• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure?

    2021-03-11 08:32:38XiangxianWang王向賢JiankaiZhu朱劍凱YueqiXu徐月奇YunpingQi祁云平LipingZhang張麗萍HuaYang楊華andZaoYi易早
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張麗萍楊華

    Xiangxian Wang(王向賢), Jiankai Zhu(朱劍凱), Yueqi Xu(徐月奇), Yunping Qi(祁云平),Liping Zhang(張麗萍), Hua Yang(楊華), and Zao Yi(易早)

    1School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    2College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    3Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: plasmonic sensor,gold,silicon,grating

    1. Introduction

    In the past few decades, the development of various nanofabrication technologies has provoked the enormous growth of nanostructures in various applications such as photocatalysis,[1–3]absorption enhancements,[4,5]photonic crystals,[6,7]and other fields.[8]Simultaneously, the fabrication of metal micro-nano structures mainly benefits from the rapid growth of electron beam lithography(EBL)and focused ion beam(FIB)milling.The realization of cost-effective metal nanostructures greatly improves the possibilities of their integration in the optical field. When the characteristic size of the metal nanostructure is of sub-wavelength order, a kind of electromagnetic motion mode of light and electron closely combined under the action of external electromagnetic wave,namely surface plasmons,cannot be ignored.[9]In reality,the structures and devices based on surface plasmons make it possible to manipulate and control photons on the nanoscale,which provides a new solution for realizing smaller,faster,and more efficient nanophotonic devices. Moreover, many applications of metal micro-nano structures,such as absorbers,[10]fiber sensors,[11,12]surface-enhanced Raman,[13–15]are all related to the surface plasmons generated by the close interaction between metal nanostructures and incident light.

    At present, surface plasmons have a considerable application prospect in the fields of optical sensing, due to their high sensitivity to the physical and chemical properties of the environment, as well as their action range can be controlled at the nano level. In addition, surface plasmons based biochemical sensors are also attracting attention because of their advantages of fast detection speed, high specificity, samplefree labeling,[16,17]and online real-time analysis.[17]However,the plasmonic refractive index (RI) sensors based on prism coupling, which has been successfully commercialized, have gradually exhibited drawbacks in miniaturization and integration owing to its bulky volume. In recent years,the integrated grating coupled plasmonic RI sensors have attracted much attention since it is compatible with the portable development concept of future sensors.[18]Moreover, the noise reduction and light collection are other significant improvement advantages because the grating coupling based plasmonic RI sensors can be excited via normal incidence. Therefore, it is of great significance to design grating coupled plasmonic RI sensor with higher sensitivity,a higher figure of merit(FOM),and a more straightforward manufacturing process(easy to manufacture in a large area)to meet the future needs of RI sensing.

    In this work,we propose a novel complementary grating structure for plasmonic RI sensing. Compared with the traditional grating coupled plasmonic RI sensors, our structure can more effectively couple the surface plasmons excited via grating to the environment of the analyte and significantly reduce the full width at half maximum(FWHM),thus improved the FOM. A broadband simulation was performed to extract the structure spectrum characteristics based on TM polarization, and the electric field distributions were obtained using the finite-difference time-domain (FDTD) method. We find that multiple surface plasmon resonance modes can exist in the complementary grating structure. Furthermore,the resonance mode excited via the first-order diffraction coupling of the grating is quite suitable for RI sensing because of its extremely narrow FWHM.The influences of grating geometric variables on resonance behavior are discussed in detail to obtain the appropriate geometric ranges for RI sensing.Finally,the RI sensing performances of the structure are reflected plainly by two important physical parameters,sensitivity and FOM.

    2. Structural design

    The three-dimensional schematic diagram and the twodimensional profile diagram of the structure are respectively shown in Figs. 1(a) and 1(b). The sensing structure is composed of Si grating,Au grating,and glass substrate. The structure is mainly composed of complementary and directly contacted Si and Au gratings. In essence, it is a functional layer based on the Schottky junction,which is advantageous to current silicon electronic devices from the integration point of view. The analyte is located on the upper surface of the entire structure during the actual RI sensing. Here, the RI of the analyte and the period of the Au/Si grating are assumed to be 1 and 1700 nm, respectively, unless otherwise stated. For the convenience of discussion,grating geometric variables are shown in Fig.1(b),which are the Au grating channel width w,Au grating channel depth td,and the thickness of Si film tsin the Si grating.

    Fig.1. The three-dimensional schematic diagram (a) and the twodimensional profile diagram(b)of the complementary grating structure.From top to bottom are Si grating,Au grating,and glass substrate. The black and blue arrows represent the propagation direction and polarization direction of the incident light,respectively.

    As shown by the arrows in Fig.1,this plasmonic structure is excited via vertical incident light with a polarization direction along the periodic direction(TM mode). In the structural design,the purpose of the Au grating is to compensate for the appropriate momentum to excite the surface plasmons propagating along the functional layer composed of complementary gratings. The thickness of the designed Au grating is thick enough; thus,the light transmission of the structure is almost zero in a wide frequency band. The Si grating, complementary to Au grating,has two main objectives. On the one hand,the Si grating makes the contact surface between the analyte and the structure smooth(easy to clean analytes). On the other hand, Si grating can assist Au grating to couple more energy of surface plasmons to the environment of analyte(discussed below). In the numerical simulation, the optical constants of Si and glass substrate (SiO2) are derived from previous experimental values,[19,20]and the dielectric constant of gold is selected from the experimental data supported by the Drude model.[21]

    3. Results and discussion

    3.1. Plasmonic responses of the structure

    The black curve in Fig.2 shows the reflection spectrum of the complementary grating structure in a wide wavelength range of 1400 nm to 4000 nm. Here, the geometric parameters of the complementary grating structure are w=400 nm,td=160 nm, and ts=30 nm, respectively. To illustrate the advantages of the complementary grating structure, we also simulate the reflection spectrum of the structure with only Au grating under the same geometric parameters,as shown in the red curve in Fig.2. It can be clearly seen from the comparison that the complementary grating structure with a layer of Si can excite more surface plasmon resonance modes and can effectively reduce the FWHM of the resonance peak. According to the spectral response of the complementary grating structure,the resonance mode excited at 1708 nm has great advantages in RI sensing due to its strong resonance intensity(reflectivity almost 0)and extremely narrow FWHM(about 5.4 nm). It is worth mentioning that the resonance mode at 3189 nm may have application potential in broadband absorption,benefit by its FWHM of nearly 500 nm.

    Fig.2. Reflection spectra of the structures. The black curve shows the reflection spectrum of the complementary grating structure at the geometric variables of w=400 nm,td =160 nm, and ts =30 nm, respectively. The red curve shows the reflection spectrum of the structure with only Au grating under the same geometric parameters.

    To intuitively reveal the resonance mechanism caused by grating coupling,we calculated the electric field distributions of the grating coupling structures for each resonance mode(corresponding to Fig.2)in Fig.3. Figure 3(a)shows the electric field distribution at 1813 nm,which is the only plasmonic resonance mode excited via the structure with only Au grating. Figures 3(b)–3(d) show the electric field distributions of the complementary grating structure at resonance wavelengths of 1558 nm, 1708 nm, and 3189 nm, respectively. As can be seen, in the case of Fig.3(a), the electric fields are found to leak into the environment of the analytes, which is the signature of propagating surface plasmon. It can be confirmed that this mode is caused by the first-order diffraction coupling of the Au grating. For Fig.3(c), one can observe a similar phenomenon in the complementary grating structure and draw the same conclusion. Thus, the 1708 nm mode can be illustratively called propagation-mode in the complementary grating structure. However,it can also be observed that the existence of Si grating in complementary grating structure makes the energy of surface plasmons excited by Au grating more evenly coupled to the environment of analytes. Furthermore, the Si grating that flattens the propagation interface of the surface plasmon is the main reason for reducing the FWHM of the first-order diffraction coupled resonance of Au gratings. Remarkably, both these two characteristics caused by complementary gratings are conducive to RI sensing. Subsequently,it can be observed from Fig.3(b) that the weak resonance of Au/Si interface in the channel of Au grating is the reason for the reflection valley at 1558 nm,and a standing wave is formed in the environment of analyte due to the reflection of the incident light. As shown in Fig.3(d),the large capture of the field energy via the Au grating channel is responsible for the resonance mode at 3189 nm,which can be called channel-mode.

    To further reveal the role of grating on the excitation of surface plasmon resonances,we theoretically verify the simulation results via the 1D grating equation. Incident light scattering on metal nanostructures results in a wide range of directions for the propagation vector. Then, surface plasmon resonance is generated when the following momentum matching conditions are satisfied:[22]

    where k0nsin? is the k-vector of the incident light in the xdirection, and 2πm/P is the additional momentum compensated via 1D grating.More specifically,k0=2π/λ is the propagation constant in free space, nais the RI of the analyte, εmis the complex dielectric constant of the gold, ? is the incident angle, P is the 1D grating period, m are the diffraction orders of 1D gratings and are integers. In the case of normal incidence,the above equation can be reduced to

    where λresrepresents the resonance wavelength.When m=1,the 1708 mode is in good agreement with Eq.(2)obtained via theoretical analysis, which fully testifies that the 1708 mode is excited by the first-order subwavelength diffraction of the grating. The theoretical result is also consistent with the qualitative analysis of the electric field distribution in Fig.3(c).

    Fig.3. The electric field distributions of the structures corresponding to each resonance wavelength in Fig.2 and the white dashed line outlined the structures.The electric field distribution of the structure with only Au grating at the resonance wavelength of(a)1813 nm. The electric field distributions of a complementary grating structure at the resonance wavelengths of(b)1558 nm,(c)1708 nm,and(d)3189 nm,respectively.

    3.2. Structural optimization

    Considering the purpose of using this structure for RI sensing, the following discussion focuses on the 1708 nm mode (propagation-mode), which has strong resonance (low reflectivity)and narrow FWHM,and has extensive interaction with the environment of the analyte. Firstly, the geometric parameters of the structure are optimized, and the geometric parameter tolerance suitable for RI sensing is obtained. Figure 4(a) shows the reflection spectra at the waveband where the propagation-mode is located when w changes from 280 to 680 in a step size of 100 nm with tdand tsfixed at 160 nm and 30 nm, respectively. It can be observed that the resonance wavelengths move towards the shorter wavelength,and the reflectivity decreases first and then increases with the increase of w, while the FWHM presents fluctuation. Hence, a choice of the channel width w of 380 nm(red line)resulted in a decent value of signal contrast. Figure 4(b)shows the reflectivity spectra for w of 380 nm,tsof 30 nm,and variable channel death tdin step size of 20 nm. It can be noticed that the reflectivity decreases to the minimum value and then increases,resulting in an optimal value of 160 nm for td(blue line). Figure 4(c) shows the reflection spectra for w of 380 nm, tdof 160 nm,and with tschanged from 0 nm to 40 nm in step size of 10 nm. It can be observed that with the increase of ts, the resonance wavelength shifts to the long wavelength and is accompanied by the reflectivity gets lower,and the FWHM gradually widened. Here, tsis optimized to be 30 nm (blue line)because there is a trade-off between dip strength and FWHM.

    Fig.4. Influences of(a)channel width w,(b)channel depth td,and(c)Si film thickness ts on the 1708 nm mode(propagation-mode).

    According to the above discussion,the optimum geometric parameters of the complementary grating structure used for RI sensing are w of 380 nm, tdof 160 nm, and tsof 30 nm,respectively. In addition, two important points can be simultaneously derived from the above discussion on the influence of geometric parameters on propagation-mode: (i)in terms of sensing, this structure is capable of exciting the strong resonances with sensing capability in a wide range of grating variables,which reveals a remarkably high tolerance to geometric parameters of the structure in the fields of RI sensing;(ii)the variations of w, td, and tsshow the minor effect on the peak position of the propagation-mode, this is because the change of the geometric parameters does not alter the essence of Au grating diffraction,and further confirms that the propagationmode at 1708 nm is indeed aroused by grating diffraction after compensating optical momentum.

    3.3. The sensing performance of the structure

    Based on the above analysis of the plasmonic responses of the complementary grating structure, the sensing performances of the propagation-mode are discussed in detail. Via introducing two crucial physical parameters, sensitivity (S)and figure of merit (FOM), we follow the common knowledge in the field of RI sensing. The RI sensitivity of a plasmonic sensor is generally reported in nanometers of peak shift per refractive index unit (nm/RIU), i.e., S = ?λ/?n.The sensing precision depends on higher sensitivity and narrower FWHM;thus,the concept of FOM can be derived,i.e.,FOM=S/FWHM.

    Figure 5(a) shows the reflection spectra of the structure under different analyte RI in the waveband where the propagation-mode is located. Here, we assume that the analytes are gases, and their RI varies from 1.0 to 1.1 in step size of 0.02. As shown, the resonance wavelength of the propagation-mode moves to the long-wavelength equidistantly with the even increases of analyte RI.It is also observed that the sensing process is very stable,which is reflected in the fact that the reflectivity and the FWHM of the resonance peaks are almost unchanged.Figure 5(b)shows the relationship between the resonance wavelength and the FOM of the propagationmode with the analyte RI. It is more intuitive to observe that the resonance wavelengths are linearly sensitive to the change of analyte RI.According to the definition of S,the slope of the black line in Fig.5(b)is the value of S and keeps a constant of 1642 nm/RIU.In the range of analyte RI being gas,the FOM is all above 300 RIU?1,and the highest can reach 409 RIU?1.The S of this plasmonic sensor is quite high compared with the RI sensors in recent reports,[23–27]and the FOM is higher than that obtained in other previous studies.[28–31]For Fig.5(a),an interesting phenomenon can also be observed. The mode at about 1558 nm (described in detail in Fig.2) presents insensitive to analyte RI, which indicates the potential application in the RI sensing of self-referenced.[32]The reason can be explained from Fig.3(b), which is the electric field distribution under this mode. One can observe from Fig.3(b)that the region of this weak plasmonic resonance is only confined in the channel of Au grating,and has no effect on the external environment of the analyte.

    Fig.5. (a) Reflective spectra of the complementary grating structure with the optimum geometric parameters when the analyte RI ranges from 1.0 to 1.1 in steps of 0.02. (b)The relationship of resonance wavelengths and FOM with analyte RI in propagation-mode.

    The complementary grating structure we designed can be used not only as a gas RI sensor but also as a liquid RI sensor.Figure 6(a) shows the reflection spectra under the waveband where the propagation-mode is located when the analyte RI varies from 1.3 to 1.4 (within the analyte RI range near liquid). Here,the values of w,td,and tsare the optimized parameters under the grating period equals to 1200 nm. As shown in Fig.6(a), the stable sensing ability of the resonance peak can still be observed, which is shown in the linear sensitivity with the even change of analyte RI and the almost constant FWHM. It is noted that when the structure is used for liquid sensing,the sensing waveband can be the same as that for gas sensing. This is because although the increase of analyte RI will lead to the redshift of the resonance peak,the decrease of the period will lead to the blueshift of that. The flexibility of geometric parameter change is also illustrated when the structure is used for RI sensing. Figure 6(b) shows the sensitivity curve used to calculate S and the relationship between FOM and analyte RI.The sensitivity of the structure used for liquid sensing is estimated to be 1212 nm/RIU,and its FOM is stabilized at about 135 RIU?1. Compared with the structure used in gas sensing, the sensitivity of liquid sensing is obviously reduced. This is due to the decrease of the period,which corresponding to reduce the interaction range between the surface plasmon and the environment of the analyte.

    Fig.6. (a) Reflective spectra of the complementary grating structure when the analyte RI ranges from 1.3 to 1.4 in steps of 0.02.Here,the geometric parameters of the structure are with grating period=1200 nm,w=400 nm, td =180 nm, and ts =30 nm. (b) The relationship of resonance wavelength and FOM with analyte RI in propagation-mode.

    4. Conclusion

    In conclusion, a surface plasmon RI sensor based on a complementary grating structure composed of Au and Si is presented. The effective energy couplings between the surface plasmon and the incident light are fully proved by the detailed discussion of the structure plasmonic responses. A propagation-mode with narrow FWHM and high strength occurs via the first-order diffraction of the complementary grating structure, making it very suitable for RI sensing. After optimizing the geometrical parameters of the structure, the S and the highest FOM of the structure are 1642 nm/RIU and 409 RIU?1,respectively,in the analyte of gas.Moreover,flexible geometric parameters regulation makes the structure can be used for liquid sensing in the same waveband as gas sensing. This plasmonic RI sensor is simple to manufacture and has stable sensing performance in the case of the analytes being gas and liquid. Thus, this sensor can be widely used in biological and chemical RI sensing fields.

    猜你喜歡
    張麗萍楊華
    Effect of spin on the instability of THz plasma waves in field-effect transistors under non-ideal boundary conditions
    Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
    石磨
    金山(2022年6期)2022-06-24 20:38:53
    楊華作品
    Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array?
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    張麗萍 勿忘初心 立己達(dá)人
    亚洲精品一二三| 欧美日韩视频精品一区| 亚洲精品粉嫩美女一区| 在线观看一区二区三区激情| 国产无遮挡羞羞视频在线观看| 亚洲av成人一区二区三| 淫妇啪啪啪对白视频| 丰满人妻熟妇乱又伦精品不卡| 777米奇影视久久| 18禁黄网站禁片午夜丰满| 国产精品 国内视频| 国产有黄有色有爽视频| av有码第一页| 一进一出好大好爽视频| 久久精品国产亚洲av香蕉五月 | 国产精品一区二区在线观看99| 91麻豆精品激情在线观看国产 | 日本五十路高清| 少妇 在线观看| 黄网站色视频无遮挡免费观看| av免费在线观看网站| 一本大道久久a久久精品| 在线观看免费高清a一片| 国产精品免费大片| 国产单亲对白刺激| e午夜精品久久久久久久| 99精品久久久久人妻精品| 久久精品91无色码中文字幕| 大陆偷拍与自拍| 人人妻人人澡人人爽人人夜夜| 国产精品九九99| 亚洲av电影在线进入| 欧美激情极品国产一区二区三区| www.999成人在线观看| 精品乱码久久久久久99久播| 久久中文看片网| 国产精品免费一区二区三区在线 | 日韩欧美免费精品| 成在线人永久免费视频| 久久香蕉国产精品| 男女床上黄色一级片免费看| 一区二区日韩欧美中文字幕| 99re在线观看精品视频| 啦啦啦免费观看视频1| 在线观看一区二区三区激情| 久久亚洲精品不卡| 国产免费av片在线观看野外av| av欧美777| 日韩欧美一区视频在线观看| 欧美黑人精品巨大| 国产主播在线观看一区二区| 在线视频色国产色| 久久婷婷成人综合色麻豆| 身体一侧抽搐| 久热爱精品视频在线9| 国产精品久久久久成人av| 欧美 亚洲 国产 日韩一| av电影中文网址| 午夜91福利影院| 啦啦啦在线免费观看视频4| 看免费av毛片| 精品国产乱子伦一区二区三区| 夜夜躁狠狠躁天天躁| 50天的宝宝边吃奶边哭怎么回事| 黑人欧美特级aaaaaa片| 国产在线精品亚洲第一网站| www.熟女人妻精品国产| 免费av中文字幕在线| 高清av免费在线| 国产精品久久电影中文字幕 | 韩国av一区二区三区四区| 精品卡一卡二卡四卡免费| 丝袜美足系列| 激情视频va一区二区三区| 一级a爱视频在线免费观看| 黑人操中国人逼视频| 天天躁日日躁夜夜躁夜夜| 又黄又粗又硬又大视频| 欧美人与性动交α欧美软件| 国产精品国产高清国产av | 满18在线观看网站| 久久99一区二区三区| 啪啪无遮挡十八禁网站| 大型av网站在线播放| 夜夜爽天天搞| a级毛片在线看网站| 亚洲国产欧美一区二区综合| 电影成人av| 久久久久国内视频| 丝袜人妻中文字幕| 免费观看a级毛片全部| 精品国产一区二区久久| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| 欧美另类亚洲清纯唯美| 首页视频小说图片口味搜索| 18禁黄网站禁片午夜丰满| 国产97色在线日韩免费| av片东京热男人的天堂| 欧美另类亚洲清纯唯美| 丰满迷人的少妇在线观看| 制服诱惑二区| 亚洲成人手机| 超碰成人久久| 激情在线观看视频在线高清 | netflix在线观看网站| 看片在线看免费视频| 精品第一国产精品| 国精品久久久久久国模美| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| av不卡在线播放| 欧美日韩瑟瑟在线播放| 美女国产高潮福利片在线看| 久久香蕉精品热| 12—13女人毛片做爰片一| 久久久久久久国产电影| tube8黄色片| 国产亚洲精品第一综合不卡| av视频免费观看在线观看| 黄片小视频在线播放| 亚洲精品国产精品久久久不卡| 少妇裸体淫交视频免费看高清 | 久久久久精品国产欧美久久久| 91大片在线观看| 黄色毛片三级朝国网站| 欧美乱色亚洲激情| 国产精品一区二区精品视频观看| 黄色成人免费大全| 两性午夜刺激爽爽歪歪视频在线观看 | √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图| 91在线观看av| 老司机在亚洲福利影院| 悠悠久久av| 99久久人妻综合| 亚洲片人在线观看| 黄色视频不卡| 久久人妻熟女aⅴ| 99国产精品一区二区蜜桃av | 亚洲欧美激情在线| 亚洲欧美日韩另类电影网站| 国产精品亚洲一级av第二区| 亚洲少妇的诱惑av| 国产精品国产av在线观看| 欧美黄色片欧美黄色片| 人人妻人人澡人人爽人人夜夜| 18禁裸乳无遮挡免费网站照片 | 亚洲精品自拍成人| 久久久精品国产亚洲av高清涩受| 成熟少妇高潮喷水视频| xxx96com| 欧美激情久久久久久爽电影 | 大香蕉久久成人网| 精品一区二区三区四区五区乱码| av网站在线播放免费| 夜夜躁狠狠躁天天躁| 久久精品亚洲精品国产色婷小说| 一级黄色大片毛片| 少妇的丰满在线观看| 成人18禁高潮啪啪吃奶动态图| 香蕉久久夜色| 动漫黄色视频在线观看| 亚洲伊人色综图| 久久精品aⅴ一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区 | 大型av网站在线播放| 久久香蕉激情| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 激情在线观看视频在线高清 | 午夜精品久久久久久毛片777| 99热网站在线观看| 久久国产精品人妻蜜桃| 欧美人与性动交α欧美软件| 12—13女人毛片做爰片一| 精品一品国产午夜福利视频| 午夜福利免费观看在线| 视频在线观看一区二区三区| 极品人妻少妇av视频| 男女高潮啪啪啪动态图| 中文字幕av电影在线播放| 久热爱精品视频在线9| 涩涩av久久男人的天堂| 成年人免费黄色播放视频| 亚洲aⅴ乱码一区二区在线播放 | avwww免费| 女性生殖器流出的白浆| 亚洲五月婷婷丁香| 校园春色视频在线观看| 欧美日韩国产mv在线观看视频| 婷婷成人精品国产| 久久亚洲精品不卡| 午夜亚洲福利在线播放| 欧美日韩一级在线毛片| 亚洲欧洲精品一区二区精品久久久| 午夜福利影视在线免费观看| 精品卡一卡二卡四卡免费| a级毛片黄视频| 乱人伦中国视频| 人人妻人人爽人人添夜夜欢视频| 天天操日日干夜夜撸| 18禁黄网站禁片午夜丰满| 中文字幕最新亚洲高清| 免费日韩欧美在线观看| 亚洲国产欧美日韩在线播放| 国产不卡av网站在线观看| 国产三级黄色录像| 久久精品91无色码中文字幕| 国产成人欧美在线观看 | 午夜福利,免费看| 亚洲一码二码三码区别大吗| 精品国产一区二区久久| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 国产欧美日韩一区二区三区在线| 在线观看免费视频网站a站| 亚洲av日韩精品久久久久久密| 久久天躁狠狠躁夜夜2o2o| 99久久综合精品五月天人人| 成人精品一区二区免费| 精品国产亚洲在线| 国产高清激情床上av| 一夜夜www| 99久久精品国产亚洲精品| 中文字幕最新亚洲高清| 久久精品亚洲熟妇少妇任你| 老熟妇仑乱视频hdxx| 99国产精品免费福利视频| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 一本大道久久a久久精品| 国产欧美日韩一区二区三区在线| 亚洲,欧美精品.| 久久精品91无色码中文字幕| 老司机福利观看| 王馨瑶露胸无遮挡在线观看| 午夜两性在线视频| 欧美精品高潮呻吟av久久| 亚洲性夜色夜夜综合| 亚洲熟女精品中文字幕| 搡老乐熟女国产| 9热在线视频观看99| 天天影视国产精品| 成在线人永久免费视频| 99久久国产精品久久久| 久久青草综合色| 纯流量卡能插随身wifi吗| 亚洲片人在线观看| 99国产综合亚洲精品| 久久久精品国产亚洲av高清涩受| 精品第一国产精品| 丝瓜视频免费看黄片| 超碰97精品在线观看| 午夜福利一区二区在线看| 叶爱在线成人免费视频播放| 人成视频在线观看免费观看| 成人三级做爰电影| netflix在线观看网站| 12—13女人毛片做爰片一| 欧美黄色片欧美黄色片| 久久99一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产99精品国产亚洲性色 | 国产精品乱码一区二三区的特点 | 无遮挡黄片免费观看| 黄色视频不卡| 国产成人av教育| 成人精品一区二区免费| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 久久精品91无色码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 不卡av一区二区三区| 亚洲美女黄片视频| 狠狠婷婷综合久久久久久88av| 国产精品秋霞免费鲁丝片| 亚洲国产欧美网| 婷婷精品国产亚洲av在线 | 看免费av毛片| 亚洲 国产 在线| 精品人妻熟女毛片av久久网站| 一区二区三区精品91| www.精华液| 欧美日韩国产mv在线观看视频| 国产野战对白在线观看| 丝袜美腿诱惑在线| 18禁裸乳无遮挡动漫免费视频| 一本综合久久免费| 天天躁夜夜躁狠狠躁躁| 老汉色av国产亚洲站长工具| 99热国产这里只有精品6| 亚洲av成人一区二区三| 十八禁高潮呻吟视频| 极品教师在线免费播放| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲| 村上凉子中文字幕在线| 男女免费视频国产| 国产成人啪精品午夜网站| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 亚洲五月色婷婷综合| 精品人妻熟女毛片av久久网站| 国产国语露脸激情在线看| 国精品久久久久久国模美| 大型黄色视频在线免费观看| 色94色欧美一区二区| 精品国产一区二区久久| 亚洲av片天天在线观看| 乱人伦中国视频| 久久人妻福利社区极品人妻图片| 女人被狂操c到高潮| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 天天添夜夜摸| 中出人妻视频一区二区| 九色亚洲精品在线播放| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| 国产在线精品亚洲第一网站| 精品国产超薄肉色丝袜足j| 一进一出好大好爽视频| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 午夜免费成人在线视频| 国产精品av久久久久免费| √禁漫天堂资源中文www| 身体一侧抽搐| 亚洲精品国产精品久久久不卡| 黄色片一级片一级黄色片| 91在线观看av| 日韩欧美一区二区三区在线观看 | 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 韩国av一区二区三区四区| 亚洲国产毛片av蜜桃av| 久久久久久久精品吃奶| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 岛国毛片在线播放| 国产亚洲欧美精品永久| 999精品在线视频| 精品乱码久久久久久99久播| av福利片在线| 亚洲午夜理论影院| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 日韩欧美国产一区二区入口| 欧美激情极品国产一区二区三区| 高清av免费在线| 日本黄色视频三级网站网址 | av不卡在线播放| 精品一品国产午夜福利视频| 视频在线观看一区二区三区| 精品第一国产精品| 男女午夜视频在线观看| 亚洲精品自拍成人| 午夜免费鲁丝| 波多野结衣av一区二区av| 午夜福利在线观看吧| 国产精品永久免费网站| 韩国精品一区二区三区| 高清黄色对白视频在线免费看| av网站在线播放免费| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| 国产成人精品在线电影| 老司机福利观看| 丝袜在线中文字幕| 极品教师在线免费播放| 法律面前人人平等表现在哪些方面| 丝袜在线中文字幕| 黑丝袜美女国产一区| 免费久久久久久久精品成人欧美视频| 黄网站色视频无遮挡免费观看| 国产精品.久久久| 精品欧美一区二区三区在线| 日本黄色视频三级网站网址 | 啦啦啦在线免费观看视频4| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 村上凉子中文字幕在线| 91国产中文字幕| 在线观看舔阴道视频| 亚洲第一青青草原| 一区二区三区激情视频| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 成人影院久久| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 亚洲欧美一区二区三区久久| 亚洲片人在线观看| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 精品无人区乱码1区二区| 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区视频了| 亚洲七黄色美女视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 超色免费av| 香蕉久久夜色| 宅男免费午夜| 国产亚洲欧美98| 天堂俺去俺来也www色官网| 久久国产精品大桥未久av| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 亚洲三区欧美一区| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| av中文乱码字幕在线| 大香蕉久久成人网| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 国产男女内射视频| 国产男女超爽视频在线观看| 亚洲熟女精品中文字幕| 不卡av一区二区三区| 岛国毛片在线播放| 国产片内射在线| 国产亚洲精品第一综合不卡| 久久午夜亚洲精品久久| 国产精品久久久久成人av| 欧美日本中文国产一区发布| svipshipincom国产片| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 成年版毛片免费区| 露出奶头的视频| 久久国产精品人妻蜜桃| 午夜福利视频在线观看免费| 精品无人区乱码1区二区| 激情视频va一区二区三区| 久久中文字幕人妻熟女| 国产成人av激情在线播放| 啦啦啦免费观看视频1| 精品久久久久久电影网| 精品国产亚洲在线| 免费人成视频x8x8入口观看| 王馨瑶露胸无遮挡在线观看| 十八禁网站免费在线| av一本久久久久| 久久狼人影院| 亚洲欧美激情综合另类| 老汉色∧v一级毛片| 一边摸一边抽搐一进一小说 | 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 久久香蕉精品热| 黄频高清免费视频| 在线国产一区二区在线| 国产一区二区三区综合在线观看| 丰满人妻熟妇乱又伦精品不卡| 成年动漫av网址| 免费不卡黄色视频| 丝袜在线中文字幕| 男人的好看免费观看在线视频 | 在线av久久热| 纯流量卡能插随身wifi吗| 91国产中文字幕| 精品少妇一区二区三区视频日本电影| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩成人在线一区二区| av不卡在线播放| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 999久久久精品免费观看国产| 久久久久久久久久久久大奶| 亚洲一区二区三区不卡视频| 视频区欧美日本亚洲| 9色porny在线观看| 在线免费观看的www视频| 久久影院123| av视频免费观看在线观看| 久久草成人影院| 十八禁高潮呻吟视频| 黄色片一级片一级黄色片| 亚洲全国av大片| 国产黄色免费在线视频| 9热在线视频观看99| 极品教师在线免费播放| 一级毛片精品| 日韩三级视频一区二区三区| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 久久婷婷成人综合色麻豆| 国产精品偷伦视频观看了| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av欧美aⅴ国产| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 看黄色毛片网站| 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 99久久99久久久精品蜜桃| 国产一区二区三区综合在线观看| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区 | 国产精品久久久人人做人人爽| 久久久久视频综合| 国产一区在线观看成人免费| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 久久久国产成人精品二区 | 久久国产乱子伦精品免费另类| 欧美老熟妇乱子伦牲交| 黄色丝袜av网址大全| 亚洲,欧美精品.| 国产精品免费大片| 久久精品国产亚洲av香蕉五月 | 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 日韩欧美三级三区| 我的亚洲天堂| 99在线人妻在线中文字幕 | 19禁男女啪啪无遮挡网站| 精品高清国产在线一区| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 91精品三级在线观看| 精品一区二区三区av网在线观看| 国产不卡av网站在线观看| 最近最新中文字幕大全电影3 | 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 久久精品熟女亚洲av麻豆精品| 欧美中文综合在线视频| 国产精品免费一区二区三区在线 | 一进一出抽搐gif免费好疼 | 精品午夜福利视频在线观看一区| 国产xxxxx性猛交| 多毛熟女@视频| 99热只有精品国产| 国产激情欧美一区二区| 久久久国产精品麻豆| 9191精品国产免费久久| 丝袜美腿诱惑在线| 岛国在线观看网站| 色精品久久人妻99蜜桃| 建设人人有责人人尽责人人享有的| 嫁个100分男人电影在线观看| 悠悠久久av| 国产成人一区二区三区免费视频网站| 国产深夜福利视频在线观看| 亚洲一区高清亚洲精品| 国产精品香港三级国产av潘金莲| 伦理电影免费视频| 亚洲熟妇熟女久久| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 午夜福利在线免费观看网站| 又黄又粗又硬又大视频| av网站免费在线观看视频| 一级黄色大片毛片| tocl精华| 乱人伦中国视频| 老司机午夜福利在线观看视频| 亚洲精品久久成人aⅴ小说| 成人影院久久| 99在线人妻在线中文字幕 | 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 欧美色视频一区免费| 午夜免费成人在线视频| av网站在线播放免费| 18禁国产床啪视频网站| 一级毛片精品| 一夜夜www| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线观看二区| 大码成人一级视频| 他把我摸到了高潮在线观看| 精品国产乱子伦一区二区三区| 人人妻人人澡人人爽人人夜夜| 不卡av一区二区三区| 十八禁人妻一区二区| 国产亚洲av高清不卡|