• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sr-doping effects on conductivity,charge transport,and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films?

    2021-03-11 08:34:04QiangLi李強DaoWang王島YanZhang張巖YuShanLi李育珊AiHuaZhang張愛華RuiQiangTao陶瑞強ZhenFan樊貞MinZeng曾敏GuoFuZhou周國富XuBingLu陸旭兵andJunMingLiu劉俊明
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張巖國富愛華

    Qiang Li(李強), Dao Wang(王島), Yan Zhang(張巖), Yu-Shan Li(李育珊),Ai-Hua Zhang(張愛華),?, Rui-Qiang Tao(陶瑞強), Zhen Fan(樊貞), Min Zeng(曾敏),Guo-Fu Zhou(周國富), Xu-Bing Lu(陸旭兵),?, and Jun-Ming Liu(劉俊明)

    1Institute for Advanced Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    2Guangdong Provincial Key Laboratory of Optical Information Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    3National Center for International Research on Green Optoelectronics,South China Normal University,Guangzhou 510006,China

    4Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210009,China

    Keywords: Sr-doping,transport mechanism,BSLTO thin film,ferroelectric metal

    1. Introduction

    As typical perovskite oxide materials,BaTiO3(BTO)and SrTiO3(STO)have been most extensively studied and utilized as capacitors, transducers, and nonvolatile memories.[1–3]Their stoichiometric compounds are band-gap insulators.When doped with donor ions or deposited in an oxygendeficient atmosphere, the n-type semiconductive or metallic conduction can be obtained, resulting in various intriguing physical properties and broad application prospects.[4–6]For example,the ferroelectric semiconducting BTO oxide materials have received wide attention for their applications in photovoltaic solar cell[7]and resistive memory.[8]Moreover,the superconductivity is even observed in the rare-earth substituted STO film,which implies broad application prospect in reducing the energy consumption of electronic devices.[9]

    Although both BTO and STO have a simple perovskite structure and similar electronic band structures,significant differences exist among their conductive compounds. For example, small substitution of pentavalent ions for Ti4+ions or trivalent ions for Sr2+ions can tune the conventional insulating STO from an insulating to semiconducting or even metallic state.[10,11]In contrast to Sr-based compounds, BTO undergoes those transitions at much higher doping levels.[12]In addition, the carrier concentration in the obtained metallic BTO(n ≈1021cm?3)[13]is almost two orders higher than that in STO (n ≈1019cm?3).[14]Another interesting observation is that the conductive STO exhibits weak temperature dependence of Hall effect and resistivity,whereas the BTO system is opposite.[13]Such differences should be related to their local structures. The ferroelectric BTO has a polar structure,which would cause the itinerant electrons to be localized. Nevertheless,such a polar structure is absent for the paraelectric STO,and the localized electrons are greatly reduced.[15]It is quite interesting to know how the carrier transport characteristics of polar BTO will change when it is doped with paraelectric STO.

    The undoped BTO is a well-known classical ferroelectric material. The introduction of electron into this material will screen long-range Coulomb interaction, thus destroying its ferroelectricity.[16]The coexistence of metallic conduction and ferroelectric ordering are believed to be two incompatible physical effects. The study on their coexistence is desirable to discover novel physical phenomena and corresponding mechanisms embedded in it and develop its applications in future microelectronic and optoelectronic devices. Recently,Ladoped BTO films were particularly intriguing. It is reported that the polar phase and experimental metallic conduction can be obtained in those films.[17]As is well known,the ferroelectric polarization in BTO originates from the displacement of Ti ion in the Ti–O octahedron. The replacement of Sr2+at the Ba2+site in BSLTO film will not damage the displacement of Ti ion,which means that the ferroelectricity of the BSLTO film will not be deteriorated.

    In this work, we prepare Ba0.7?xSrxLa0.3TiO3(BSLTO)epitaxial thin films, and systematically study their microstructures,conductivities,ferroelectricity,and carrier transport mechanisms. It is generally believed that the increase of material conductivity should be achieved by doping higher- or lower-valence ions into lattice site. Our work demonstrates that the equivalent valence doping of Sr2+(non-electron doping) can also increase electrical conductivity of BSLTO thin films while not deteriorating its ferroelectricity, which provides a novel idea to increase the material conduction and obtain ferroelectric metal for other perovskite oxides.

    2. Experimental details

    We fabricated BSLTO films with Sr=0.00, 0.20, 0.30,and 0.40 on(001)MgO single crystal substrates at 650?C by using the pulsed laser deposition(PLD)technique. During the deposition,a KrF excimer laser with a wavelength of 248 nm was operated at 2 Hz and the laser fluence was fixed to be 1.7 J·cm?2. The crystal structures of the films were studied by using x-ray diffraction(XRD)equipped with a PANalytical X’Pert Pro diffractometer, including 2θ scans and reciprocal space mapping (RSM) measurement. The force strength between ions was characterized by Raman spectroscopy with a 532-nm excitation laser(RAMAN INVIA,RENISHAW).The temperature dependence of electrical resistivity and Hall effect for each of the BSLTO thin films were measured by the van der Pauw method with a physical property measurement system(PPMS9,Quantum Design).

    3. Results and discussion

    Figure 1(a) shows the XRD patterns of the BSLTO thin films with Sr=0.00,0.20,0.30,and 0.40 grown on the MgO(001) substrate. Only (00l) diffraction peaks appear, and no other oriented peaks can be observed, indicating that all the films are grown epitaxially on the MgO(001)substrate. In order to obtain the precise lattice constants of the BSLTO thin films,the reciprocal space around the(113)reflection is measured (see Fig.A1 in Appendix A), and the corresponding in-plane (a) and out-of-plane (c) lattice constants calculated from their RSM results are shown in Fig.1(b). It can be seen from Fig.1(b) that each of all the thin films has a tetragonal structure. Furthermore, as the Sr content increases, both of the lattice parameters decrease, implying that the introduction of Sr leads the unit cell of BSLTO thin film to contract. This is because Sr2+ion radius (1.44 ?A) is smaller than Ba2+ion radius (1.61 ?A).[18]In order to explore the influence of lattice shrinkage on the force strength between ions,the Raman spectra of BSLTO films with Sr=0.00,0.20,0.30, and 0.40 in a frequency range of 100 cm?1–850 cm?1are recorded. The main Raman peaks for BSLTO films can be assigned to A1(TO), B1,E(TO+LO), E(TO),A1(TO), and A1(LO),E(LO),[19]as shown in Fig.1(c). The phonon modes around 320 cm?1and 720 cm?1(marked by arrows)are specific to the tetragonal phase of the BaTiO3,[20]which are consistent with the XRD results. In addition, the frequency of the A1(LO)/E(TO) mode around 720 cm?1increases monotonically as Sr content increases. The upward shift reflects the tighter bonding between the cations and anions,caused by lattice shrinkage, which could result in the increase of phonon energy in the film.[21]

    Figure 2(a) shows temperature-dependent resistivity for BSLTO thin film with Sr=0.00, 0.20, 0.30, and 0.40. It can be seen that the resistivity of the thin film shows a clear dependence on Sr-doping content, exhibiting that the resistivity decreases markedly as Sr content increases. For Sr=0.00,0.20,the resistivity decreases with the increase of temperature over the entire measurement temperature range,demonstrating typical semiconductive conduction behavior. When Sr content reaches to 0.30,an interesting semiconductor–metal transition begins to occur. As shown in Fig.2(b), this transition is observed at 330 K.For Sr=0.40,there is still a semiconductor–metal transition as shown in Fig.2(c), and the corresponding temperature position moves to a lower location at 295 K.The BTO films can become increasingly conductive as the content of donor doping ions increases, because donor doping introduces electron into the films.[4,22]The clear increase of the conductivity of the BSLTO thin films by an equivalent valence doping of Sr2+(non-electron doping) into the A-site is worthy to be further discussed. Figure 2(d) shows temperaturedependent Hall coefficient RHcurves for the BSLTO films.The negative Hall coefficient indicates that the carriers in the films are mainly composed of electrons. The electron concentration is calculated from the formula: RH=1/en,and the results are shown in Fig.2(e), where it can be seen that the electron concentration increases with temperature increasing at low temperature, indicating that the electrons in the films are in a localized state.[17]As the temperature increases, the localized electrons are gradually to be released, and finally at one certain high temperature the electron concentrations of all the films with different Sr contents will reach almost the same level. For the present BSLTO thin films with the same La content,the carriers in these films originate from the donor effect that La3+enters into the A-site and provides extra electrons.[22]Therefore, it is observed that when the electron releasing is completed,the electron concentration in each film is not obviously changed. Figure 2(f)shows the variations of temperature of carrier mobility with temperature for BSLTO thin films. It can be clearly seen from Fig.2(f)that the Sr doping can improve the mobility. As mentioned above, the electron concentration in each film does not change significantly,implying that the decreasing of resistivity of the film is mainly ascribed to the increasing of carrier mobility.The intrinsic carrier transport mechanism of the films should be related to the increase of carrier mobility and will be discussed below.

    Fig.1. (a)The 2θ scan patterns,(b)lattice parameters,and(c)Raman spectra of BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.2. Temperature-dependent resistivities of BSLTO films (a) with Sr=0.00, 0.20, 0.30, and 0.40, (b) with Sr=0.30 (300 K–400 K), (c) with Sr=0.40(260 K–400 K);temperature-dependent(d)Hall coefficient,(e)carrier density and(f)Hall carrier mobility for BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.3. Fitting results using (a) VRH model and (b) SPH model for BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40; (c) thermal phonon scattering mode for the BSLTO film with Sr=0.30;(d)thermal phonon scattering mode for the BSLTO film with Sr=0.40.

    To reveal the carrier transport mechanisms of the BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40, their R–T curves from low temperature to high temperature are fitted by various models.In particular,R–T curves for the films with Sr=0.30,0.40 can be divided into semiconducting and metallic regime,while the corresponding carrier transport mechanisms are discussed separately. For the present films that exhibit semiconducting behaviors,the transport model changes from variable range hopping (VRH) to small polaron hopping (SPH) when the measurement temperature increases, and the results are shown in Figs. 3(a) and 3(b), respectively. The metalic conductive behaviors in the films with Sr=0.30,0.40 all conform to thermal phonon scattering mode as shown in Figs.3(c)and 3(d),respectively. The various transport models and their corresponding temperature ranges are summarized in Table 1. In our previous researches, it has been put forward that the carrier transport mechanism of La-doped BTO thin films is dominated by electron–phonon coupling.[23,24]When it is at low temperature, the weak electron–phonon coupling is hard to form small polarons,the electron can absorb energy to hop to a remote location with lower potential barriers to realize charge transport. This kind of charge transport is characterized by the variable range hopping mode: ln(ρ)∝T?1/4.[25]As the temperature rises to a certain value, the enhanced electron–phonon coupling can form small polarons,and then the charge transport follows the small polaron transition mode: ln(ρ)∝T3/2exp(WH/KBT),where WHis the activation energy,and kBis the Boltzmann constant.[26]With the introduction of Sr,the enhanced phonon energy can provide more energy to promote the hopping of small polarons. Thus, the calculated activation energy of small polarons in the film with Sr=0.00,0.20,0.30, and 0.40 sequentially decrease, and their WHvalues are 0.055,0.046,0.038,and 0.032 eV,respectively. The lower activation energy is responsible for the higher mobility,causing the resistivity of the film with non-electron doping to decrease.In addition,Mott and Ihrig pointed out that the polaron binding energy Wpwould be approximately twice the activation energy WH(Wp≈2WH).[27,28]Thus, the small polarons with low activation energy are easy to be thermally dissociated. For films with Sr <0.30,their activation energy values are smaller than those of the films with Sr=0.30, 0.40. Consequently,slightly lower carrier concentration is observed. In addition,lower carrier mobility values are also observed for the films with Sr=0.00, 0.20 due to different electron–phonon interactions. We propose that the low carrier concentration and carrier mobility should be the two dominant reasons which are responsible for the non-metallic conduction behaviors of films with Sr=0.00,0.20. When temperature is increased to 350 K,the film with Sr=0.30 begins to exhibit metallic conductive behavior due to the dissociated small polarons. As to film with Sr=0.40, the same metalic conductive behavior occurs at a lower temperature (295 K), which is attributed to lower activation energy caused by the enhanced phonon energy. The conduction behavior of the dissociated electrons is dominated by thermal phonon scattering, and the associated transport mechanism conforms to the model: ρ ∝T3/2.[26]

    The present films have so high electron concentration that it is difficult to obtain macroscopic ferroelectric reversal signals. In this experiment, the piezoelectric force microscopy(PFM)is adopted to explore the micro-region ferroelectricity.After ±9 V writing in the two adjacent areas, figure 4 shows the room-temperature measurements of out-of-plane PFM amplitudes (Figs. 4(a)–4(d)) and phase images (Figs. 4(e)–4(h))of the BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40, respectively. The clear contrast of the PFM amplitudes and phase images of all samples demonstrate that the current films have obvious characteristics of ferroelectricity. In particular,the BSLTO film with Sr=0.40 is in metallic conduction state at room temperature, implying that the coexistence of ferroelectricity and metalic conductivity can be realized in BSLTO film with Sr=0.40. For the present films, after Sr doping,the polar tetragonal structure could be maintained. Most importantly, Sr improves the carrier mobility by increasing the phonon energy, thereby obtaining the metallic BSLTO film with Sr=0.40. This way of achieving metalic conduction does not introduce extra electrons,thereby weakening the electrons to shield the long-range Coulomb effect,which is beneficial to the stability of ferroelectricity. Therefore, Sr doping provides a novel idea to obtain ferroelectric metal for other perovskite oxides.

    Table 1. List of various transport models and their corresponding temperature ranges and WH for the BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.4. (a)–(d)Out-of-plane PFM amplitude and(e)–(h)phase images for BSLTO films with Sr=0.00,0.20,0.30,and 0.40,respectively,and poling bias voltage of±9 V.

    4. Conclusions

    In the present research, the microstructure, electrical conduction, charge transport, and ferroelectricity of epitaxial BSLTO thin films with Sr=0.00,0.20,0.30,and 0.40 are systematically investigated. The introduction of Sr can make the unit cell of BSLTO films contracted,which is responsible for the enhanced phonon energy in the films. The R–T measurements show that the increase of Sr content in the BSLTO can gradually reduce electrical resistivity,and the metallic conduction can be found in films with Sr=0.30, 0.40. The Sr doping effects on carrier transport mechanisms of BSLTO films are clarified. The fitting results of R–T curves indicate that Sr increasing phonon energy is responsible for lower activation energy of small polaron hopping, higher carrier mobility, lower electrical resistivity. The PFM results demonstrate that the metalic conducting films with Sr=0.30, 0.40 could possess ferroelectricity, indicating that Sr doping provides a novel idea to explore ferroelectric metal materials for other perovskite oxides.

    Appendix A:Supporting information

    The reciprocal space maps around the(113)reflection are shown in the following figures.

    Fig.A1. Reciprocal space maps of BSLTO films with (a) Sr=0.00, (b)Sr=0.20,(c)Sr=0.30,(d)Sr=0.40.

    猜你喜歡
    張巖國富愛華
    把實事真正辦到群眾心坎里
    雷鋒(2022年2期)2022-04-12 00:08:12
    岜沙苗寨繡花女
    金秋(2020年12期)2020-12-03 23:04:07
    Investigation on pulsed discharge mode in SF6-C2H6 mixtures
    第一次拔牙
    神奇的光
    春天里的發(fā)現(xiàn) 等
    《工程力學》課程中PBL教學模式的應用探討
    新年獻詞
    茶博覽(2017年1期)2017-02-24 08:50:14
    在廈金胞張愛華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    李愛華:我希望過上這樣的生活
    av国产久精品久网站免费入址| 国产av在哪里看| 精品国产一区二区三区久久久樱花 | h日本视频在线播放| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 波多野结衣巨乳人妻| 国产精品久久久久久久电影| 日韩精品有码人妻一区| 黑人高潮一二区| 天天躁日日操中文字幕| 久久精品久久久久久久性| av专区在线播放| 亚洲电影在线观看av| 波多野结衣高清无吗| 亚洲国产精品专区欧美| 国语对白做爰xxxⅹ性视频网站| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一区久久| 欧美日韩国产亚洲二区| 久久久久久久久久久免费av| 国产精品人妻久久久久久| 波多野结衣高清无吗| 亚洲人成网站高清观看| 99久久精品一区二区三区| 国产色婷婷99| 欧美日韩国产亚洲二区| 不卡视频在线观看欧美| 国产精品一区二区在线观看99 | 国产视频内射| 成年av动漫网址| 亚洲av成人精品一区久久| 少妇的逼水好多| 亚洲在久久综合| 国产精品.久久久| 国产免费福利视频在线观看| 成人国产麻豆网| 日本爱情动作片www.在线观看| 成年免费大片在线观看| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 日本av手机在线免费观看| 三级国产精品片| 久久久欧美国产精品| 午夜福利网站1000一区二区三区| www日本黄色视频网| 少妇的逼好多水| 1024手机看黄色片| 国产伦精品一区二区三区四那| 麻豆久久精品国产亚洲av| 亚州av有码| 国产成人a∨麻豆精品| 一卡2卡三卡四卡精品乱码亚洲| 一个人看视频在线观看www免费| 久久久午夜欧美精品| 日韩强制内射视频| 免费在线观看成人毛片| 伦精品一区二区三区| 国产爱豆传媒在线观看| 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 老师上课跳d突然被开到最大视频| 在线a可以看的网站| 日本wwww免费看| 国产高清有码在线观看视频| 99久久成人亚洲精品观看| av福利片在线观看| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| 亚洲无线观看免费| 亚洲欧美日韩无卡精品| 女人十人毛片免费观看3o分钟| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 丰满人妻一区二区三区视频av| 日本一二三区视频观看| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久 | 内射极品少妇av片p| 国产亚洲5aaaaa淫片| 亚洲av电影在线观看一区二区三区 | 成人国产麻豆网| 好男人视频免费观看在线| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 草草在线视频免费看| 日韩成人av中文字幕在线观看| 午夜激情福利司机影院| 久久久欧美国产精品| 亚洲乱码一区二区免费版| 国产精品爽爽va在线观看网站| 韩国高清视频一区二区三区| 网址你懂的国产日韩在线| 国产精品av视频在线免费观看| 岛国在线免费视频观看| 蜜桃亚洲精品一区二区三区| 精品国产一区二区三区久久久樱花 | 国产一区二区亚洲精品在线观看| 在线免费十八禁| 少妇的逼水好多| 久久99蜜桃精品久久| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| 亚洲图色成人| 22中文网久久字幕| 一个人免费在线观看电影| 午夜精品国产一区二区电影 | 欧美成人精品欧美一级黄| 中文在线观看免费www的网站| 精品少妇黑人巨大在线播放 | 亚洲久久久久久中文字幕| 免费无遮挡裸体视频| 日日撸夜夜添| 日本一二三区视频观看| 99热精品在线国产| 婷婷色综合大香蕉| videossex国产| 国产亚洲av片在线观看秒播厂 | 亚洲精品日韩在线中文字幕| 日韩成人av中文字幕在线观看| 欧美成人免费av一区二区三区| 搞女人的毛片| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 99热精品在线国产| 只有这里有精品99| 亚洲av一区综合| 嘟嘟电影网在线观看| 小蜜桃在线观看免费完整版高清| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| av在线播放精品| 少妇人妻精品综合一区二区| 欧美激情久久久久久爽电影| 永久网站在线| 一区二区三区高清视频在线| 国产精品一二三区在线看| 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 国产成人a∨麻豆精品| 亚洲五月天丁香| 最近的中文字幕免费完整| 亚洲图色成人| 看黄色毛片网站| 欧美不卡视频在线免费观看| 成人高潮视频无遮挡免费网站| 久久久久久久久久久免费av| 国产乱人视频| 欧美日韩精品成人综合77777| 亚洲av男天堂| 亚洲自偷自拍三级| 我要搜黄色片| 97热精品久久久久久| 亚洲人与动物交配视频| 晚上一个人看的免费电影| 天堂网av新在线| 边亲边吃奶的免费视频| 国国产精品蜜臀av免费| 热99re8久久精品国产| 小蜜桃在线观看免费完整版高清| 久久欧美精品欧美久久欧美| av在线播放精品| 国产乱人偷精品视频| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 黄色一级大片看看| 婷婷六月久久综合丁香| 大香蕉97超碰在线| 成人美女网站在线观看视频| 亚洲国产精品合色在线| 免费不卡的大黄色大毛片视频在线观看 | av在线观看视频网站免费| 午夜亚洲福利在线播放| 18禁动态无遮挡网站| 久久久久国产网址| 99久久中文字幕三级久久日本| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品 | 亚洲色图av天堂| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| 久久精品国产鲁丝片午夜精品| 夜夜看夜夜爽夜夜摸| 欧美一区二区国产精品久久精品| 日本黄色片子视频| h日本视频在线播放| 精品国产三级普通话版| 在现免费观看毛片| 日韩在线高清观看一区二区三区| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 午夜福利网站1000一区二区三区| videossex国产| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 中文字幕精品亚洲无线码一区| 国产午夜精品论理片| 久久这里只有精品中国| 人妻系列 视频| 国产黄片美女视频| 欧美性猛交╳xxx乱大交人| 乱码一卡2卡4卡精品| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 亚洲精品色激情综合| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 久久久精品94久久精品| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| av专区在线播放| 亚洲欧美成人综合另类久久久 | www日本黄色视频网| 国产精品嫩草影院av在线观看| 中文资源天堂在线| 最近最新中文字幕免费大全7| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看 | 最近中文字幕2019免费版| a级毛片免费高清观看在线播放| 成年av动漫网址| 国产爱豆传媒在线观看| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 黄色一级大片看看| 一级二级三级毛片免费看| 99热这里只有是精品50| 日韩制服骚丝袜av| 人人妻人人澡欧美一区二区| 免费搜索国产男女视频| 国产午夜精品论理片| 日韩精品有码人妻一区| 色视频www国产| 插逼视频在线观看| 色播亚洲综合网| 青春草视频在线免费观看| 日本wwww免费看| 韩国av在线不卡| 欧美三级亚洲精品| 午夜福利在线观看吧| 97超碰精品成人国产| 国产精品久久久久久精品电影| 51国产日韩欧美| 最近中文字幕2019免费版| 亚洲av电影在线观看一区二区三区 | 成人无遮挡网站| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 国产在线一区二区三区精 | 亚洲欧美中文字幕日韩二区| 成年版毛片免费区| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 美女国产视频在线观看| 黄色配什么色好看| 国产又黄又爽又无遮挡在线| 久久亚洲国产成人精品v| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 国产成人一区二区在线| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 精品久久久久久成人av| av天堂中文字幕网| av免费在线看不卡| 日韩亚洲欧美综合| 小蜜桃在线观看免费完整版高清| 日韩av在线免费看完整版不卡| 国产亚洲最大av| 国产精品久久久久久久久免| 日本五十路高清| 国产亚洲av嫩草精品影院| 亚洲色图av天堂| 亚洲av电影在线观看一区二区三区 | 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 国产一级毛片七仙女欲春2| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 国产av码专区亚洲av| 特大巨黑吊av在线直播| 婷婷色av中文字幕| 国产人妻一区二区三区在| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 国产三级中文精品| 国产精品日韩av在线免费观看| 久久6这里有精品| 好男人在线观看高清免费视频| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 69av精品久久久久久| 国产亚洲av片在线观看秒播厂 | 中文字幕av在线有码专区| 国产真实伦视频高清在线观看| 嫩草影院入口| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 国产黄片视频在线免费观看| 老女人水多毛片| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 在线播放无遮挡| 国产黄a三级三级三级人| 天堂网av新在线| 日日撸夜夜添| 国产 一区 欧美 日韩| 欧美日韩在线观看h| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久久久按摩| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 我要看日韩黄色一级片| 亚洲成av人片在线播放无| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清有码在线观看视频| 国产成人freesex在线| 久久久久久久亚洲中文字幕| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 久久精品91蜜桃| 国产精品久久视频播放| av在线亚洲专区| 亚洲欧美成人综合另类久久久 | 女人久久www免费人成看片 | 亚洲精品国产av成人精品| 成年女人永久免费观看视频| 午夜精品在线福利| 国产色爽女视频免费观看| 波野结衣二区三区在线| 精品久久国产蜜桃| 桃色一区二区三区在线观看| 亚洲在久久综合| 亚洲成人中文字幕在线播放| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 欧美+日韩+精品| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 成年女人永久免费观看视频| 国内少妇人妻偷人精品xxx网站| 成人毛片a级毛片在线播放| 女人久久www免费人成看片 | 波多野结衣巨乳人妻| 亚洲av日韩在线播放| 极品教师在线视频| av女优亚洲男人天堂| av国产久精品久网站免费入址| 少妇的逼好多水| 久久99热这里只频精品6学生 | 国模一区二区三区四区视频| 亚洲国产色片| 韩国高清视频一区二区三区| 午夜激情欧美在线| 久久精品国产亚洲av天美| 在线播放无遮挡| 国产成人精品久久久久久| 热99在线观看视频| 色哟哟·www| 一个人免费在线观看电影| 国产精品熟女久久久久浪| 午夜久久久久精精品| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 精品久久国产蜜桃| 一区二区三区乱码不卡18| 免费看日本二区| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区 | 一级二级三级毛片免费看| 嫩草影院精品99| 男人的好看免费观看在线视频| 成人鲁丝片一二三区免费| 2022亚洲国产成人精品| 3wmmmm亚洲av在线观看| 99九九线精品视频在线观看视频| 精品欧美国产一区二区三| 国产一区有黄有色的免费视频 | 国产精品久久久久久久久免| 波多野结衣巨乳人妻| 精品人妻视频免费看| 久久久久久久午夜电影| av女优亚洲男人天堂| 国产免费男女视频| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 久久久久九九精品影院| 三级国产精品片| 亚洲三级黄色毛片| 熟女电影av网| 国产精品av视频在线免费观看| 亚洲av一区综合| 精品无人区乱码1区二区| 国产激情偷乱视频一区二区| 99视频精品全部免费 在线| 久久久久精品久久久久真实原创| 免费观看人在逋| 最近2019中文字幕mv第一页| a级一级毛片免费在线观看| 日韩av在线免费看完整版不卡| 听说在线观看完整版免费高清| 国产中年淑女户外野战色| 国产又色又爽无遮挡免| 婷婷色麻豆天堂久久 | 中文字幕久久专区| 国产极品精品免费视频能看的| 国产精品人妻久久久影院| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 全区人妻精品视频| 亚洲18禁久久av| av女优亚洲男人天堂| 看片在线看免费视频| 欧美三级亚洲精品| 亚州av有码| 国产精华一区二区三区| 亚洲av一区综合| 禁无遮挡网站| 欧美日本视频| 久久99蜜桃精品久久| 日韩av在线大香蕉| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 97热精品久久久久久| av在线老鸭窝| 黄片wwwwww| 免费观看的影片在线观看| 不卡视频在线观看欧美| 99在线人妻在线中文字幕| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 69av精品久久久久久| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 国产淫片久久久久久久久| 久久久久国产网址| a级毛片免费高清观看在线播放| 午夜精品国产一区二区电影 | 国产一区二区亚洲精品在线观看| 99热这里只有精品一区| 国内精品美女久久久久久| 日本av手机在线免费观看| 精品人妻一区二区三区麻豆| 国产精品一区二区性色av| 天美传媒精品一区二区| 青春草视频在线免费观看| 男人舔女人下体高潮全视频| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 丰满乱子伦码专区| 亚洲精品乱码久久久v下载方式| 精品一区二区三区人妻视频| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 免费在线观看成人毛片| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放| 大又大粗又爽又黄少妇毛片口| 色噜噜av男人的天堂激情| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 一级二级三级毛片免费看| 亚洲在线观看片| 中文欧美无线码| 国产老妇伦熟女老妇高清| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 国产色爽女视频免费观看| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 天堂av国产一区二区熟女人妻| 午夜a级毛片| 乱系列少妇在线播放| 99视频精品全部免费 在线| 中文字幕熟女人妻在线| 亚洲国产精品国产精品| 午夜福利在线在线| 精品一区二区三区视频在线| 看十八女毛片水多多多| 免费观看人在逋| 在线播放无遮挡| 有码 亚洲区| 亚洲av电影不卡..在线观看| 2022亚洲国产成人精品| 在线免费十八禁| 日本黄色视频三级网站网址| 免费大片18禁| 欧美高清成人免费视频www| 高清av免费在线| 中国美白少妇内射xxxbb| 久久久久久久久大av| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 三级国产精品片| 国产亚洲5aaaaa淫片| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 国产亚洲精品久久久com| 在线a可以看的网站| 毛片一级片免费看久久久久| 人妻制服诱惑在线中文字幕| 在线观看美女被高潮喷水网站| 欧美日本视频| 青春草亚洲视频在线观看| 久久久久免费精品人妻一区二区| 国产高清国产精品国产三级 | 国产高潮美女av| 亚洲国产精品成人久久小说| 寂寞人妻少妇视频99o| 大香蕉97超碰在线| 久久精品91蜜桃| videossex国产| 日本熟妇午夜| 一夜夜www| 亚洲,欧美,日韩| 日本免费a在线| 一个人看视频在线观看www免费| 成年av动漫网址| 男人舔女人下体高潮全视频| 国产亚洲av片在线观看秒播厂 | av播播在线观看一区| 亚洲欧美精品综合久久99| 国产精品久久久久久精品电影| 天堂av国产一区二区熟女人妻| 99国产精品一区二区蜜桃av| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 亚洲国产欧美在线一区| 高清视频免费观看一区二区 | 日本三级黄在线观看| 国产国拍精品亚洲av在线观看| 国产精品国产高清国产av| 亚洲欧美日韩高清专用| 哪个播放器可以免费观看大片| 99热这里只有是精品50| 日本av手机在线免费观看| 中文亚洲av片在线观看爽| 在线免费十八禁| 日本午夜av视频| 亚洲人成网站高清观看| 亚洲av一区综合| 国产极品精品免费视频能看的| 日本黄色片子视频| 黑人高潮一二区| 国产伦在线观看视频一区| 国语对白做爰xxxⅹ性视频网站| 国产精品综合久久久久久久免费| 亚洲精品456在线播放app| 中文精品一卡2卡3卡4更新| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线| 黄片wwwwww| 国产探花在线观看一区二区| av视频在线观看入口| 久久精品人妻少妇| 国产91av在线免费观看| 又粗又硬又长又爽又黄的视频| 欧美+日韩+精品| 国产亚洲av嫩草精品影院| 哪个播放器可以免费观看大片| 日韩一区二区视频免费看| 六月丁香七月| 国产三级中文精品| 久久精品国产鲁丝片午夜精品| 嫩草影院精品99| 身体一侧抽搐| 国产单亲对白刺激| 美女黄网站色视频| 久久精品国产亚洲av涩爱| 麻豆成人午夜福利视频| 久久精品国产自在天天线| 18+在线观看网站| 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 伦精品一区二区三区| 亚洲四区av| eeuss影院久久| 久久久精品大字幕| 中国国产av一级| 亚洲欧美日韩东京热| 亚洲成人久久爱视频| 亚洲国产精品专区欧美| 麻豆成人av视频| 精品一区二区三区视频在线| 免费av毛片视频| 国产探花极品一区二区| 在线免费观看不下载黄p国产|