束美艷,李世林,魏家璽,車(chē)熒璞,李保國(guó),馬韞韜
·農(nóng)業(yè)航空工程·
基于無(wú)人機(jī)平臺(tái)的柑橘樹(shù)冠信息提取
束美艷,李世林,魏家璽,車(chē)熒璞,李保國(guó),馬韞韜※
(中國(guó)農(nóng)業(yè)大學(xué)土地科學(xué)與技術(shù)學(xué)院,北京 100193)
為了快速獲取柑橘樹(shù)冠信息,提升柑橘園精準(zhǔn)管理,該研究基于無(wú)人機(jī)平臺(tái)獲取了柑橘數(shù)碼和多光譜影像,分析了無(wú)人機(jī)影像反演柑橘樹(shù)冠信息的效果。首先利用無(wú)人機(jī)數(shù)碼影像及分水嶺算法進(jìn)行柑橘單木分割,然后構(gòu)建柑橘樹(shù)冠層高度模型,提取柑橘株數(shù)、株高、冠幅投影面積等結(jié)構(gòu)參數(shù)信息,進(jìn)而利用無(wú)人機(jī)多光譜影像獲取柑橘的8種常用植被指數(shù),采用全子集分析法篩選柑橘冠層氮素含量的敏感植被指數(shù),構(gòu)建基于多元線性回歸的冠層氮素遙感反演模型,進(jìn)行以冠幅為基本單元的柑橘樹(shù)冠層氮素含量遙感制圖。研究結(jié)果表明:柑橘的單木識(shí)別準(zhǔn)確率在93%以上,召回率在95%以上,平均值為96.52%;柑橘樹(shù)的反演株高與實(shí)測(cè)株高具有較強(qiáng)的相關(guān)性,決定系數(shù)2為0.87,均方根誤差為31.9 cm;單株冠幅投影面積與人工繪制的冠幅面積的決定系數(shù),除果園A在12月的結(jié)果較低(2為0.78)外,其余均在0.94及以上;采用全子集分析法篩選的柑橘冠層氮素敏感植被指數(shù)為歸一化植被指數(shù)(NDVI)、綠色歸一化植被指數(shù)和冠層結(jié)構(gòu)不敏感指數(shù),所建立的多元回歸模型的決定系數(shù)2達(dá)0.82,均方根誤差為0.22%,相對(duì)誤差為6.59%。綜上,無(wú)人機(jī)影像在柑橘樹(shù)冠參數(shù)信息提取方面具有較好的應(yīng)用效果,能夠快速有效地提取柑橘樹(shù)冠參數(shù)信息。該研究可為使用無(wú)人機(jī)平臺(tái)進(jìn)行果園精準(zhǔn)管理提供技術(shù)支撐。
無(wú)人機(jī);圖像處理;多光譜;柑橘;株高;冠幅投影面積;冠層氮素含量
柑橘是世界重要的經(jīng)濟(jì)作物[1]。在中國(guó),柑橘種植區(qū)目前主要分布在甘肅–陜西–河南–江蘇一線以南,遍及全國(guó)的20多個(gè)直轄市(市、自治區(qū)),柑橘產(chǎn)業(yè)逐漸成為當(dāng)?shù)剞r(nóng)村經(jīng)濟(jì)的支柱和特色產(chǎn)業(yè),對(duì)中國(guó)農(nóng)業(yè)經(jīng)濟(jì)發(fā)展發(fā)揮著重要的作用[2]。目前歐美國(guó)家綜合應(yīng)用衛(wèi)星遙感、航空遙感和地面行走式探測(cè)裝備等的“天-空-地”一體化集成技術(shù),進(jìn)行實(shí)時(shí)高效的農(nóng)作物生長(zhǎng)動(dòng)態(tài)監(jiān)測(cè)、營(yíng)養(yǎng)診斷和病蟲(chóng)害、花量、掛果量等的預(yù)測(cè),并依據(jù)個(gè)體差異,進(jìn)行個(gè)性化精準(zhǔn)管理[3-4]。目前,國(guó)內(nèi)大多數(shù)果園的管理模式粗放落后,對(duì)勞動(dòng)力依賴(lài)程度高,科技支撐力量不足[5]。
精準(zhǔn)農(nóng)業(yè)的核心理念是變量管理。對(duì)于果園的管理,就是要依據(jù)單株果樹(shù)個(gè)體或者果園小群體間的差異,進(jìn)行精準(zhǔn)定位,實(shí)施擇時(shí)、變量的田間管理,這是解決目前果園管理粗放落后的有效途徑[6-7]。對(duì)于果園精準(zhǔn)管理,首先需要解決的是果樹(shù)冠層結(jié)構(gòu)信息的快速提取。目前一些田間果樹(shù)長(zhǎng)勢(shì)信息如株高、冠幅、氮素營(yíng)養(yǎng)、花量、掛果量、產(chǎn)量等數(shù)據(jù)的采集大多依賴(lài)于人工實(shí)測(cè),存在人力投入大、效率低、覆蓋率低和具有破壞性等缺點(diǎn)[8]。
遙感技術(shù)以其空間覆蓋廣、效率高和無(wú)破壞性等特點(diǎn)被廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)及監(jiān)測(cè)過(guò)程[9-12]。特別是近年來(lái)發(fā)展迅速的無(wú)人機(jī)監(jiān)測(cè)技術(shù),以其靈活機(jī)動(dòng)、成本低、分辨率高的優(yōu)點(diǎn),成為獲取作物生長(zhǎng)信息的重要手段[13]。因此,利用無(wú)人機(jī)遙感平臺(tái)替代傳統(tǒng)果樹(shù)生長(zhǎng)信息采集方法,及時(shí)、有效地為果園精準(zhǔn)管理服務(wù),滿足果園經(jīng)營(yíng)管理者獲知田間果樹(shù)生長(zhǎng)信息的需求,對(duì)精準(zhǔn)果園的發(fā)展具有重大意義。
本文旨在構(gòu)建基于單木分割的柑橘樹(shù)冠結(jié)構(gòu)和營(yíng)養(yǎng)信息無(wú)人機(jī)監(jiān)測(cè)方法,在對(duì)果樹(shù)單株識(shí)別上,采用基于冠層高度模型(Canopy Height Model, CHM)的分水嶺算法進(jìn)行單木分割,實(shí)現(xiàn)每株果樹(shù)的空間位置輪廓范圍的全覆蓋標(biāo)記,進(jìn)而提取柑橘株數(shù)、株高、冠幅投影面積(Crown Projection Area, CPA),然后利用無(wú)人機(jī)多光譜影像開(kāi)展單株氮素營(yíng)養(yǎng)狀態(tài)監(jiān)測(cè),并結(jié)合田間實(shí)測(cè)樣本進(jìn)行精度驗(yàn)證。
本文研究區(qū)(圖1)為廣西壯族自治區(qū)南寧市的2個(gè)柑橘果園,果園A(108.29° E,23.19° N)和果園B(108.06°E,22.79°N)相距約50 km。其中果園A總面積約37.33 hm2,果園B總面積約13.33 hm2。該區(qū)域?qū)儆跐駶?rùn)的亞熱帶季風(fēng)氣候,光熱充足,雨量充沛,年平均氣溫21.7 ℃,年均降雨量1304 mm。2個(gè)園均為淺丘山地果園,平均坡度小于2 %,均種植晚熟雜交柑橘品種沃柑,沃柑屬于晚熟高糖柑橘品種,樹(shù)冠呈圓頭形,樹(shù)姿開(kāi)張,果實(shí)扁平,平均單果質(zhì)量約170 g,單株產(chǎn)量約60 kg。其中園區(qū)A為5a樹(shù)齡沃柑;園區(qū)B為2a樹(shù)齡沃柑。柑橘種植為定植方式,定期對(duì)樹(shù)木形狀進(jìn)行適當(dāng)?shù)男拚?,以保證果樹(shù)枝條處于更新?tīng)顟B(tài)。主要施用有機(jī)肥。柑橘樹(shù)通常要求土壤含水率在60%~80%之間,低于60%則進(jìn)行灌溉。病蟲(chóng)害防治采用物理方法,如熒光燈誘殺果夜蛾、小實(shí)蠅等。經(jīng)取土樣檢測(cè),果園A的土壤全氮含量為1.77%,果園B的土壤全氮含量0.66%。
1.2.1 研究方案
本研究技術(shù)路線主要包括5個(gè)階段:1)無(wú)人機(jī)影像獲取和預(yù)處理;2)基于數(shù)碼影像的冠層高度模型(Canopy Height Model,CHM)的生成和單木分割;3)基于單木分割結(jié)果進(jìn)行單株識(shí)別和株數(shù)、株高、冠幅投影面積等信息的提取;4)利用多光譜影像進(jìn)行園區(qū)尺度的單株冠層氮素含量診斷。5)精度驗(yàn)證。具體技術(shù)流程如圖2所示。
1.2.2 無(wú)人機(jī)影像采集及預(yù)處理
選用四旋翼無(wú)人機(jī)航拍系統(tǒng)PHANTOM 4 RTK (SZ DJI Technology Co., Ltd. China)(圖3),同步搭載高清數(shù)碼相機(jī)與多光譜相機(jī),其主要參數(shù)見(jiàn)表1。
分別在柑橘生長(zhǎng)的夏梢期(果園A為2018年6月28日,果園B為6月30日)和果實(shí)成熟前期(果園A為2018年12月22日,果園B為2018年12月20日)進(jìn)行航拍,每次拍攝的天氣條件均為晴朗、無(wú)云、風(fēng)速低于4級(jí)。航向和旁向重疊度均設(shè)置為80%,飛行高度30 m,相機(jī)拍攝間隔2 s,飛行速度依據(jù)重疊度和飛行高度自動(dòng)生成;然后將規(guī)劃好的飛行任務(wù)導(dǎo)入至飛行控制軟件Litchi(SZ DJI Technology Co., Ltd. China)中,通過(guò)Litchi軟件控制飛行。起飛前,將無(wú)人機(jī)多光譜標(biāo)準(zhǔn)白板(規(guī)格為10 cm ×10 cm)置于距離多光譜鏡頭約1 m的正下方進(jìn)行白板拍攝,用于后期數(shù)據(jù)的輻射定標(biāo)。
表1 無(wú)人機(jī)平臺(tái)主要參數(shù)
將獲取的高清數(shù)碼影像導(dǎo)入到Pix4d Mapper軟件(version 4.0, PIX4D, Lausanne, Switzerland)中進(jìn)行預(yù)處理。生成與原始圖片相同地面采樣距離(Ground Sample Distance,GSD)正射拼接圖像(GSD為0.82 cm)、三維點(diǎn)云。首先通過(guò)尋找相鄰圖像對(duì)間的同名特征點(diǎn)進(jìn)行匹配,得到稀疏點(diǎn)云。然后基于關(guān)鍵匹配特征點(diǎn)生成稠密點(diǎn)云、二維正射拼接圖像和數(shù)字表面模型(Digital Surface Model, DSM)。這些三維重建點(diǎn)云都帶有水平位置信息,其中正射拼接圖像和DSM分別含有每個(gè)重建點(diǎn)的顏色和高程信息。利用ArcGIS軟件(Environmental Systems Research Institute, Inc., California)中的Georeferencing工具對(duì)采集的2期數(shù)據(jù)進(jìn)行地理配準(zhǔn),使其具有相同的相對(duì)地理位置。
對(duì)于多光譜影像,同樣采用Pix4DMapper進(jìn)行2期數(shù)據(jù)的正射校正和自動(dòng)拼接,并基于起飛前拍攝的標(biāo)準(zhǔn)白板進(jìn)行多波段反射率相對(duì)校正。獲取的多光譜空間分辨率為3.42 cm/pixel。
1.2.3 全氮測(cè)定
每次對(duì)試驗(yàn)園區(qū)進(jìn)行航拍后,立刻在選定的柑橘樣本植株的冠層中上部四周采集成熟的營(yíng)養(yǎng)枝葉,每株果樹(shù)大約采集葉片20~30片,采集好的葉片分別按樣本序號(hào)裝入保鮮袋中,并立即帶回實(shí)驗(yàn)室進(jìn)行元素測(cè)度分析。將采集的葉片樣本用清水清洗干凈并過(guò)去離子水,放入烘箱,在105 ℃條件下殺青30 min,隨后在75 ℃下連續(xù)烘干至恒質(zhì)量并研磨成粉末,裝入密封袋留存?zhèn)溆?。全氮的測(cè)定采用凱氏定氮法,共測(cè)試31個(gè)樣本,其中果園A樣本15個(gè),果園B樣本16個(gè)。
1.2.4 冠幅及株高測(cè)定
傳統(tǒng)的樹(shù)冠幅投影面積野外測(cè)量一般通過(guò)分別測(cè)量南北向和東西向的樹(shù)冠寬度,兩者乘積再乘以一個(gè)經(jīng)驗(yàn)系數(shù),近似估算冠幅投影面積。本文以無(wú)人機(jī)數(shù)字正射影像為底圖,手動(dòng)勾繪單木冠幅邊界,同時(shí)使用Pix4Dmapper的Mensuration測(cè)量工具依次勾繪樣本果樹(shù)的輪廓,并計(jì)算單株冠幅投影面積。冠層株高是指冠層頂部距離地面的垂直高度。利用塔尺在植株原位測(cè)量柑橘冠層株高。
1.2.5 柑橘樹(shù)冠結(jié)構(gòu)參數(shù)提取
由于果園內(nèi)生長(zhǎng)著一定的雜草、小灌木等低矮植被,與柑橘果樹(shù)冠層的反射光譜很接近,無(wú)人機(jī)數(shù)碼影像的光譜信息不足以準(zhǔn)確提取柑橘果樹(shù)。高分辨率的冠層高度模型CHM可以很好地分離復(fù)雜背景。CHM一般用DSM和數(shù)字高程模型(Digital Elevation Model, DEM)作差得到。DSM和DEM通過(guò)分類(lèi)后的密集點(diǎn)云插值生成。
柑橘樹(shù)的點(diǎn)云濾波生成:點(diǎn)云濾波是從密集點(diǎn)云中將地面點(diǎn)與非地面點(diǎn)分離,在Matlab 2016軟件利用漸進(jìn)加密三角網(wǎng)濾波算法分離地面點(diǎn)[14-15],通過(guò)選取區(qū)域內(nèi)高程最小值作為種子點(diǎn)生成一個(gè)三角網(wǎng),然后通過(guò)迭代處理逐層加密篩選是否為地面點(diǎn),直至所有地面點(diǎn)分離結(jié)束。
冠層高度模型(CHM)的生成:將點(diǎn)云濾波后分離出的地面點(diǎn)云和全部的稠密點(diǎn)云運(yùn)用反距離加權(quán)插值,設(shè)置空間分辨率為0.1 m×0.1 m,分別生成數(shù)字高程模型(DEM)和數(shù)字表面模型(DSM),將兩者相減得到冠層高度模型(CHM)[16-17]。
分水嶺分割:基于冠層高度模型的單木分割方法可以視作針對(duì)灰度圖像的處理技術(shù),分水嶺分割運(yùn)行速度快,并且可以敏感地識(shí)別圖像的細(xì)微變化[18-19]。本文基于冠層高度模型采用分水嶺分割算法進(jìn)行單木分割。將樹(shù)冠的最高點(diǎn)的視為“集水盆”的最低點(diǎn),即首先對(duì)冠層高度模型求補(bǔ)集,進(jìn)行地形倒置,樹(shù)冠的輪廓邊緣即為分水嶺,從而實(shí)現(xiàn)樹(shù)冠邊界提取。
1.2.6 柑橘單木冠層氮素含量反演
無(wú)人機(jī)多光譜影像中的近紅外、紅邊、紅光波段對(duì)于植被營(yíng)養(yǎng)狀態(tài)具有較好的指示意義[20-21]。根據(jù)已有研究結(jié)果,利用無(wú)人機(jī)多光譜影像進(jìn)行8個(gè)常用植被指數(shù)(表2)計(jì)算,將柑橘葉片氮素實(shí)測(cè)樣本與各植被指數(shù)進(jìn)行相關(guān)性分析,篩選敏感植被指數(shù),利用全子集回歸進(jìn)行最佳變量組合優(yōu)化,構(gòu)建線性回歸模型,反演以單木冠幅為基本單元的園區(qū)尺度柑橘樹(shù)冠層氮素含量。
表2 植被指數(shù)計(jì)算公式
注:B1、B2、B3、B4、B5分別代表藍(lán)、綠、紅、近紅外、紅邊波段的DN值。
Note: B1, B2, B3, B4 and B5 represent the DN values of blue, green, red, near-infrared and red-edge bands respectively.
1.2.7 精度驗(yàn)證
引入信息檢索與統(tǒng)計(jì)學(xué)中的準(zhǔn)確率(Precision)、召回率(Recall)和值()進(jìn)行單木分割精度評(píng)價(jià),其計(jì)算式如下:
式中TP、FP、FN分別表示被正確分割出的果樹(shù)株數(shù)、被多分割出的果樹(shù)株數(shù)和遺漏未被分割出的果樹(shù)株數(shù)。準(zhǔn)確率表示在所有果樹(shù)分割結(jié)果中被正確分割出的果樹(shù)株數(shù)所占比例。召回率表示被正確分割出的果樹(shù)株數(shù)占果園中實(shí)際所有果樹(shù)株數(shù)的比例。是對(duì)準(zhǔn)確率和查全率的綜合描述,當(dāng)果園中所有果樹(shù)都能被正確分割出來(lái)時(shí),=100%;反之,果園中所有果樹(shù)被分割成偽果樹(shù)時(shí),=0;越高代表分割結(jié)果越好。
將單木分割提取的冠幅投影和手動(dòng)勾繪的冠幅投影、冠層高度模型 (CHM)提取的株高和實(shí)測(cè)值、冠層氮素預(yù)測(cè)值與實(shí)測(cè)值進(jìn)行比較并建立1:1散點(diǎn)圖。以決定系數(shù)2、均方根誤差RMSE作為評(píng)價(jià)指標(biāo),其計(jì)算公式分別如下:
圖4為濾波后的果園點(diǎn)云。可以看到果樹(shù)與地面能夠有效地區(qū)分開(kāi)。通過(guò)目視標(biāo)記與分割算法自動(dòng)識(shí)別的果樹(shù)株數(shù)進(jìn)行對(duì)比,計(jì)算準(zhǔn)確率、召回率、值等精度指標(biāo),結(jié)果如表3。從準(zhǔn)確率來(lái)看,柑橘單木的整體識(shí)別準(zhǔn)確率較高,在93%以上,說(shuō)明柑橘錯(cuò)分現(xiàn)象不明顯;柑橘單木召回率在95%以上,說(shuō)明本研究可以較好地抑制果樹(shù)漏分的現(xiàn)象;果園柑橘單木識(shí)別的平均值為96.52%。
表3 單木識(shí)別和株數(shù)統(tǒng)計(jì)結(jié)果
由表3結(jié)果可知,果園A在12月的錯(cuò)分和漏分現(xiàn)象明顯,主要是由于果樹(shù)在生長(zhǎng)后期樹(shù)枝分散,呈心形,果樹(shù)單木頂點(diǎn)不明顯,容易造成分割過(guò)度,錯(cuò)分現(xiàn)象增多,同時(shí)單木樹(shù)冠相連處較多,林窗間隙小、樹(shù)緣處枝葉堆積推高了邊緣高程,使得冠層高度模型中單木區(qū)別不明顯,導(dǎo)致漏分較多。果園B的準(zhǔn)確率整體上高于果園A,這是因?yàn)楣麍@B的樹(shù)高較小,樹(shù)冠相連情況少,因此樹(shù)冠大多能較好識(shí)別出。但樹(shù)冠面積較小,株高較矮,存在較多背景噪聲被識(shí)別為偽單木,同時(shí)也導(dǎo)致一些株高過(guò)低的果樹(shù)被漏分。從6月到12月,隨著果園B的果樹(shù)生長(zhǎng),果園整體株高增加,錯(cuò)分、漏分現(xiàn)象得到抑制,各評(píng)價(jià)指標(biāo)均有所提高。
圖5是果園局部基于冠層高度模型的分水嶺分割過(guò)程。從圖中可以看出所有果樹(shù)均能被識(shí)別。圖6為冠幅投影面積手動(dòng)測(cè)量值與提取值的結(jié)果,從圖中可以看出,2個(gè)果園的冠幅投影面積的提取精度均較好。果園A在12月的2為0.78,低于其他3組結(jié)果,這主要是受單木分割的精度影響,果園A在12月的錯(cuò)分和漏分現(xiàn)象多,因此導(dǎo)致自動(dòng)提取的冠幅投影面積與手繪冠幅投影面積差異較大,如圖7所示。此外,冠幅面積自動(dòng)分割結(jié)果比手工勾繪大0.47%,這是由冠層高度模型的分辨率低造成的。冠層高度模型的分辨率是單木分割精度的重要影響因素[30],冠層高度模型分辨率設(shè)置過(guò)高,對(duì)冠層高度刻畫(huà)過(guò)細(xì),容易分割出過(guò)多偽單木,造成過(guò)度分割;而分辨率設(shè)置過(guò)低,則會(huì)造成漏分現(xiàn)象增多。本文經(jīng)過(guò)多次冠層高度模型分辨率調(diào)優(yōu),在冠幅面積自動(dòng)分割與手工勾繪結(jié)果相關(guān)系數(shù)最大的情況下得到冠層高度模型的最佳分辨率為0.1 m。圖6為最佳分辨率下果園A和果園B冠幅投影面積的提取值和手動(dòng)測(cè)量結(jié)果。
目前,基于無(wú)人機(jī)遙感技術(shù)的單木樹(shù)高獲取大多是基于冠層高度模型進(jìn)行的。冠層高度模型作為歸一化的高程信息,去除了果園地形起伏的影響,直接反映了果樹(shù)的冠層高度分布信息,因此通過(guò)匹配每一株果樹(shù)在冠層高度模型的中心位置即可提取果樹(shù)的單株株高。本文基于冠層高度模型結(jié)合單木分割結(jié)果,計(jì)算單株果樹(shù)株高。圖8為插值生成的DEM、DSM和經(jīng)柵格運(yùn)算形成的CHM。
將獲取的株高與實(shí)測(cè)的15株果樹(shù)株高進(jìn)行比較,如圖9所示。通過(guò)對(duì)比可以發(fā)現(xiàn),株高的計(jì)算值與實(shí)測(cè)值的相關(guān)性較好,但RMSE為31.9 cm,預(yù)測(cè)值比實(shí)測(cè)值整體偏小13.57%。
分析可知,這是因?yàn)楣麍@的郁閉度高,裸露地面少,點(diǎn)云濾波未能獲取到足夠多的地面點(diǎn),因此濾波得到的部分“地面點(diǎn)云”往往不能真正代表實(shí)際地面,而數(shù)字高程模型 DEM是由地面點(diǎn)云插值生成的,這些不能真正代表實(shí)際地面的點(diǎn)云整體“拔高”了DEM的高程,造成株高計(jì)算值偏低。由于果樹(shù)實(shí)際株高整體較高,人為測(cè)量較為困難,測(cè)量時(shí)人處于仰視狀態(tài),讀取的數(shù)值與實(shí)際株高存在一定的偏差,這也導(dǎo)致實(shí)際測(cè)量結(jié)果存在誤差,間接影響了株高的計(jì)算精度。
采用12月在果園A與果園B采集的31個(gè)葉片氮含量作為冠層氮素樣本數(shù)據(jù)。并與同時(shí)期無(wú)人機(jī)多光譜影像構(gòu)建的植被指數(shù)進(jìn)行分析,相關(guān)系數(shù)結(jié)果如圖10。由圖10可知,除NRI外,其余植被指數(shù)與冠層氮素含量的相關(guān)系數(shù)的絕對(duì)值均在0.7以上,其中SIPI與冠層氮素含量呈負(fù)相關(guān),其他植被指數(shù)與冠層氮素均呈正相關(guān);除NDVI外,其他植被指數(shù)間的相關(guān)系數(shù)均在0.65以上,說(shuō)明不同植被指數(shù)間存在多重共線性。
單一植被指數(shù)易受土壤背景、光譜飽和性等因素的影響,采用多植被指數(shù)的聯(lián)合反演可有效提高模型的適用性和反演精度。本研究選擇全子集回歸法來(lái)選擇冠層氮素含量的最佳預(yù)測(cè)變量組合,在R Studio軟件中基于R 3.1 leaps包中的regsubsets函數(shù)實(shí)現(xiàn),結(jié)果如圖11所示。采用線性回歸算法構(gòu)建冠層氮素含量反演模型。
由圖11可知,NDVI、GNDVI、SIPI的組合可以使用最少的預(yù)測(cè)變量獲得最佳的調(diào)整2,因此選擇NDVI、GNDVI、SIPI作為預(yù)測(cè)變量建立冠層氮素反演模型。選擇留一法交叉驗(yàn)證進(jìn)行模型評(píng)估,結(jié)果顯示采用組合植被指數(shù)的冠層氮素反演2為0.82,RMSE為0.22%,MAE為6.59 %,如圖12。
根據(jù)相關(guān)研究[31-32],柑橘葉片氮素的適宜含量在2.8%~3.2%之間,結(jié)合柑橘冠層反演結(jié)果,果園A的柑橘冠層氮素含量明顯超出適宜氮素范圍,果園B的大部分果樹(shù)的氮素在適宜范圍(圖13)。對(duì)比同時(shí)期測(cè)定的土壤全氮含量數(shù)據(jù),果園B的平均全氮含量為0.66%,而果園A的土壤全氮含量高達(dá)1.77%。這說(shuō)明果園A氮肥施用過(guò)量。
本研究通過(guò)無(wú)人機(jī)觀測(cè)平臺(tái)獲取了柑橘果園的高清數(shù)碼和多光譜圖像,構(gòu)建了基于單株標(biāo)識(shí)的柑橘果樹(shù)生長(zhǎng)信息獲取技術(shù)框架,實(shí)現(xiàn)了對(duì)柑橘果園的果樹(shù)株數(shù)、株高、冠幅投影面積以及冠層氮素含量的快速、無(wú)損、實(shí)時(shí)監(jiān)測(cè)。得到以下結(jié)果:
1)采用分水嶺算法對(duì)柑橘進(jìn)行單木分割,得到的果樹(shù)識(shí)別準(zhǔn)確率在93%以上,召回率在95%以上,平均值為96.52%;
2)基于冠層高度模型提取的果樹(shù)株高與實(shí)測(cè)株高具有較強(qiáng)的相關(guān)性,模型2為0.87,均方根誤差為31.9 cm;
3)對(duì)于基于數(shù)碼影像提取的單株冠幅投影面積與人工繪制面積,除果園A在12月的結(jié)果較低(2為0.78)外,其余均在0.94及以上;
4)基于敏感植被指數(shù)反演的柑橘冠層氮素含量的模型2達(dá)0.82,均方根誤差為0.22%,相對(duì)誤差為6.59%。
本文在柑橘果樹(shù)冠層理化參數(shù)無(wú)人機(jī)快速監(jiān)測(cè)方面做出了初步探索,取得了較為滿意的結(jié)果,對(duì)于實(shí)現(xiàn)果園的精準(zhǔn)化管理具有重要的應(yīng)用價(jià)值,但仍存在一些問(wèn)題有待后續(xù)的研究中改進(jìn):1)本文使用了2個(gè)樹(shù)齡不同的柑橘果園進(jìn)行理化參數(shù)提取,對(duì)于樹(shù)齡較大的柑橘果園,樹(shù)冠存在部分重疊現(xiàn)象,影響了單木分割精度,還需進(jìn)一步在更多不同樹(shù)齡的果園開(kāi)展方法驗(yàn)證;2)本文使用的冠層氮素反演方法為較常用的植被指數(shù)線性回歸方法,屬于經(jīng)驗(yàn)?zāi)P?,難以外推至別的果園直接應(yīng)用,因此需加強(qiáng)果樹(shù)冠層氮素機(jī)理模型研究,以提升模型的精度和普適性。
[1]劉雪峰. 柑橘植株冠層營(yíng)養(yǎng)及花量、產(chǎn)量的近地遙感估測(cè)研究[D]. 重慶:西南大學(xué),2016.
Liu Xuefeng. Estimation of Canopy Nutrition, Flower Quantity and Yield of Citrus Plant by Pow-Altitude Remote Sensing[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract)
[2]祁春節(jié),鄧秀新. 當(dāng)前我國(guó)柑桔產(chǎn)業(yè)發(fā)展面臨的重大問(wèn)題和對(duì)策措施[J]. 中國(guó)果業(yè)信息,2016,33(12):9-11.
Qi Chunjie, Deng Xiuxin. Major problems and countermeasures in the development of citrus industry in China[J]. China Fruit News, 2016, 33(12): 9-11. (in Chinese with English abstract)
[3]趙春江,薛緒掌,王秀,等. 精準(zhǔn)農(nóng)業(yè)技術(shù)體系的研究進(jìn)展與展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(4):7-12.
Zhao Chunjiang, Xue Xuzhang, Wang Xiu, et al. Advance and prospects of precision agriculture technology system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 7-12. (in Chinese with English abstract)
[4]唐華俊. 農(nóng)業(yè)遙感研究進(jìn)展與展望[J]. 農(nóng)學(xué)學(xué)報(bào),2018,8(1):175-179.
Tang Huajun. Progress and prospect of agricultural remote sensing research[J]. Journal of Agriculture, 2018, 8(1): 175-179. (in Chinese with English abstract)
[5]鄧秀新,項(xiàng)朝陽(yáng),李崇光. 我國(guó)園藝產(chǎn)業(yè)可持續(xù)發(fā)展戰(zhàn)略研究[J]. 中國(guó)工程科學(xué),2016,18(1):34-41.
Deng Xiuxin, Xiang Chaoyang, Li Chongguang. Study on sustainable development strategy of chinese horticultural industry[J]. Strategic Study of CAE, 2016, 18(1): 34-41. (in Chinese with English abstract)
[6]李金夢(mèng),葉旭君,王巧男,等. 高光譜成像技術(shù)的柑橘植株葉片含氮量預(yù)測(cè)模型[J]. 光譜學(xué)與光譜分析,2014,34(1):212-216.
Li Jinmeng, Ye Xujun, Wang Qiaonan, et al. Development of prediction models for determining n content in citrus leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 212-216. (in Chinese with English abstract)
[7]田喜,何紹蘭,呂強(qiáng),等. 高光譜圖像信息的柑橘葉片光合色素含量分析技術(shù)研究[J]. 光譜學(xué)與光譜分析,2014,34(9):2506-2512.
Tian Xi, He Shaolan, Lv Qiang, et al. Determination of photosynthetic pigments in citrus leaves based on hyperspectral images datas[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2506-2512. (in Chinese with English abstract)
[8]Zhang C, Kovacs J. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012, 13(6): 693-712.
[9]韓文霆,李廣,苑夢(mèng)嬋,等. 基于無(wú)人機(jī)遙感技術(shù)的玉米種植信息提取方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):139-147.
Han Wenting, Li Guang, Yuan Mengchan, et al. Extraction method of maize planting information based on UAV remote sensing techonology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 139-147. (in Chinese with English abstract)
[10]田明璐,班松濤,常慶瑞,等. 基于無(wú)人機(jī)成像光譜儀數(shù)據(jù)的棉花葉綠素含量反演[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):285-293.
Tian Minglu, Ban Songtao, Chang Qingrui, et al. Inversion of cotton chlorophyll content based on data from UAV imaging spectrometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. (in Chinese with English abstract)
[11]Whitehead K, Hugenholtz C, Myshak S, et al. Remote sensing of the environment with small unmanned aircraft systems (UASs), Part 1: A review of progress and challenges[J]. Journal of Unmanned Vehicle Systems, 2014, 2(3): 69-85.
[12]李德仁,李明. 無(wú)人機(jī)遙感系統(tǒng)的研究進(jìn)展與應(yīng)用前景[J]. 武漢大學(xué)學(xué)報(bào): 信息科學(xué)版,2014,39(5):505-513.
Li Deren, Li Ming. Research advance and application prospect of unmannned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513. (in Chinese with English abstract)
[13]劉建剛,趙春江,楊貴軍,等. 無(wú)人機(jī)遙感解析田間作物表型信息研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):98-106.
Liu Jiangang, Zhao Chunjiang, Yang Guijun, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 98-106. (in Chinese with English abstract)
[14]岳桂昌,周玉娟. 一種改進(jìn)的基于TIN漸次加密的LiDAR點(diǎn)云濾波算法[J]. 地理信息世界,2017,24(1):71-75.
Yue Guichang, Zhou Yujuan. A modified TIN-based Li DAR data encryption gradually filtering algorithm[J]. Geomatics World, 2017, 24(1): 71-75. (in Chinese with English abstract)
[15]柴夢(mèng)娜,劉元盛,任麗軍. 基于激光點(diǎn)云NDT特征的兩步回環(huán)檢測(cè)[J]. 激光與紅外,2020,50(1):17-24.
Chai Mengna, Liu Yuansheng, Ren Lijun. Two-step loop closure detection based on laser point cloud NDT features[J]. Laser and Infrared, 2020, 50(1): 17-24. (in Chinese with English abstract)
[16]劉忠,萬(wàn)煒,黃晉宇,等. 基于無(wú)人機(jī)遙感的農(nóng)作物長(zhǎng)勢(shì)關(guān)鍵參數(shù)反演研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):60-71.
Liu Zhong, Wan Wei, Huang Jinyu, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 60-71. (in Chinese with English abstract)
[17]楊琦,葉豪,黃凱,等. 利用無(wú)人機(jī)影像構(gòu)建作物表面模型估測(cè)甘蔗LAI[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):104-111.
Yang Qi, Ye Hao, Huang Kai, et al. Estimation of leaf area index of sugarcane using crop surface model based on UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 104-111. (in Chinese with English abstract)
[18]閆鵬飛,明冬萍. 尺度自適應(yīng)的高分辨率遙感影像分水嶺分割方法[J]. 遙感技術(shù)與應(yīng)用,2018,33(2):321-330.
Yan Pengfei, Ming Dongping. Segmentation of high spatial resolution remotely sensed data using watershed with self-adaptive parameterization[J]. Remote Sensing Technology and Application, 2018, 33(2): 321-330. (in Chinese with English abstract)
[19]沈夏炯,吳曉洋,韓道軍. 分水嶺分割算法研究綜述[J]. 計(jì)算機(jī)工程,2015,41(10):26-30.
Shen Xiajiong, Wu Xiaoyang, Han Daojun. Survey of research on watershed segmentation algorithms[J]. Computer Engineering, 2015, 41(10): 26-30. (in Chinese with English abstract)
[20]魏青,張寶忠,魏征,等. 基于無(wú)人機(jī)多光譜遙感的冬小麥冠層葉綠素含量估測(cè)研究[J]. 麥類(lèi)作物學(xué)報(bào),2020,269(3):109-116.
Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing[J]. Journal of Triticeae Crops, 2020, 269(3): 109-116. (in Chinese with English abstract)
[21]喬浪,張智勇,陳龍勝,等. 基于無(wú)人機(jī)圖像的玉米冠層葉綠素含量檢測(cè)與分布研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(S1):182-186.
Qiao Lang, Zhang Zhiyong, Chen Longsheng, et al. Chlorophyll content detection and distribution research of maize canopy based on UAV image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 182-186. (in Chinese with English abstract)
[22]Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1): 195-213.
[23]Schlerf M, Atzeerger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment, 2005, 95(2): 177-194.
[24]陳玉泉,季耿善,楊靜,等. 水體遙感的鏡面反射特性研究[J]. 環(huán)境遙感,1994,9(3):195-202.
Chen Yuquan, Ji Gengshan, Yang Jing, et al. A study of remote sensing on water body mirror reflection[J]. Journal of Remote Sensing, 1994, 9(3): 195-202. (in Chinese with English abstract)
[25]Gitelson A A, Kaufman Y J, Merziyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
[26]Fitzgerald G J, Rodriguez D, Christensen L K, et al. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments[J]. Precision Agriculture, 2006, 7(4): 233-248.
[27]宋森楠,宋曉宇,陳立平,等. 冬小麥氮平衡指數(shù)與籽粒蛋白質(zhì)含量空間結(jié)構(gòu)及關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):91-97.
Song Sennan, Song Xiaoyu, Chen Liping, et al. Spatial structure and relationships of nitrogen balance index and protein content of grain in winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 91-97. (in Chinese with English abstract)
[28]束美艷,顧曉鶴,孫林,等. 基于新型植被指數(shù)的冬小麥 LAI高光譜反演[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(18):3486-3496.
Shu Meiyan, Gu Xiaohe, Sun Lin, et al. High spectral inversion of winter wheat LAI based on new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. (in Chinese with English abstract)
[29]SIPI-Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[J]. Photosynthetica, 1995, 31(2): 221-230.
[30]Chow T E, Hodgson M E. Effects of lidar post-spacing and DEM resolution to mean slope estimation[J]. International Journal of Geographical Information Science, 2009, 23(10): 1277-1295.
[31]王仁璣,莊伊美,陳麗璇,等. 枳砧椪柑葉片營(yíng)養(yǎng)元素適宜含量的研究[J]. 果樹(shù)學(xué)報(bào),1993(1):3-6.
Wang Renji, Zhuang Yimei, Chen Lixuan, et al. Study on the optimum range of mineral element contents in the leaves of ‘Ponkan’ mandarin on trifoliate orange rootstock[J]. Journal of Fruit Science, 1993(1): 3-6. (in Chinese with English abstract)
[32]劉艷麗. 基于柑橘葉、花近紅外高光譜信息的營(yíng)養(yǎng)診斷與成花能力預(yù)測(cè)研究[D]. 重慶:西南大學(xué),2015.
Liu Yanli. Research on the Nutrient Diagnosis and Prediction of Flower Bud Differentiation Ability Based on the Hyperspectral Imaging Data[D]. Chongqing: Southwest University, 2015. (in Chinese with English abstract)
Extraction of citrus crown parameters using UAV platform
Shu Meiyan, Li Shilin, Wei Jiaxi, Che Yingpu, Li Baoguo, Ma Yuntao※
(,,100193,)
Citrus fruit, one of the most important economic crops, is playing an important role in the industrial development of modern agriculture in rural China. However, the management mode of most orchards in China is currently undeveloped and extensive, particularly with high dependence on labor force, as well as insufficient scientific and technological support. In recent years, the Unmanned Aerial Vehicle (UAV) monitoring technology has become a significant way to quickly extract the structural parameters in the growth of field crops at the park scale, due to its flexibility, low cost, and high resolution imaging. This study aims to construct a monitoring system for the citrus canopy structure and nutrition information using the UAV digital and multi-spectral remote sensing, to get he with the single tree segmentation. The UAV digital images and watershed algorithm were used to segment the structural dataset of citrus canopy, and then the canopy height model of citrus trees was established to extract the plant height using digital surface module. Structural parameters were also calculated, such as the number of citrus trees, and canopy projection area at the park scale. In addition, the UAV multispectral images were used to obtain eight common vegetation indexes, thereby to predict the nitrogen content of canopy in the citrus trees. The whole subset analysis was used to screen the sensitive vegetation index for the nitrogen content of canopy in the citrus trees. The inversion model of canopy nitrogen was constructed using the multiple linear regression. The remote sensing mapping was carried out to estimate the nitrogen content of citrus canopy in park scale. The results showed that: 1) Since the planting density of fruit trees was low in the experimental area, there was a certain distance between trees that can be clearly distinguished. The watershed image processing was selected to segment the single tree of height model for a citrus canopy. The overall identification accuracy, recall rate, andvalue of the fruit trees were above 93.6%, 95.8%, and 94.7%, respectively, indicating that the model was well suitable to monitor the number of fruit trees in the park. 2) The canopy structure parameters of individual fruit trees were obtained in the individual tree segmentation. There was a strong correlation between the plant height of citrus trees extracted by the canopy height model and the measured value, where the2=0.87, and RMSE=31.9 cm. 3) Using the watershed segmentation, the extracted projection area of crown width per plant achieved a high correlation with the artificial sketching area. The coefficient of determination was more than 0.93 in most cases, except that of orchard A lower than 0.78 in December. Meanwhile, the extraction accuracy of the model depended greatly on the single tree segmentation. 4) In full subset analysis, the sensitive vegetation indexes were selected to determine the nitrogen content of citrus canopy, including the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), and Structure Insensitive Pigment Index (SIPI), where the2and RMSE of the model were 0.82 and 0.22%, respectively. The data demonstrated that the nitrogen content of most fruit trees in orchard B was in the suitable range, while there was excessive application of nitrogen fertilizer in orchard A. Therefore, the UAV technology can greatly contribute to extract the physical and chemical parameters of citrus canopy, further to improve the level of accurate management of citrus on the large-scale orchard.
UAV; image processing; multi-spectral; citrus; plant height; crown projection area; canopy nitrogen content
束美艷,李世林,魏家璽,等. 基于無(wú)人機(jī)平臺(tái)的柑橘樹(shù)冠信息提取[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):68-76.doi:10.11975/j.issn.1002-6819.2021.01.009 http://www.tcsae.org
Shu Meiyan, Li Shilin, Wei Jiaxi, et al. Extraction of citrus crown parameters using UAV platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 68-76. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.009 http://www.tcsae.org
2020-11-19
2020-12-15
內(nèi)蒙古科技重大專(zhuān)項(xiàng)(2019ZD024)
束美艷,博士生,研究方向:數(shù)字農(nóng)業(yè)。Email:2448858578@qq.com
馬韞韜,博士,副教授,博士生導(dǎo)師,主要從事作物表型研究。Email:yuntao.ma@cau.edu.cn
10.11975/j.issn.1002-6819.2021.01.009
S779
A
1002-6819(2021)-01-0068-09