV)技術(shù),測(cè)量了光滑床面上8組薄層流及1組深水明渠紊流從床面至水面的流速分布,并分析了流速分布特征、紊動(dòng)強(qiáng)度和雷諾應(yīng)力的特征,隨后基于診斷函數(shù)研究了薄層流流速分布是否滿(mǎn)足對(duì)數(shù)律,計(jì)算了卡門(mén)常數(shù)的取值和對(duì)數(shù)區(qū)的適用范圍,得到以下結(jié)論:
1)無(wú)量綱水深>30,本試驗(yàn)薄層流的無(wú)量綱流向流速?gòu)倪^(guò)渡區(qū)開(kāi)始逐漸偏離深水明渠紊流中理論曲線。薄層流的流向紊動(dòng)強(qiáng)度大于深水明渠紊流,而垂向紊動(dòng)強(qiáng)度小于深水明渠紊流,隨著水深的增加,紊動(dòng)強(qiáng)度靠近水面部分與深水明渠紊流的曲線逐步重合。雷諾應(yīng)力的特征表明,隨著水深的增加,受黏性力影響的范圍越來(lái)越小。
2)通過(guò)分析診斷函數(shù)的變化特征,表明薄層流條件下不會(huì)出現(xiàn)嚴(yán)格的水平段,即不會(huì)出現(xiàn)嚴(yán)格的對(duì)數(shù)區(qū)。然而,在水深極淺時(shí)(水深≤0.53 cm),無(wú)量綱水深>10之后的診斷函數(shù)曲線近似水平,基本滿(mǎn)足對(duì)數(shù)律,卡門(mén)常數(shù)在0.2~0.3范圍內(nèi)。當(dāng)水深>0.53 cm后,無(wú)量綱水深>10區(qū)域的薄層流診斷函數(shù)出現(xiàn)波動(dòng),并呈現(xiàn)出先減少至最小值后增加到極大值,隨后再減少到極小值,接近水面時(shí)上升。
3)雖然薄層流不存在嚴(yán)格的對(duì)數(shù)區(qū),但若允許診斷函數(shù)有一定的傾斜,以極大值與極小值之間的范圍為對(duì)數(shù)區(qū),薄層流極大值和極小值的卡門(mén)常數(shù)隨著雷諾數(shù)的增加而增加,并不存在一個(gè)恒定的卡門(mén)常數(shù)值。此外,對(duì)數(shù)區(qū)的范圍并非穩(wěn)定,而是隨著雷諾數(shù)的增加下邊界無(wú)量綱水深先增大后逐漸減小,上邊界相對(duì)水深則逐漸減小。
綜上,利用PIV能測(cè)量床面至水面的流場(chǎng),有助于從水動(dòng)力學(xué)的角度研究薄層流的機(jī)理機(jī)制。本研究利用PIV測(cè)量了薄層流從床面至水面的流速分布,基于診斷函數(shù)判斷了薄層流流速是否滿(mǎn)足對(duì)數(shù)律,并對(duì)卡門(mén)常數(shù)和對(duì)數(shù)律適用范圍進(jìn)行探討,可為薄層流理論研究提供支撐。然而,本試驗(yàn)設(shè)計(jì)的水流條件為均勻恒定流,實(shí)際上坡面漫流形成的薄層流因沿程的復(fù)雜性很難形成均勻恒定流,后續(xù)研究應(yīng)使模擬的水流條件與實(shí)際更加貼合,研究流場(chǎng)、流速、紊動(dòng)強(qiáng)度等動(dòng)力學(xué)參數(shù)沿程的變化特征,以期更好地指導(dǎo)實(shí)際應(yīng)用。
[1]Nezu I, Rodi W. Open-channel flow measurements with a Laser Doppler Anemometer[J]. Journal of Hydraulic Engineering, 1986, 112(5): 335-355.
[2]Osterlund J M, Johansson A V, Nagib H M, et al. A note on the overlap region in turbulent layers[J]. Physics of Fluids, 2000, 12(1): 1-4.
[3]Pope S B. Turbulent Flows[M]. Cambridge, UK: Cambridge University Press, 2000.
[4]Cardoso A H, Graf W H, Gust G. Uniform flow in a smooth open channel[J]. Journal of Hydraulic Research, 1989, 27(5): 603-616.
[5]王殿常,王興奎,李丹勛. 明渠時(shí)均流速分布公式對(duì)比及影響因素分析[J]. 泥沙研究,1998(3):86-90.
Wang Changdian, Wang Xingkui, Li Danxun. Comparison of velocity distribution formulas and analysis of influencing factors in open channel flow[J]. Journal of Sediment Research, 1998(3): 86-90. (in Chinese with English abstract)
[6]劉春晶,李丹勛,王興奎. 明渠均勻流的摩阻流速及流速分布[J]. 水利學(xué)報(bào),2005,36(8):950-955.
Liu Chunjing, Li Danxun, Wang Xingkui, Experimental study on friction velocity and velocity profile of open channel flow[J]. Journal of Hydraulic Engineering, 2005, 36(8): 950-955. (in Chinese with English abstract)
[7]Roussinova V, Biswas N, Balachandar R. Revisiting turbulence in smooth uniform open channel flow[J]. Journal of Hydraulic Research, 2008, 46(S1): 36-48.
[8]Sukhodolov A, Thiele M, Bungartz H. Turbulence structure in a river reach with sand bed[J]. Water Resources Research, 1998, 34(5): 1317-1334.
[9]Dupuis V, Sébastien P, Céline B, et al. Combined effects of bed friction and emergent cylinder drag in open channel flow[J]. Environmental Fluid Mechanics, 2018, 16: 1173-1193.
[10]Gautam P, Eldho T I, Mazumder B S, et al. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV[J]. Experimental Thermal and Fluid Science, 2019, 100: 193-206.
[11]張寬地,王光謙,孫曉敏,等. 坡面薄層水流水動(dòng)力學(xué)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):182-189.
Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Experimental on hydraulic characteristics of shallow open channel flow on slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 182-189. (in Chinese with English abstract)
[12]Wang C, Wang B, Whang Y, et al. Impact of near-surface hydraulic gradient on the interrill erosion process[J]. European Journal of Soil Science, 2020, 71: 598-614.
[13]Li Z, Zhang G, Geng R, et al. Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau[J]. Geomorphology, 2015, 248: 264-272.
[14]Li G, Abrahams A D. Effect of saltating sediment load on the determination of the mean velocity of overland flow[J]. Water Resources Research, 1997, 33(2): 341-347.
[15]安翼,劉青泉. 坡面薄層水流的流速分布特征分析[C]//第十一屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國(guó)水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(上冊(cè)). 北京:海洋出版社,2012:162-167.
[16]鐘強(qiáng),鄭楓川,楊宇晨,等. 明渠湍流對(duì)數(shù)律的診斷函數(shù)分析[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2019,59(12):999-1005.
Zhong Qiang, Zheng Fengchuan, Yang Yuchen, et al. Diagnostic function analysis of the logarithmic law in open channel turbulence[J]. Journal of Tsinghua University: Science and Technology, 2019, 59(12): 999-1005. (in Chinese with English abstract)
[17]鐘強(qiáng),王興奎,苗蔚,等. 高分辨率粒子示蹤測(cè)速技術(shù)在光滑明渠紊流黏性底層測(cè)量中的應(yīng)用[J]. 水利學(xué)報(bào),2014,45(5):513-520.
Zhong Qiang, Wang Xingkui, Miao Wei, et al. High resolution PTV system and its application in the measurement in viscous sub-layer in smooth open channel flow[J]. Journal of Hydraulic Engineering, 2014, 45(5): 513-520. (in Chinese with English abstract)
[18]楊坪坪,張會(huì)蘭,王云琦,等. 低柱體雷諾數(shù)下柱體上游薄層流馬蹄渦特征研究[J]. 工程科學(xué)與技術(shù),2019,51(1):52-59.
Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Characteristics of horseshoe vortex upstream of a cylinder in shallow water with low cylinder Reynolds number[J]. Advanced Engineering Sciences, 2019, 51(1): 52-59. (in Chinese with English abstract)
[19]Yang P, Zhang H, Wang Y, et al. Hydrodynamic characteristics in a sheet flow upstream water flow of a circular cylinder[J]. Physics of Fluids, 2019, 31(12): 127106.
[20]Yang P, Zhang H, Wang Y, et al. Overland flow velocities measured using a high-resolution particle image velocimetry system[J]. Journal of Hydrology, 2020, 590: 125225.
[21]楊坪坪,張會(huì)蘭,王云琦,等. 基于粒子圖像測(cè)速的坡面流水動(dòng)力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):115-124.
Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Hydrodynamic characteristics of overland flow based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 115-124. (in Chinese with English abstract)
[22]Zanoun E S, Durst F, Nagib H. Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows[J]. Physics of Fluids, 2003, 15(10): 3079-3089.
[23]Smits A J, Mckeon B J, Marusic I. High-Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353-375.
[24]Lozano-Duran A, Jimenez J. Effect of the computational domain on direct simulations of turbulent channels up toRe=4200[J]. Physics of Fluids, 2014, 26(1): 11702.
[25]Panco R B, DeMauro E P. Measurements of a Mach 3.4 turbulent boundary layer using stereoscopic particle image velocimetry[J]. Experiments in Fluids, 2020, 61(4): 1-12.
[26]Nezu I. Open-channel flow turbulence and its research prospect in the 21st century[J]. Journal of Hydraulic Engineering, 2005, 131(4): 229-246.
[27]Chen Q, Qi M, Zhong Q, et al. Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder[J]. Physics of Fluids, 2017, 29(1): 015106.
[28]鐘強(qiáng). 明渠紊流不同尺度相干結(jié)構(gòu)實(shí)驗(yàn)研究[D]. 北京:清華大學(xué),2014.
Zhong Qiang. Experimental Study on Diverse Scale Coherent Structures in Open Channel Flows[D]. Beijing: Tsinghua University, 2014. (in Chinese with English abstract)
[29]秦榮昱,王崇浩,劉淑杰. 動(dòng)床水流卡門(mén)常數(shù)K的物理意義及其應(yīng)用[J]. 水利學(xué)報(bào),1995,6(1):8-18.
Qin Rongyu, Wang Chonghao, Liu Shujie. Physical significances and applications of Karman coefficient of flow on movable river bed[J]. Journal of Hydraulic Engineering, 1995, 6(1): 8-18. (in Chinese with English abstract)
[30]柳小珊,盧金友,廖小永,等. 卡門(mén)常數(shù)研究現(xiàn)狀及存在的問(wèn)題[J]. 長(zhǎng)江科學(xué)院院報(bào),2014,31(6):1-6.
Liu Xiaoshan, Lu Jinyou, Liao Xiaoyong, et al. Research status and existing problems of Karman constant[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(6): 1-6. (in Chinese with English abstract)
[31]Chow V T. Open-channel Hydraulics[M]. New York, USA: McGraw-Hill, 1959: 182-192.
Logarithmic law of shallow water flow by using diagnostic function
Yang Pingping1,2, Zhang Yushan1,2, Li Rui1,2※, Zhang Huilan3,4, Wang Yunqi3,4
(1.550001,; 2.550001,; 3.()100083,; 4.100083,)
Shallow water flow is a special type of open channel flow, where the fluid behaves with a free surface in a canal. The flow depth of shallow water flow is extremely thin, and even reaches several millimeters. At present, there is no obvious evidence that the logarithmic theory is suitable for shallow water flow, even though it is widely used to describe velocity profile for open channel flow. The reason is that the viscous and inertia force exert no significant influences on shallow water flow, due to extremely thin flow depth. It is necessary to clarify the presence of the region without influenced by viscous and inertia force. The present study aims to analyze the velocity characteristics of shallow water flow, thereby to verify logarithmic law using diagnostic function. The Particle Image Velocimetry (PIV) with high resolution (64 pixels/mm) was also used to measure flow fields. Eight conditions of shallow water flow were surveyed (flow depth ranged from 0.49 to 1.1 cm and Reynolds number ranged from 835 to 2 877), and a deep-water open channel flow was considered as control group. The statistical parameters were measured, including the velocity distribution from flume bed to free surface, streamwise and wall-normal turbulent intensity. Logarithmic theory was also explored, such as the diagnostic function, Karman constant, and scope of log-law region. Results showed that: 1) From the transition region, dimensionless streamwise velocity of shallow water flow deviated from the logarithmic law, which was used in deep-water open channel flow. The streamwise turbulent intensity of shallow water flow was larger than that of deep-water open channel turbulent flow, while the wall-normal turbulent intensity was smaller than that. The turbulent intensity of two flows gradually overlapped with increasing flow depth. The characteristics of Reynolds stress showed that the region influenced by viscous force became smaller as the flow depth increased. 2) There weren’t strict horizontal lines in the diagnostic function curves, implying that there was no strict log-law region in shallow water flow. However, an approximate line was obtained in the diagnostic function curves for the extremely shallow depth (flow depth not less than 0.53 cm), when the dimensionless flow depth was larger than 10, indicating the logarithmic law was basically suitable for this region. Simultaneously, the Karman constant was at the range of 0.2 and 0.3. There was a region without influenced by viscous force and inertia force away from flume bed, due to the weakness of inertia force. In the flow depth larger than 0.53 cm, the diagnostic function curves became fluctuate due to the inertia force, particularly in the regions with dimensionless flow depth larger than 10. An upward trend occurred near the free surface, where firstly decreased and then increased to the maximum, finally decreased to the minimum. 3) The log-law region appeared in the scope between the maximum and minimum for the actual application of shallow water flow, although there was no strict log-law region for a certain tilt of diagnostic function. The extreme value of Karman constant increased with the increasing Reynolds number, indicating no stable Karman constant for shallow water flow. In addition, the scope of log-law region was not stable. As the Reynolds number increased, the scope of log-law region would be expanded. This present study can be benefit to further understand the characteristics of shallow water flow, thereby for the theoretical investigation of shallow water flow using particle image velocimetry.
flow velocity; particle image velocimetry; canals; shallow water flow; Karman constant; diagnostic function; logarithmic law
楊坪坪,張玉珊,李瑞,等. 基于診斷函數(shù)的薄層流對(duì)數(shù)律研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):167-175.doi:10.11975/j.issn.1002-6819.2021.01.021 http://www.tcsae.org
Yang Pingping, Zhang Yushan, Li Rui, et al. Logarithmic law of shallow water flow by using diagnostic function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 167-175. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.021 http://www.tcsae.org
2020-07-10
2020-10-10
國(guó)家自然科學(xué)基金(32060372);貴州省教育廳青年科技人才成長(zhǎng)項(xiàng)目(黔教合KY字[2021]293);貴州師范大學(xué)2019年博士科研啟動(dòng)項(xiàng)目(GZNUD[2019]3號(hào))
楊坪坪,博士,講師,主要研究方向?yàn)樗帘3峙c土壤侵蝕等。Email:pingping_yang0320@163.com
李瑞,博士,研究員,主要研究方向?yàn)橥寥狼治g與水土保持、生態(tài)環(huán)境工程等。Email:rlfer@126.com
10.11975/j.issn.1002-6819.2021.01.021
TV131.3; TV732.6
A
1002-6819(2021)-01-0167-09