• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      黑土區(qū)覆混耕作中玉米秸稈還田對(duì)土壤水分入滲性能的影響

      2021-03-31 13:58:18齊江濤田辛亮李明森鄭鐵志范旭輝
      關(guān)鍵詞:滲水量耕作土壤水分

      齊江濤,田辛亮,劉 凱,李明森,鄭鐵志,李 光,范旭輝

      黑土區(qū)覆混耕作中玉米秸稈還田對(duì)土壤水分入滲性能的影響

      齊江濤1,2,田辛亮1,2,劉 凱1,2,李明森3,鄭鐵志4,李 光3,范旭輝3※

      (1. 吉林大學(xué)工程仿生教育部重點(diǎn)試驗(yàn)室,長春 130022;2. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長春 130022; 3. 吉林省農(nóng)業(yè)機(jī)械研究院,長春 130022;4. 吉林省農(nóng)業(yè)機(jī)械化管理中心,長春 130022)

      覆蓋混埋耕作主要通過聯(lián)合整地機(jī)對(duì)秸稈進(jìn)行切碎并均勻混入土壤,對(duì)降低風(fēng)蝕水蝕、提高耕層土壤蓄水能力及構(gòu)建優(yōu)質(zhì)種床具有重要作用。為探究覆混耕作中玉米秸稈對(duì)土壤水分入滲性能的影響,該研究利用Design Expert軟件,根據(jù)Box-Behnken試驗(yàn)原理通過室內(nèi)土柱模擬試驗(yàn),以覆混耕作中秸稈混埋深度、秸稈混埋量、秸稈長度為影響因素,以滲水量為指標(biāo)進(jìn)行三因素三水平二次回歸正交試驗(yàn)。通過建立響應(yīng)面數(shù)學(xué)模型,分析了各因素對(duì)土壤水分入滲性能的影響,并對(duì)影響因素進(jìn)行了綜合優(yōu)化。試驗(yàn)結(jié)果表明:對(duì)滲水量影響主次順序?yàn)榻斩捇炻裆疃取⒔斩掗L度、秸稈混埋量;當(dāng)秸稈混埋深度為20 cm、秸稈混埋量為80%、秸稈長度為9 cm時(shí),滲水量達(dá)到最優(yōu)值0.249 L。利用優(yōu)化后的參數(shù)進(jìn)行試驗(yàn)驗(yàn)證,土壤滲水量為0.247 L。研究結(jié)果可為覆混耕作中聯(lián)合整地機(jī)的作業(yè)參數(shù)調(diào)整提供參考和土壤水分入滲性能研究提供參考。

      農(nóng)業(yè)工程;覆混耕作;黑土區(qū);水分入滲;玉米秸稈

      0 引 言

      保護(hù)性耕作技術(shù)是以機(jī)械化為手段、以“覆蓋免耕、保土保水”為精髓的一種綠色農(nóng)業(yè)耕作技術(shù),通過作物秸稈及殘茬覆蓋于地表,并采用免耕或少耕的方法進(jìn)行播種,可有效降低土壤的風(fēng)蝕水蝕,提高土壤的蓄水保墑能力[1-2]。覆蓋混埋耕作(以下簡稱覆混耕作)作為保護(hù)性耕作技術(shù)體系中的一種秸稈處理與蓄水耕層構(gòu)建方式[3],通常采用分段作業(yè)方式實(shí)現(xiàn):第一年秋季玉米機(jī)收后,采用松耙聯(lián)合整地機(jī)對(duì)全量秸稈覆蓋的耕地直接進(jìn)行作業(yè),完成秸稈的深層混埋;第二年春季采用播前整地中耕機(jī)對(duì)種床層進(jìn)行全幅整地作業(yè),構(gòu)建優(yōu)質(zhì)種床,提高玉米出苗率。

      中國每年農(nóng)作物秸稈產(chǎn)量超過9億t[4]。東北黑土區(qū)作為中國重要的商品糧基地,由于諸多因素的影響,黑土區(qū)土壤退化嚴(yán)重[5-6]。因此,加強(qiáng)東北黑土區(qū)土壤保護(hù),科學(xué)合理利用黑土顯得尤為重要。作為秸稈處理的方式之一,秸稈還田可以提高土壤的蓄水能力,改善土壤結(jié)構(gòu),增強(qiáng)土壤新陳代謝和有機(jī)物活性,培肥地力、恢復(fù)和提升有機(jī)質(zhì)含量[7-9]。目前,秸稈還田的方式有覆蓋還田、高留茬還田、免耕與秸稈覆蓋相結(jié)合、耙混還田、深埋還田等[10-12]。研究表明,秸稈覆蓋可以抑制土壤水分蒸發(fā),提高土壤的蓄水能力,增加土壤有機(jī)質(zhì)含量,但種床溫度相對(duì)較低[13-15];免耕能降低機(jī)械作業(yè)對(duì)土壤的擾動(dòng),提高土壤的蓄水能力[16-17];免耕與秸稈覆蓋相結(jié)合的方式可以顯著改善土壤的性能,提高土壤孔隙度[18-19]。國內(nèi)外許多學(xué)者從不同的角度對(duì)土壤水分特性進(jìn)行了研究。劉繼龍等[20]利用秸稈覆蓋與耕作方式對(duì)土壤水分特性進(jìn)行了研究;余坤等[21]探究了秸稈還田對(duì)農(nóng)田土壤水分與冬小麥耗水特征的影響;趙永敢等[22]發(fā)現(xiàn)秸稈隔層與地膜覆蓋能有效抑制潛水蒸發(fā);付強(qiáng)等[23]探究秸稈覆蓋對(duì)季節(jié)性凍融期土壤水分特征的影響;王曉彤等[24]探究了黏土夾層位置對(duì)黃河泥沙充填復(fù)墾土壤水分入滲的影響,確定了接近普通農(nóng)田土壤水分入滲特性的理想夾層位置;Mohammad等[25]利用尺度模擬探究了土壤水入滲變異性,闡述了利用最小滲透時(shí)間測量數(shù)據(jù)可以得到累積滲透曲線。通過國內(nèi)外學(xué)者對(duì)土壤水分入滲性能的研究發(fā)現(xiàn),不同的秸稈處理方式對(duì)土壤水分入滲性能影響差異較大。

      綜上,國內(nèi)外學(xué)者的研究主要集中在秸稈還田及耕作方式對(duì)土壤水分入滲性能和蓄水能力的影響方面。因此,探究適宜的秸稈還田及耕作方式對(duì)于黑土區(qū)的土壤保護(hù)具有重要意義。本文通過室內(nèi)土柱試驗(yàn)探究覆混耕作中秸稈混埋深度、秸稈混埋量、秸稈長度對(duì)土壤水分入滲的影響規(guī)律,尋求較優(yōu)參數(shù)組合,以期為覆混耕作中聯(lián)合整地機(jī)作業(yè)參數(shù)提供參考。

      1 材料與方法

      1.1 試驗(yàn)材料

      試驗(yàn)用土于2019年秋季取自長春市農(nóng)安縣開安鎮(zhèn)(44°10'N,120°10'E),該區(qū)年降雨量535 mm,土壤類型為黑鈣土。取土深度為0~30 cm,試驗(yàn)用土經(jīng)自然風(fēng)干后磨碎,除去雜物后過2 mm網(wǎng)篩,土壤初始含水率采用烘干法進(jìn)行測定為3.37%,0~20 cm深度土壤容重1.3 g/cm3,20~30 cm深度土壤容重1.4 g/cm3,土壤pH值為7.01。試驗(yàn)所用秸稈為2019年秋季風(fēng)干玉米秸稈,含水率10.9%,分別收集4、7、10 cm長度的玉米秸稈。

      1.2 試驗(yàn)方法

      用有機(jī)玻璃柱裝填土柱,有機(jī)玻璃柱由亞克力材料制造,外徑20 cm,壁厚2 mm,玻璃柱底部開有若干內(nèi)徑為10 mm的圓孔,便于土壤水分滲出。裝土前,為降低管壁效應(yīng)對(duì)水分入滲的影響,用凡士林均勻涂滿有機(jī)玻璃柱內(nèi)壁。填裝土壤前,在玻璃柱底部平鋪一層與玻璃柱橫截面積大小相同的尼龍布,防止土壤顆粒進(jìn)入水分收集儀器中。土柱裝填過程中,模擬當(dāng)?shù)赝寥廊葜兀林?~20 cm深度土壤容重1.3 g/cm3,20~30 cm深度土壤容重1.4 g/cm3,分別裝填自然風(fēng)干并過2 mm網(wǎng)篩的土壤。秸稈按照每組試驗(yàn)的混埋深度及混埋量均勻混埋至土柱中,每組土柱裝填高度為30 cm[26],各處理均進(jìn)行3次重復(fù)試驗(yàn)。土柱裝填完成后采用一維垂直積水入滲法進(jìn)行試驗(yàn),為確保有部分水分滲出,依據(jù)土壤飽和含水率及前期試驗(yàn)結(jié)果,每個(gè)土柱總注水量為4 L。

      注水開始后記錄濕潤鋒下移位置及濕潤鋒運(yùn)移時(shí)間。土柱底部有金屬底座,底座內(nèi)部有水分收集容器,對(duì)土柱滲出的水量進(jìn)行收集,記錄土柱出水時(shí)刻,并收集和記錄每組試驗(yàn)整個(gè)滲水過程的累積滲水量,每組試驗(yàn)滲水量為3次重復(fù)試驗(yàn)的平均值,土壤水分入滲試驗(yàn)裝置如圖1所示。

      1.3 數(shù)據(jù)統(tǒng)計(jì)分析

      試驗(yàn)中所有數(shù)據(jù)均采用平均值,利用Excel 2016進(jìn)行數(shù)據(jù)統(tǒng)計(jì),Design Expert軟件進(jìn)行顯著性分析,Origin 9.0軟件進(jìn)行繪圖。

      2 試驗(yàn)設(shè)計(jì)與分析

      2.1 單因素試驗(yàn)

      2.1.1 試驗(yàn)因素及評(píng)價(jià)指標(biāo)

      研究表明,秸稈混埋深度[27]、秸稈混埋量[28]、秸稈長度[29]是影響土壤水分入滲性能的主要因素。秸稈混埋深度是土壤水分下滲的主要影響因素,土壤蓄水能力隨著秸稈混埋深度的增加而逐漸增大[27]。同時(shí),較高的秸稈混埋量可以減少土壤中大孔隙結(jié)構(gòu)所占比例且秸稈吸持部分水分,亦能提高土壤的保水性能[28];長秸稈加入土壤后對(duì)土壤水分入滲起到阻礙作用,減緩?fù)寥乐兴窒聺B,進(jìn)而提高土壤的蓄水能力[29]。

      因此,本文以秸稈混埋深度、秸稈混埋量、秸稈長度為試驗(yàn)因素,選擇滲水量[30]為評(píng)價(jià)指標(biāo),探究黑土區(qū)覆混耕作中玉米秸稈對(duì)土壤水分入滲性能的影響。

      2.1.2 試驗(yàn)設(shè)計(jì)

      提高秸稈混埋深度,可以提高土壤孔隙度,從而增強(qiáng)耕層內(nèi)土壤蓄水能力。但混埋深度增加,會(huì)導(dǎo)致機(jī)具功耗增大。因此,秸稈混埋深度應(yīng)合理選取,不宜過高。為對(duì)比不同整地效果的秸稈混埋深度對(duì)土壤水分入滲效果的影響,本試驗(yàn)分別選取秸稈混埋深度10、15、20 cm進(jìn)行試驗(yàn)[27]。

      保護(hù)性耕作技術(shù)要求機(jī)具作業(yè)后地表覆蓋約30%的秸稈[3],降低土壤風(fēng)蝕水蝕,剩余70%左右秸稈用于還田或打捆移出農(nóng)田。不同保護(hù)性耕作模式地表秸稈覆蓋量存在少許差異,本試驗(yàn)以70%為中間值選取秸稈混埋量試驗(yàn)水平,進(jìn)行混埋還田。試驗(yàn)時(shí),以1m2作為取樣區(qū)域,分別將1 m2區(qū)域內(nèi)60%、70%、80%的秸稈混埋入土壤中,進(jìn)行試驗(yàn)。

      依據(jù)國家標(biāo)準(zhǔn)《保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī)》GB/T 24675.6-2009,玉米秸稈粉碎長度不大于10 cm,同時(shí)考慮實(shí)際作業(yè)中秸稈切碎程度對(duì)土壤水分入滲效果的影響、且粉碎長度過短會(huì)增加機(jī)具能耗,因此本研究取秸稈長度指標(biāo)為4、7、10 cm。

      以滲水量為評(píng)價(jià)指標(biāo)進(jìn)行試驗(yàn),每次試驗(yàn)時(shí)用水分收集容器收集滲出的水分并測量,然后記錄滲水量,每組試驗(yàn)重復(fù)3次,取平均值。

      2.1.3 試驗(yàn)結(jié)果與分析

      結(jié)合試驗(yàn)結(jié)果,分別分析秸稈混埋深度、秸稈混埋量、秸稈長度3個(gè)因素與滲水量之間的關(guān)系。在秸稈混埋量與秸稈長度一定的情況下,分別選取秸稈混埋深度10、15、20 cm進(jìn)行試驗(yàn),隨著秸稈混埋深度的增大,滲水量逐漸降低,如圖2a所示。分析其原因在于,土壤混入秸稈后可以增加土壤毛管孔隙的數(shù)量,從而提高了土壤混埋后的持水能力。當(dāng)秸稈混埋深度與秸稈長度一定時(shí),秸稈混埋量分別選取60%、70%、80% 3個(gè)水平進(jìn)行試驗(yàn),隨著秸稈混埋量的增加,滲水量越來越小,如圖2b所示。產(chǎn)生該結(jié)果的原因在于,秸稈可以吸收水分,從而增加土壤與秸稈混合物的持水能力。當(dāng)秸稈混埋深度與秸稈混埋量一定時(shí),增大秸稈長度可以降低滲水量,如圖2c所示。分析其原因在于,土壤中混入的長秸稈吸收一部分水分,同時(shí)混入的長秸稈加大了土壤孔隙度、增強(qiáng)土壤持水能力,從而降低了滲水量。

      綜合分析上述試驗(yàn)結(jié)果,增加秸稈混埋深度、秸稈混埋量、秸稈長度3個(gè)因素的水平值,可以降低試驗(yàn)滲水量、提高混埋秸稈后土壤的持水能力。在實(shí)際生產(chǎn)過程中,在滿足保護(hù)性耕作秸稈覆蓋要求和機(jī)具作業(yè)低功耗要求的前提下,秸稈混埋深度、秸稈混埋量、秸稈長度3個(gè)因素可以適當(dāng)選擇較大的值。

      2.2 多因素優(yōu)化試驗(yàn)

      2.2.1 試驗(yàn)設(shè)計(jì)

      為探究上述3個(gè)影響因素對(duì)土壤水分入滲性能的影響規(guī)律及優(yōu)化參數(shù)組合,以滲水量為評(píng)價(jià)指標(biāo),開展多因素優(yōu)化試驗(yàn)。多因素優(yōu)化試驗(yàn)利用Design Expert軟件進(jìn)行設(shè)計(jì),根據(jù)Box-Behnken試驗(yàn)原理設(shè)計(jì)的三因素三水平試驗(yàn)[31-32],共包括17組試驗(yàn),各水平試驗(yàn)重復(fù)3次。由單因素試驗(yàn)結(jié)果可知:秸稈混埋深度1、秸稈混埋量2以及秸稈長度3對(duì)滲水量有重要影響。根據(jù)單因素試驗(yàn)分析結(jié)果,將秸稈混埋深度分別設(shè)置為10、15、20 cm,秸稈混埋量分別設(shè)置為60%、70%、80%,秸稈長度分別設(shè)置為4、7、10 cm。表1為試驗(yàn)因素水平。

      表1 試驗(yàn)因素水平

      2.2.2 試驗(yàn)結(jié)果與分析

      試驗(yàn)結(jié)果如表2所示,根據(jù)表2結(jié)果,利用Design Expert軟件進(jìn)行多元擬合及回歸性分析,建立滲水量與秸稈混埋深度、秸稈混埋量、秸稈長度這3個(gè)自變量間的響應(yīng)面回歸模型,如式(1)所示,并對(duì)模型進(jìn)行顯著性檢驗(yàn)如表3所示。

      表2 試驗(yàn)設(shè)計(jì)方案及結(jié)果

      表2描述了17組試驗(yàn)中濕潤鋒運(yùn)移時(shí)間,由數(shù)據(jù)可知,增加秸稈混埋深度、提高秸稈混埋量、增大秸稈長度,可以提高濕潤鋒推進(jìn)速度、減少滲水量。分析其原因在于,秸稈混埋深度及秸稈混埋量增加、秸稈長度越長增大了土壤的孔隙度,大孔隙的存在對(duì)水分優(yōu)先遷移具有顯著作用[33],利于土壤水分下滲和增加持水能力。因此,采用覆混作業(yè)的農(nóng)田地塊在降水后可以加快雨水滲入混埋有秸稈的土壤中,并增加土壤持水能力,起到涵養(yǎng)水源的作用。

      由表3可知,模型顯著性檢驗(yàn)=193.15,<0.000 1,說明回歸模型差異極顯著;失擬性檢驗(yàn)中,=0.29,>0.1,為不顯著,說明試驗(yàn)?zāi)P湍M情況與實(shí)際情況相符合,可以準(zhǔn)確反映滲水量與秸稈混埋深度1、秸稈混埋量2、秸稈長度3之間的關(guān)系,能對(duì)試驗(yàn)中各種情況進(jìn)行較好預(yù)測。模型的一次項(xiàng)秸稈混埋深度1、秸稈混埋量2、秸稈長度3影響均為極顯著;二次項(xiàng)秸稈混埋深度12、秸稈混埋量22、秸稈長度32影響為極顯著;交互項(xiàng)秸稈混埋深度1與秸稈混埋量2影響為顯著,交互項(xiàng)秸稈混埋深度1與秸稈長度3影響為極顯著,交互項(xiàng)秸稈混埋量2與秸稈長度3影響為極顯著。模型值分別為1 287.97、85.51、146.64,可發(fā)現(xiàn)對(duì)滲水量影響主次順序?yàn)榻斩捇炻裆疃?、秸稈長度、秸稈混埋量。

      表3 模型顯著性檢驗(yàn)

      注:**表示差異極顯著(<0.01);*表示差異顯著(<0.05)。

      Note: ** means extremely significant (<0.01); * means significant (<0.05).

      2.2.3 響應(yīng)曲面分析

      根據(jù)模型利用Design Expert軟件生成響應(yīng)面如圖3所示,進(jìn)一步分析秸稈混埋深度1、秸稈混埋量2、秸稈長度33個(gè)因素對(duì)響應(yīng)值滲水量的交互影響。

      圖3a為秸稈混埋深度1、秸稈混埋量2對(duì)滲水量交互作用的響應(yīng)曲面圖,可知當(dāng)增大秸稈混埋深度與秸稈混埋量有助于降低滲水量,出現(xiàn)該現(xiàn)象的主要原因是增大秸稈混埋深度與秸稈混埋量增加了土壤中毛管孔隙的數(shù)量,毛管孔隙對(duì)水分入滲有阻礙效果,使?jié)B水量減少。

      圖3b為秸稈混埋深度1、秸稈長度3對(duì)滲水量交互作用的響應(yīng)曲面圖,可知隨著秸稈長度及秸稈混埋深度的增大,滲水量有降低的趨勢(shì),出現(xiàn)該現(xiàn)象的主要原因是秸稈混埋深度增大,使得秸稈在土壤中分布范圍變廣,增加了土壤中毛管孔隙數(shù)量;秸稈長度增大,雖有大孔隙存在,但長秸稈吸水后膨脹,會(huì)持有部分水分,且長秸稈阻斷了土壤水分流通的毛管孔隙,使?jié)B水量減少。

      圖3c為秸稈混埋量2、秸稈長度3對(duì)滲水量交互作用的響應(yīng)曲面圖,由響應(yīng)面的形狀可以看出,增大秸稈混埋量及秸稈長度可以降低滲水量,出現(xiàn)該現(xiàn)象的主要原因是增大秸稈混埋量提高了秸稈在土壤中的含量,秸稈內(nèi)部孔隙可吸附部分水分,且秸稈長度增大對(duì)于土壤水分下滲起到阻礙作用,土壤中混埋秸稈可以涵養(yǎng)水分,使?jié)B水量減少。

      2.2.4 參數(shù)優(yōu)化

      根據(jù)模型分析效果,利用Design Expert軟件尋優(yōu)功能進(jìn)行參數(shù)優(yōu)化,為提高耕層土壤蓄水能力,就要獲得較低的滲水量,必須要求秸稈混埋深度、秸稈混埋量、秸稈長度選擇合適的參數(shù),參數(shù)優(yōu)化約束條件為

      利用Design Expert軟件中的優(yōu)化求解器對(duì)回歸方程模型(1)進(jìn)行優(yōu)化求解。利用軟件優(yōu)化后,得到秸稈混埋深度20 cm、秸稈混埋量80%、秸稈長度9 cm時(shí),滲水量達(dá)到最小值0.249 L。為了驗(yàn)證優(yōu)化后參數(shù)準(zhǔn)確性,采用優(yōu)化后參數(shù)進(jìn)行3次重復(fù)試驗(yàn),土柱裝填深度及土壤容重與前文試驗(yàn)相同,秸稈混埋深度20 cm、秸稈混埋量80%、秸稈長度9 cm,分別裝填自然風(fēng)干并過2 mm網(wǎng)篩的土壤,得到3次試驗(yàn)平均滲水量為0.247 L。試驗(yàn)得到數(shù)值與模型優(yōu)化值相對(duì)誤差均小于5%,說明參數(shù)優(yōu)化模型可靠。

      3 結(jié) 論

      1)本文通過室內(nèi)土柱模擬試驗(yàn),研究了黑土區(qū)覆混耕作中玉米秸稈對(duì)土壤水分入滲性能的影響。由試驗(yàn)結(jié)果可知,對(duì)滲水量的影響主次順序依次為:秸稈混埋深度、秸稈長度、秸稈混埋量。

      2)以滲水量為評(píng)價(jià)指標(biāo),對(duì)影響因素進(jìn)行參數(shù)優(yōu)化,優(yōu)化后最佳參數(shù)為:秸稈混埋深度20 cm、秸稈混埋量80%、秸稈長度9 cm。通過試驗(yàn)對(duì)建立的滲水量的二元多項(xiàng)式回歸模型的優(yōu)化參數(shù)進(jìn)行驗(yàn)證,實(shí)測值與模型優(yōu)化值誤差小于5%,說明模型可靠。

      3)通過多因素試驗(yàn)對(duì)比濕潤鋒運(yùn)移時(shí)間和滲水量,得出覆混耕作中土壤水分入滲規(guī)律:增加秸稈混埋深度、提高秸稈混埋量、增大秸稈長度,可以減少濕潤鋒運(yùn)移時(shí)間、降低滲水量,從而為黑土區(qū)土壤水分入滲性能研究提供試驗(yàn)依據(jù)。

      [1]何進(jìn),李洪文,陸海濤,等. 保護(hù)性耕作技術(shù)與機(jī)具研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):1-19.

      He Jin, Li Hongwen, Lu Haitao, et al. Research progress of conservation tillage technology and machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 1-19. (in Chinese with English abstract)

      [2]胡立峰,李洪文,高煥文. 保護(hù)性耕作對(duì)溫室效應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(5):308-312.

      Hu Lifeng, Li Hongwen, Gao Huanwen. Influence of conservation tillage on greenhouse effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 308-312. (in Chinese with English abstract)

      [3]Komp M. Conservation Technology Information Center. CRM Survey Data[EB/OL]. (1982-01-01) [2020-09-10] https://www.ctic.org/crm/

      [4]常欽. 秸稈利用,下氣力培育產(chǎn)業(yè)鏈[EB/OL]. (2018-07-08) [2020-09-10]http://society.people.com.cn/n1/2018/0708/c1008-30132996.html

      [5]Qi J T, Tian X L, Li Y, et al. Design and experiment of a subsoiling variable rate fertilization machine[J]. Int J Agric & Biol Eng, 2020, 13(4): 118-124.

      [6]魏丹,匡恩俊,遲鳳琴,等. 東北黑土資源現(xiàn)狀與保護(hù)策略[J]. 黑龍江農(nóng)業(yè)科學(xué),2016(1):158-161.

      Wei Dan, Kuang Enjun, Chi Fengqin, et al. The present situation and protection strategy of black soil resources in northeast China[J]. Heilongjiang Agricultural Sciences, 2016(1): 158-161. (in Chinese with English abstract)

      [7]Yang H S, Xu M M, Koide R T, et al. Effects of ditch-buried stover return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1141-1149.

      [8]梁衛(wèi),袁靜超,張洪喜,等. 東北地區(qū)玉米秸稈還田培肥機(jī)理及相關(guān)技術(shù)研究進(jìn)展[J]. 東北農(nóng)業(yè)科學(xué),2016,41(2):44-49.

      Liang Wei, Yuan Jingchao, Zhang Hongxi, et al. Research progress on mechanism and related technology of corn stover returning in northeast China[J]. Journal of Northeast Agricultural Sciences, 2016, 41(2): 44-49. (in Chinese with English abstract)

      [9]叢萍,王婧,董建新,等. 秸稈還田對(duì)黑土亞表層微生物群落結(jié)構(gòu)的影響特征及原因分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):109-118.

      Cong Ping, Wang Jing, Dong Jianxin, et al. Effects and analysis of stover returning on subsoil microbial community structure in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 109-118. (in Chinese with English abstract)

      [10]張萬鋒,楊樹青,婁帥,等. 耕作方式與秸稈覆蓋對(duì)夏玉米根系分布及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):117-124.

      Zhang Wanfeng, Yang Shuqing, Lou Shuai, et al. Effects of tillage methods and stover mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract)

      [11]Da Veiga M, Horn R, Reinert D J. Soil compressibility and penetrability of an oxisol from southern Brazil, as affected by long-term tillage systems[J]. Soil and Tillage Research, 2007, 92(1/2): 104-113.

      [12]王金武,唐漢,王金峰. 東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀及發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):1-21.

      Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop stover resourcein northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21. (in Chinese with English abstract)

      [13]Kasteel R, Garnier P, Vachier P, et al. Dye tracer infiltration in the plough layer after stover incorporation[J]. Geoderma, 2007, 137(3/4): 360-369.

      [14]Kim S H, Gitz D C, Sicher R C, et al. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2[J]. Environmental and Experimental Botany, 2007, 61(3): 224-236.

      [15]Zhou Deyi, Li Mao, Li Yang, et al. Detection of ground stover coverage under conservation tillage based on deep learning[J]. Computers and Electronics in Agriculture, 2020, 172: 105369.

      [16]朱強(qiáng)根,朱安寧,張家寶,等. 黃淮海平原保護(hù)性耕作下玉米季土壤動(dòng)物多樣性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2009,20(10):2417-2423.

      Zhu Qianggen, Zhu Anning, Zhang Jiabao, et al. Diversity of soil fauna in corn fields in Huang Huai Hai Plain of China under effects of conservation tillage[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2417-2423. (in Chinese with English abstract)

      [17]呂美蓉,李增嘉,張濤,等. 少免耕與秸稈還田對(duì)極端土壤水分及冬小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):41-46.

      Lü Meirong, Li Zengjia, Zhang Tao, et al. Effects of minimum or no-tillage system and stover returning on extreme soil moisture and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 41-46. (in Chinese with English abstract)

      [18]王增麗. 秸稈不同處理還田方式對(duì)土壤理化特性和作物生長效應(yīng)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2010. Wang Zengli. Effects of Different Stover Incorporation Manners on Soil Physical and Chemical Properties and Crop Growth[D]. Yangling: Northwest A&F University, 2010. (in Chinese with English abstract)

      [19]殷濤,何文清,嚴(yán)昌榮,等. 地膜秸稈雙覆蓋對(duì)免耕種植玉米田土壤水熱效應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):78-87.

      Yin Tao, He Wenqing, Yan Changrong, et al. Effects of plastic mulching on surface of no-till stover mulching on soil water and temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 78-87. (in Chinese with English abstract)

      [20]劉繼龍,李佳文,周延,等. 秸稈覆蓋與耕作方式對(duì)土壤水分特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):333-339.

      Liu Jilong, Li Jiawen, Zhou Yan, et al. Effect of stover mulching and tillage on soil water characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 333-339. (in Chinese with English abstract)

      [21]余坤,馮浩,李正鵬,等. 秸稈還田對(duì)農(nóng)田土壤水分與冬小麥耗水特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):116-123.

      Yu Kun, Feng Hao, Li Zhengpeng, et al. Effects of different pretreated stover on soil water content and water consumption characteristics of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 116-123. (in Chinese with English abstract)

      [22]趙永敢,王婧,李玉義,等. 秸稈隔層與地覆膜蓋有效抑制潛水蒸發(fā)和土壤返鹽[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):109-117.

      Zhao Yonggan, Wang Jing, Li Yuyi, et al. Reducing evaporation from phreatic water and soil resalinization by using stover interlayer and plastic mulch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 109-117. (in Chinese with English abstract)

      [23]付強(qiáng),李鐵男,李天霄,等. 秸稈覆蓋對(duì)季節(jié)性凍融期土壤水分特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):141-146.

      Fu Qiang, Li Tienan, Li Tianxiao, et al. Influence of stover mulching on soil moisture characteristics during seasonal freeze-thaw period[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 141-146. (in Chinese with English abstract)

      [24]王曉彤,胡振琪,賴小君,等. 黏土夾層位置對(duì)黃河泥沙充填復(fù)墾土壤水分入滲的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):86-93. Wang Xiaotong, Hu Zhenqi, Lai Xiaojun, et al. Influence of clay interlayer position on infiltration of reclaimed soil filled with Yellow River sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 86-93. (in Chinese with English abstract)

      [25]Mohammad M. Chari, Mohammad T. Poozan, Peyman Afrasiab. Modelling soil water infiltration variability using scaling[J]. Biosystems Engineering, 2020, 196: 56-66.

      [26]李帥霖,王霞,王朔,等. 生物炭施用方式及用量對(duì)土壤水分入滲與蒸發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):135-144.

      Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)

      [27]程?hào)|娟,周客,王利書,等. 秸稈施入深度對(duì)土壤水分運(yùn)移和水吸力變化的影響[J]. 水土保持學(xué)報(bào),2020,34(1):116-120. Cheng Dongjuan, Zhou Ke, Wang Lishu, et al. Effect of stover application depth on soil moisture transport and water suction changes[J]. Journal of Soil and Water Conservation, 2020, 34(1): 116-120. (in Chinese with English abstract)

      [28]仵峰,張凱,宰松梅,等. 小麥玉米秸稈摻土還田量對(duì)土壤水分運(yùn)動(dòng)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):101-105. Wu Feng, Zhang Kai, Zai Songmei, et al. Impact of mixed stover on soil hydraulic properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 101-105. (in Chinese with English abstract)

      [29]王珍,馮浩. 秸稈不同還田方式對(duì)土壤入滲特性及持水能力的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):75-80. Wang Zhen, Feng Hao. Effect of stover-incorporation on soil infiltration characteristics and soil water holding capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 75-80. (in Chinese with English abstract)

      [30]仵峰,王富斌,宰松梅,等. 玉米秸稈復(fù)合滲灌管研制及滲水性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):98-104. Wu Feng, Wang Fubin, Zai Songmei, et al. Development and infiltration performance of corn stover composite infiltration irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 98-104. (in Chinese with English abstract)

      [31]吳騰,胡良龍,王公仆,等. 步行式甘薯碎蔓還田機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):8-17.

      Wu Teng, Hu Lianglong, Wang Gongpu, et al. Design and test of walking sweet potato (Ipomoea batatas) vines crushing and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 8-17. (in Chinese with English abstract)

      [32]田辛亮,趙巖,陳學(xué)庚,等. 4JSM-2000A型棉稈粉碎及摟膜聯(lián)合作業(yè)機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):25-35.

      Tian Xinliang, Zhao Yan, Chen Xuegeng, et al. Development of 4JSM-2000A type combined operation machine for cotton stalk chopping and residual plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 25-35. (in Chinese with English abstract).

      [33]吳繼強(qiáng),張建豐,高瑞. 大孔隙對(duì)土壤水分入滲特性影響的物理模擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(10):13-18.

      Wu Jiqiang, Zhang Jianfeng, Gao Rui. Physical simulation experiments of effects of macropores on soil water infiltration characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 13-18. (in Chinese with English abstract)

      Soil water infiltration under mulch tillage affected by maize stovers returning in black soil areas

      Qi Jiangtao1,2, Tian Xinliang1,2, Liu Kai1,2, Li Mingsen3, Zheng Tiezhi4, Li Guang3, Fan Xuhui3※

      (1.,,,130022,;2.,,130022,;3.,130022,;4.,130022,)

      Conservation tillage has become a promising farming technology with mechanized operations as the main means. The method of minimum tillage or no tillage planting is widely adopted, where the crop stover and stubble are used to cover on the soil surface, in order to effectively reduce the soil wind erosion and water erosion, while improve the ability of soil to keep moisture and water. As a kind of conservation tillage, mulch tillage is mainly used to chop up the stover by a combined tillage machine and mix it evenly into the soil. As such, the mulch tillage can contribute to soil moisture infiltration, and high-quality seed beds. After the corn harvest in the first autumn, the full amount of stover-covered arable land was operated directly by the combined soil planter with the soft rake. In the second spring, the seed bed making machine was used to prepare the whole field of the seed bed, to build a high-quality seed bed and improve the emergence rate of corn. Most previous research focused on the effect of stover mulching and tillage methods on soil moisture infiltration performance. However, it is of great significance to explore the suitable stover returning and tillage method for soil protection in black soil area. In this study, a Design Expert software and a Box-Behnken test were used to conduct an experimental study on the infiltration performance of stover on soil moisture in black soil area in mulching tillage. In the column experiment, a quadratic regression orthogonal experiment was designed with three factors and three levels, including the depth, the quantity, and the length of mixed stover. The experimental results showed that the significant order of the influence on the amount of water seepage was as follows: the depth of mixed stover, the length of stover, the quantity of mixed stover. A response surface mathematical model was established to analyze the influence of various factors on soil moisture infiltration performance, and thereby to comprehensively optimize the influencing factors. The optimal combination was achieved, where the water seepage reached the maximum, when the depth of mixed stover was 20 cm, the quantity of mixed stover was 80%, and the length of stover was 9 cm. Using the optimized parameters for experiments, the soil water infiltration rate was up to 0.247 L. The findings can provide a sound reference for the adjustment parameters in the combined tillage machine in the mulch tillage, particularly on a theoretical support for black soil protection.

      agricultural engineering; mulch tillage; black soil area; water infiltration; maize stover

      齊江濤,田辛亮,劉凱,等. 黑土區(qū)覆混耕作中玉米秸稈還田對(duì)土壤水分入滲性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):141-147.doi:10.11975/j.issn.1002-6819.2021.01.018 http://www.tcsae.org

      Qi Jiangtao, Tian Xinliang, Liu Kai, et al. Soil water infiltration under mulch tillage affected by maize stovers returning in black soil areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 141-147. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.018 http://www.tcsae.org

      2020-09-10

      2020-12-11

      國家自然科學(xué)基金資助項(xiàng)目(31971783)

      齊江濤,教授,博士生導(dǎo)師,中國農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員(No.E041201131S),主要從事精準(zhǔn)農(nóng)業(yè)與智能農(nóng)業(yè)裝備研究。 Email:qijiangtao@jlu.edu.cn

      范旭輝,研究員,主要從事保護(hù)性耕作及其智能裝備研究。Email:cchkbjomfan@163.com

      10.11975/j.issn.1002-6819.2021.01.018

      S152.7

      A

      1002-6819(2021)-01-0141-07

      猜你喜歡
      滲水量耕作土壤水分
      上游式尾礦庫一種新的初期壩型式的滲流計(jì)算分析
      礦山法施工的近海地鐵隧道圍巖注漿圈參數(shù)選擇
      改進(jìn)的水封石油洞庫群滲水量預(yù)估研究
      西藏高原土壤水分遙感監(jiān)測方法研究
      耕作深度對(duì)紫色土坡地旋耕機(jī)耕作侵蝕的影響
      玉米保護(hù)性耕作的技術(shù)要領(lǐng)
      草地耕作技術(shù)在澳大利亞的應(yīng)用
      土壤與作物(2015年3期)2015-12-08 00:46:58
      不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
      西洞庭湖區(qū)免耕耕作模式及其配套技術(shù)
      作物研究(2014年6期)2014-03-01 03:39:12
      植被覆蓋區(qū)土壤水分反演研究——以北京市為例
      灵石县| 涪陵区| 永登县| 临西县| 衡水市| 松溪县| 通化县| 庐江县| 噶尔县| 鹤庆县| 齐齐哈尔市| 临城县| 汽车| 靖州| 韶山市| 姜堰市| 凌源市| 沁源县| 朔州市| 贵南县| 青岛市| 容城县| 敖汉旗| 南靖县| 和硕县| 五寨县| 卫辉市| 积石山| 翼城县| 罗定市| 南靖县| 黄龙县| 略阳县| 方正县| 嘉定区| 宁河县| 松桃| 广德县| 普定县| 同德县| 五指山市|