• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and implementation of new fractional-order multi-scroll hidden attractors?

    2021-03-11 08:31:52LiCui崔力WenHuiLuo雒文輝andQingLiOu歐青立
    Chinese Physics B 2021年2期

    Li Cui(崔力), Wen-Hui Luo(雒文輝), and Qing-Li Ou(歐青立)

    Hunan University of Science and Technology,Xiangtan 411201,China

    Keywords: fractional order,hidden attractor,hidden bifurcation,basins of attraction,circuit implementation

    1. Introduction

    In recent years,the chaotic system has attracted extensive attention and conducted in-depth studies by researchers due to its particularities. It has promising prospects of many applications in random signal generators,[1–4]synchronous control technology,[5]image processing,[6]secure communication,[7,8]and artificial neural networks.[9–11]The increase in the complexity of the chaotic system and the generation of complex chaotic attractors have brought about the difficulty of deciphering the information in encryption systems.At present,the use of the multi-scroll or multi-wing topology method to improve the complexity of the chaotic system has become a hot topic.[12–14]

    Although fractional differential has a history of over 300 years,its application to physics and engineering has been only in the last few decades. In the last three decades, it has been discovered that when we use fractional calculus to describe complex systems, the physical significance becomes clearer and its expression becomes more concise. The nature and behavioral characteristics of an object are revealed with greater ease when we use fractional calculus to characterize the object. Hence,fractional calculus has been gaining increasingly more attention,and its application to engineering and physics has become a research hotspot. As a generalization of the integer number system, fractional calculus can describe the dynamic characteristics of the system more accurately with higher nonlinear complexity, and it has a unique historical memory function. There are mainly two kinds of chaotic attractors: self-excited attractors and hidden attractors. The dynamic characteristics of hidden attractors are completely different from those of self-excited attractors. In recent years,Leonov et al.[15,16]discovered hidden attractors in Chua system and proposed the concept of hidden attractors. At the same time, Leonov provided a new set of numerical analysis methods to find hidden attractors. As is well known, the Lorenz attractor,the Chen attractor,and the Chua attractor are all typical attractors in the traditional sense. However,the researchers in Refs.[17,20]indicated a kind of attractor different from these traditional attractors, namely, hidden attractor.Some of these hidden attractor systems possess no equilibrium points,and some have only a stable equilibrium point with an infinite number of equilibrium points. These are reports on integer-order hidden attractor systems. There are few reports on fractional-order hidden attractor systems.

    The integer-order chaotic system has been extended to the fractional-order chaotic system by introducing the fractional-order differential operators based on the mathematical model of the integer-order chaotic system in the early stage of their studies, such as the fractional-order Lorenz system,[21]fractional-order Jerk system,[22]fractional-order Chua system.[23]The fractional-order multi-scroll chaotic system has been widely concerned because it can increase the complexity of the system and the accuracy of chaos.[24–27]In recent years, the hidden chaotic attractor system has also received extensive attention.The searching for the hidden attractors and the hidden bifurcations of the hidden attractor chaotic system has also become a hot topic.[28–30]In Ref.[31]the hidden attractor and the hidden bifurcation phenomenon of the multi-scroll Chua’s chaotic system are studied. In Ref. [32]studied are the chaotic property,quasi-periodicity,and coexistence of hidden attractors in a new simple of four-dimensional(4D) chaotic system with hyperbolic cosine nonlinear terms.In Ref. [33] conducted is a dynamic analysis of the multistable chaotic system of hidden attractors. In Ref.[29]studied are the hidden and transient chaotic attractors in the attitude system of four-rotor UAVs. In Ref.[34]studied are the multistability,hidden chaotic attractors,and transient chaotic analysis of brushless DC motors.

    The Riemann–Liouville (RL) derivative and the Caputo derivative are often used in research for practical applications.In the time–frequency domain transformation method, as defined by RL,the integer is used to fit the fractional-order and the fractional-integral operator in the time domain is transformed into a transfer function in the frequency domain and then the piecewise linear approximation method for the frequency domain is used to perform an approximate calculation. The corresponding expanded form can be obtained by solving the system function in the frequency domain. On the other hand, one starts from the Caputo derivative and derives the predictor–corrector method as the time-domain solution method of fractional differential equations. Using the Adams–Bashforth predictor formula and the Adams–Moulton corrector formula can obtain the time series of the system’s corresponding order, thus solving the fractional differential equation. In this paper the definition of Caputo fractional calculus is adopted.

    In the present study,we first propose a three-dimensional quadratic fractional-order multi-scroll hidden chaotic attractor system with sinusoidal nonlinear terms. Then we use the Adomian decomposition algorithm[35]to solve the proposed fractional-order chaotic system,thereby obtain the 0.99-order chaotic phase diagram as well as the Lyaponov exponent spectrum, bifurcation diagram, SE complexity, and basins of attraction of the system. In the process of analyzing the system,it is found that the system possesses the dynamic characteristics of hidden bifurcations. Finally, we construct a circuit system of the fractional-order chaotic system by designing an equivalent circuit module of the fractional-order integral operators, thus realizing the 0.9-order multi-scroll hidden chaotic attractors.

    2. New fractional-order multi-scroll chaotic system

    In this paper a new fractional-order multi-scroll chaotic system with sinusoidal nonlinear terms is proposed. The dimensionless equation of the state is given as follows:

    When the parameters of the system(1)are taken as A=8,B=4,C=4,w=3.8,q=0.99(0 <q <1),the initial value is(1,1,0),the system presents a multi-scroll chaotic state. The Adomian decomposition algorithm is used to solve the system(1). The corresponding system phase diagram is obtained and the results are shown in Fig.1. The analysis in Fig.1 clearly shows that there are hidden attractors in the phase diagram.

    Fig.1. Phase diagram of x–z plane with q=0.99 for q=0.99 initial value(1,1,0).

    Fig.2. Phase diagram of x–z plane with q=0.9 for q=0.9, initial value(1,1,0).

    Fig.3. Phase diagram of x–z plane with q=0.8 for q=0.8, initial value(1,1,0).

    When the values of q are 0.9 and 0.8, the phase diagrams of system(1)are shown in Figs.2 and 3, respectively.In this paper, the proposed 0.99-order fractional-order multiscroll hidden attractor system is particularly analyzed.

    2.1. Equilibrium point and Lyapunov analysis

    The equilibrium points of system(1)can be obtained by solving the following equation

    By solving Eq. (2), it is found that the proposed system(1)has infinitely many equilibrium points. As the number of scrolls is affected by sinusoidal function and different initial values,the number of scrolls,which also depends on the order of fractional order, is generated randomly. When q=0.99,the Lyapunov exponents of system (1) are LE1=4.3271,LE2=?0.0542,and LE3=?5.3292,indicating that the system is a multi-scroll hidden attractor system. The Lyapunov exponents are shown in Fig.4.

    Fig.4. Lyapunov exponent spectra of system(1)for q=0.99,initial value(1,1,0).

    2.2. Bifurcation and Lyaponov exponent spectrum analysis

    We set the fractional parameters to be q=0.99, B=4,C=4,and w=3.8,the control parameter A of the system(1)to change from 0 to 10,the initial values of the system(1)are chosen as follows:

    x(0)=1, y(0)=1, z(0)=0,

    and the step size of parameter A is chosen as 0.01. The bifurcation of the fractional-order multi-scroll system is shown in Fig.5(a). When the fractional-order multi-scroll system is 0.99-order,the system(1)presents a chaotic state varying with time. When the control parameter B increases from 0 to 5,the fractional-order multi-scroll system enters into the chaotic state with period-doubling bifurcations. When the control parameter C increases from 0 to 5, the system (1) has hidden bifurcations, because when the corresponding Lyaponov exponent spectrum enters into the positive exponent state, the bifurcation of the parameter C does not appear but directly enters into the chaotic state,so it is believed that the system(1)has hidden bifurcation behaviors. The Lyapunov exponent of the system(1)is calculated and the corresponding index map is obtained based on the predictor–corrector (PECE) method of Adams–Bashforth–Moulton type and Wolf’s method.

    Fig.5.(a)Corresponding bifurcation diagram of state variable A;(b)spectra of Lyapunov exponent,with A changing from 0 to 10.

    Obviously,the Lyapunov spectrum provides the parameter ranges of the system(1)when it is in a chaotic state. These ranges are consistent with the results of the bifurcation analysis. As shown in Fig.5(b),there is a positive Lyapunov exponent in a range of 0 <A ≤10,indicating that the system(1)is chaotic. As shown in Fig.6(b),the system(1)shows a quasiperiodic state in a range of 0 <B ≤1,the system(1)presents a quasi-periodic state. When the parameter B continues to increase to 5, there is a positive Lyapunov exponent, this indicates that the system(1)enters into a chaotic state. As shown in Fig.7, when Z is in a range of 0.06 <C ≤5, the system is in a chaotic state. However,the analysis of the corresponding bifurcation diagram shows that the system does not enter into the chaotic state, nor has the bifurcation behaviors in a range of 0 <C <1,indicating that the system(1)has hidden bifurcation behaviors.

    Fig.6. (a)Corresponding bifurcation diagram of state variable B;(b)spectra of Lyapunov exponent,with B changing from 0 to 5.

    Fig.7. (a)Corresponding bifurcation diagram of state variable C;(b)spectra of Lyapunov exponents,with C changing from 0 to 5.

    Fig.8. (a)Corresponding bifurcation diagram of state variable w;(b)spectra of Lyapunov exponents with w changing from 0 to 5.

    2.3. SE complexity analysis

    The complexity analysis of the system involves many fields. Scholars have studied these fields and have different understandings of the complexity of the system. So far,there is no unified definition of the complexity. The complexity of the chaotic system refers to the randomness of chaotic sequences. The greater the complexity, the closer to a random sequence the sequence is and the higher the security of the corresponding system. The complexity of the chaotic system,in essence,belongs to the complexity of the chaotic dynamics.So far,many complexity algorithms have been applied to measuring the complexity of the chaotic system, including multiscale entropy,[36]Shannon entropy,[37]fuzzy entropy,[38]and spectral entropy (SE) algorithm.[39]Compared with other algorithms,the SE algorithm has the advantages of few parameters and high precision. Therefore,it is used in this paper to measure the complexity of the chaotic system. In addition,the SE algorithm based on chaotic mapping can provide a better basis for the parameter selection in practical applications.

    First, it can be known from Figs. 9(b) and 9(d) that the darker the color, the greater the complexity of the system is,indicating that if the value of the system parameter is within this range, the security of the system is higher. Then it can follow from the analysis of Figs. 9(a) and 9(c) that because system (1) is a hidden attractor system, darker colored areas are randomly distributed in lighter-colored areas and its complexity is affected not only by the orders but also by the initial values of the system. The randomness of the chaotic sequence is dependent on initial values.

    Fig.9. Chaos diagrams of fractional-order chaotic system(1)in(a)q–A plane,(b)q–B plane,(c)q–C plane,and(d)q–w plane.

    2.4. Basins of attraction

    Fig.10. Basins of attraction of coexisting attractors on x(0)–y(0)plane with q=0.99(a),0.98(b),0.9(c),and 0.8(d).

    To further study the nonlinear dynamic behaviors of system (1), in this paper we propose using the Lyapunov exponents to calculate the basins of attraction of the chaotic system,because the Lyapunov exponents describe the orbit of the chaotic system. The Lyapunov exponents refer to the average quantities related to the contraction and expansion of the phase space near the orbit in different directions. No matter what sense of space or time they are in,Lyapunov exponents are not local quantities.Each Lyapunov exponent is the average quantity of the local deformation of the phase space relative to the motion of the system. At the same time, it is determined by the long-term evolution of the system. Therefore,the positive Lyapunov exponent is compared with the Lyapunov exponent with the middle value equal to 0 to describe the coexistence of multiple attractors of the chaotic system with different initial value.

    The basins of attraction of system (1) can be obtained by changing the parameter q and the initial conditions x(i)and y(i) in a range of (?5, 5) with the system parameters unchanged[40–44]as shown in Fig.10. The red area refers to the basins of attraction of infinity attractors,namely,the point set where the trajectory is diverged. The yellow area refers to the basins of attraction of chaotic attractors, showing the coexistence of multiple attractors. The blue area refers to the periodic area. The red, blue and yellow areas are mixed to form a meshed basin, indicating that there is a smooth and invariant subspace containing the chaotic attractor system(1)(Ref.[40]). Different color areas represent completely different initial conditions, showing the multiple stability of coexistence. The simulation results show that system (1) has a multi-stable phenomenon, namely, the coexistence of multiple attractors. Therefore,the trajectory of the system not only depends on the initial conditions of system(1),but also is related to the fractional-orders. The lower the order, the higher the complexity of the chaotic system is and the larger the red area,which is consistent with the conclusion of the complexity analysis. The partially enlarged diagram of the basins of attraction of the 0.99-order system(1)is shown in Fig.11.

    If the basins of attraction of the chaotic system can effectively form a meshed area for each attractor, it will result in the intermittent phenomena of continuous communications between chaotic attractors. The trajectory of the attractor will jump from one attractor to another and then hover around a certain chaotic attractor for a while, thus repeating the cycle continuously.

    Fig.11. Enlarged part of basins of attraction with q=0.99.

    3. Circuit implementation

    Fig.12. Schematic diagram of circuit designed from system(1).

    To verify the chaotic characteristics of the fractionalorder chaotic system in the physical sense, a 0.9-order fractional-order multi-scroll chaotic system is designed based on the method of designing integer-order chaotic circuits and the frequency domain approximation method[45]by using resistors, capacitors, capacitors, and other devices, including the analog operational amplifier TL082,the multiplier AD633.The power supply voltage is±12 V.In this paper designed is an analog circuit to implement the 0.9-order fractional-order multi-scroll chaotic system. The schematic circuit diagram and its parameters are shown in Fig.12. The fractional-order unit circuit with 0.9-order is shown in Fig.13.

    Its parameters are Ra= 63 MΩ, Rb= 1.6 MΩ, Rc=0.0158 MΩ, Ca=0.44 μF,Cb=0.49 μF,Cc=0.3 μF. The values of these resistances are determined in accordance with the parameters of the fractional-order multi-scroll system(1).The chaotic attractors are observed with an oscilloscope. In this paper,provided are the chaotic attractors of the x–z plane displayed by the digital oscilloscope used in the actual environment as shown in Fig.14. It is shown that the numerical simulation result of the fractional-order multi-scroll system(1)is consistent with the result of the circuit implementation.

    Fig.13. Fractional-order unit circuit with q=0.9.

    Fig.14. Phase diagram of x–z plane with q=0.9.

    4. Conclusions

    In this paper, we studied the nonlinear dynamic characteristics of a new fractional-order multi-scroll chaotic system with sinusoidal nonlinear terms,and also review the history of the fractional-order chaotic system, focusing on the bifurcations, Lyapunov exponents, complexity, and basins of attraction of the 0.99-order multi-scroll chaotic system. We first propose using the Lyapunov exponents to describe the basins of attraction of the chaotic system in the Matlab environment.The result shows that system(1)has the characteristics of hidden attractors,hidden bifurcations,and multi-stability.Finally,the 0.9-order multi-scroll chaotic attractors are implemented by using the simulated circuits. As the multi-scroll chaotic system of the fractional-order has more complex nonlinear behavior, it can describe the physical characteristics of the system more clearly. It is widely applied to such fields as secret communication, image processing, artificial neural network,etc. The hidden attractors and hidden bifurcations are new concepts that have been proposed only in recent years. The hidden attractor chaotic system has more complex nonlinear dynamic behaviors, so it is necessary to carry out more indepth research on this type of system.

    一区二区av电影网| 久久性视频一级片| 国产精品免费大片| 国产精品亚洲av一区麻豆 | 精品少妇黑人巨大在线播放| 国产一级毛片在线| 中文乱码字字幕精品一区二区三区| 国产免费福利视频在线观看| 曰老女人黄片| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| 男女之事视频高清在线观看 | 亚洲成人av在线免费| 精品少妇内射三级| 欧美日本中文国产一区发布| videos熟女内射| 一级a爱视频在线免费观看| 久久99热这里只频精品6学生| 日韩一卡2卡3卡4卡2021年| 久久99一区二区三区| 男女无遮挡免费网站观看| 青春草亚洲视频在线观看| 国产探花极品一区二区| 丁香六月欧美| 精品国产乱码久久久久久男人| 热99国产精品久久久久久7| 国产伦人伦偷精品视频| 丝袜脚勾引网站| 丝袜人妻中文字幕| 飞空精品影院首页| av片东京热男人的天堂| 日本欧美视频一区| 激情五月婷婷亚洲| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 中文字幕人妻丝袜制服| 国产精品99久久99久久久不卡 | 制服人妻中文乱码| 亚洲国产精品999| av国产精品久久久久影院| 波野结衣二区三区在线| 老司机亚洲免费影院| 中文天堂在线官网| 一级黄片播放器| 亚洲天堂av无毛| 嫩草影视91久久| 一级毛片 在线播放| 国产淫语在线视频| av福利片在线| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美| 下体分泌物呈黄色| 亚洲精品久久久久久婷婷小说| 精品国产超薄肉色丝袜足j| 成人国产麻豆网| 天天影视国产精品| 丰满乱子伦码专区| 九草在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 黑人欧美特级aaaaaa片| www.av在线官网国产| 日韩免费高清中文字幕av| 飞空精品影院首页| 亚洲伊人久久精品综合| 精品国产一区二区三区四区第35| 亚洲精品国产色婷婷电影| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 久久精品久久久久久久性| 视频区图区小说| 国产精品香港三级国产av潘金莲 | 街头女战士在线观看网站| 丰满饥渴人妻一区二区三| 日韩伦理黄色片| 狂野欧美激情性bbbbbb| 99精品久久久久人妻精品| 一级爰片在线观看| 制服人妻中文乱码| 欧美日韩亚洲综合一区二区三区_| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久小说| 在线观看一区二区三区激情| 中国国产av一级| 一级毛片黄色毛片免费观看视频| 久热爱精品视频在线9| 最近手机中文字幕大全| 人妻人人澡人人爽人人| 制服人妻中文乱码| 在线观看三级黄色| 国产精品秋霞免费鲁丝片| 欧美日韩视频精品一区| 国产精品国产av在线观看| 一级毛片我不卡| 制服诱惑二区| av视频免费观看在线观看| 丰满少妇做爰视频| 午夜av观看不卡| 精品人妻在线不人妻| 夜夜骑夜夜射夜夜干| 观看av在线不卡| 久热这里只有精品99| 中文字幕人妻丝袜一区二区 | 9191精品国产免费久久| 妹子高潮喷水视频| 精品亚洲成a人片在线观看| 秋霞伦理黄片| 国产有黄有色有爽视频| 大香蕉久久成人网| 中文精品一卡2卡3卡4更新| 丝袜美足系列| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 国产福利在线免费观看视频| 亚洲欧洲国产日韩| 亚洲综合色网址| 国产亚洲午夜精品一区二区久久| 在线观看国产h片| 2021少妇久久久久久久久久久| 午夜91福利影院| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 两性夫妻黄色片| 中文字幕最新亚洲高清| 老司机深夜福利视频在线观看 | 操出白浆在线播放| 校园人妻丝袜中文字幕| 国产成人免费无遮挡视频| 如何舔出高潮| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 少妇人妻久久综合中文| 美女福利国产在线| 9191精品国产免费久久| 国产亚洲精品第一综合不卡| 久久精品人人爽人人爽视色| 哪个播放器可以免费观看大片| 欧美另类一区| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 国产精品蜜桃在线观看| 欧美人与善性xxx| 如日韩欧美国产精品一区二区三区| 中国国产av一级| 国产精品免费视频内射| 国产不卡av网站在线观看| 亚洲av欧美aⅴ国产| 伦理电影免费视频| 日韩一区二区三区影片| 久久婷婷青草| 看非洲黑人一级黄片| 男女边摸边吃奶| 亚洲精品日韩在线中文字幕| 成年女人毛片免费观看观看9 | 99国产精品免费福利视频| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 亚洲精品国产av成人精品| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 亚洲成av片中文字幕在线观看| 最近中文字幕2019免费版| 永久免费av网站大全| 亚洲精品乱久久久久久| 国产成人a∨麻豆精品| 国产精品久久久久久久久免| 少妇被粗大的猛进出69影院| 亚洲人成77777在线视频| 99re6热这里在线精品视频| 国产av精品麻豆| 色吧在线观看| 不卡av一区二区三区| 久久国产精品男人的天堂亚洲| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说| 亚洲成国产人片在线观看| av不卡在线播放| 午夜影院在线不卡| 99精国产麻豆久久婷婷| 免费观看a级毛片全部| 国产一区二区 视频在线| 男人爽女人下面视频在线观看| 亚洲国产精品国产精品| 久久国产精品大桥未久av| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 青春草亚洲视频在线观看| 精品国产超薄肉色丝袜足j| 大码成人一级视频| 天天躁狠狠躁夜夜躁狠狠躁| 最近手机中文字幕大全| 亚洲精品国产色婷婷电影| 免费在线观看黄色视频的| 精品国产一区二区三区四区第35| av国产精品久久久久影院| 满18在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲综合精品二区| 亚洲,一卡二卡三卡| 亚洲欧洲精品一区二区精品久久久 | 两性夫妻黄色片| 丝袜美腿诱惑在线| 国产福利在线免费观看视频| 伊人亚洲综合成人网| 亚洲av国产av综合av卡| 在线观看免费午夜福利视频| svipshipincom国产片| 黄色毛片三级朝国网站| 毛片一级片免费看久久久久| 久久久久人妻精品一区果冻| 亚洲国产欧美网| 我要看黄色一级片免费的| 国产在视频线精品| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 晚上一个人看的免费电影| 赤兔流量卡办理| kizo精华| 亚洲第一青青草原| 性高湖久久久久久久久免费观看| 日韩av不卡免费在线播放| av福利片在线| 亚洲av电影在线观看一区二区三区| 中文字幕高清在线视频| av天堂久久9| 久久精品久久精品一区二区三区| 高清不卡的av网站| 热re99久久国产66热| 国产精品熟女久久久久浪| 久热爱精品视频在线9| 亚洲国产欧美日韩在线播放| 一边摸一边抽搐一进一出视频| 国产精品免费大片| 欧美精品av麻豆av| 精品第一国产精品| 美女午夜性视频免费| 99国产综合亚洲精品| 涩涩av久久男人的天堂| 欧美国产精品va在线观看不卡| 韩国高清视频一区二区三区| 亚洲欧美色中文字幕在线| 亚洲av日韩精品久久久久久密 | 老司机亚洲免费影院| 久久精品国产a三级三级三级| 国产午夜精品一二区理论片| 国产一区二区激情短视频 | 99久国产av精品国产电影| 最近手机中文字幕大全| 久久精品久久久久久久性| 考比视频在线观看| 国产女主播在线喷水免费视频网站| 日韩制服骚丝袜av| 99九九在线精品视频| 亚洲一区中文字幕在线| 嫩草影视91久久| 人妻 亚洲 视频| 女性生殖器流出的白浆| 一级片免费观看大全| 国产国语露脸激情在线看| 男女高潮啪啪啪动态图| 热re99久久国产66热| 国产精品国产三级国产专区5o| av在线老鸭窝| 人妻一区二区av| 亚洲激情五月婷婷啪啪| 国产片内射在线| 2021少妇久久久久久久久久久| 欧美成人精品欧美一级黄| 丁香六月天网| 18禁国产床啪视频网站| 免费高清在线观看日韩| 亚洲精品久久久久久婷婷小说| 精品久久久久久电影网| 成人漫画全彩无遮挡| 丰满少妇做爰视频| 久久久久久久国产电影| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 国产视频首页在线观看| 水蜜桃什么品种好| 亚洲成人免费av在线播放| 91成人精品电影| 在线精品无人区一区二区三| 人妻一区二区av| 亚洲精品视频女| 久久久久精品国产欧美久久久 | 在线观看人妻少妇| 最近中文字幕2019免费版| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区免费观看| 五月开心婷婷网| 成人手机av| 欧美国产精品一级二级三级| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美精品济南到| 欧美中文综合在线视频| 亚洲国产精品成人久久小说| 午夜免费观看性视频| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 国产精品熟女久久久久浪| 老熟女久久久| 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 少妇人妻久久综合中文| 91老司机精品| 亚洲国产精品成人久久小说| 在线观看一区二区三区激情| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 日本av免费视频播放| 伦理电影免费视频| 我要看黄色一级片免费的| 嫩草影视91久久| 天天添夜夜摸| 美女主播在线视频| av天堂久久9| 婷婷成人精品国产| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 最黄视频免费看| 中文字幕色久视频| 最近中文字幕高清免费大全6| 亚洲美女搞黄在线观看| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 国产精品久久久久久久久免| 90打野战视频偷拍视频| 黄片无遮挡物在线观看| 日日撸夜夜添| 国精品久久久久久国模美| 黄色 视频免费看| 国产毛片在线视频| 国产精品久久久久久人妻精品电影 | 日本猛色少妇xxxxx猛交久久| 9191精品国产免费久久| 久久精品久久久久久久性| 久久毛片免费看一区二区三区| 色网站视频免费| 一区二区av电影网| 免费观看性生交大片5| 久久久久精品性色| 无遮挡黄片免费观看| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 超碰成人久久| 曰老女人黄片| 伊人久久国产一区二区| 老司机影院毛片| 免费观看a级毛片全部| 性少妇av在线| 嫩草影院入口| 飞空精品影院首页| 日韩电影二区| 久久免费观看电影| 可以免费在线观看a视频的电影网站 | 久久精品久久精品一区二区三区| 五月天丁香电影| 亚洲国产看品久久| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| 乱人伦中国视频| 欧美xxⅹ黑人| av片东京热男人的天堂| 亚洲国产最新在线播放| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 欧美人与善性xxx| 在线观看免费日韩欧美大片| 搡老乐熟女国产| 纯流量卡能插随身wifi吗| 在线精品无人区一区二区三| 一区二区av电影网| av女优亚洲男人天堂| 亚洲,欧美,日韩| 日韩制服骚丝袜av| netflix在线观看网站| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 日韩精品有码人妻一区| 丁香六月欧美| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜一区二区 | 日韩中文字幕欧美一区二区 | 老司机影院毛片| 色综合欧美亚洲国产小说| 高清欧美精品videossex| 日韩一区二区视频免费看| 男人操女人黄网站| 亚洲精品国产av成人精品| 在线观看人妻少妇| 男女免费视频国产| 男女高潮啪啪啪动态图| 日韩一区二区三区影片| 宅男免费午夜| 极品人妻少妇av视频| 老司机在亚洲福利影院| 国产一区二区激情短视频 | 一二三四中文在线观看免费高清| 少妇 在线观看| 国产精品久久久人人做人人爽| www.www免费av| 久久亚洲精品不卡| 夜夜看夜夜爽夜夜摸| 涩涩av久久男人的天堂| 一级,二级,三级黄色视频| 国产人伦9x9x在线观看| 乱人伦中国视频| 十八禁人妻一区二区| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| 国产成+人综合+亚洲专区| 中文字幕人成人乱码亚洲影| 视频在线观看一区二区三区| 久久 成人 亚洲| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 久久伊人香网站| 自线自在国产av| 一夜夜www| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 欧美大码av| 国产精品久久久久久亚洲av鲁大| 免费人成视频x8x8入口观看| 国产精品一区二区免费欧美| 美女午夜性视频免费| 极品人妻少妇av视频| 黄色成人免费大全| 日韩视频一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 我的亚洲天堂| 日本五十路高清| 18美女黄网站色大片免费观看| 亚洲av成人一区二区三| 在线观看免费视频网站a站| 免费看美女性在线毛片视频| 亚洲情色 制服丝袜| 男人舔女人下体高潮全视频| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 欧美老熟妇乱子伦牲交| 国产麻豆成人av免费视频| 老熟妇乱子伦视频在线观看| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 久久精品91无色码中文字幕| 99国产精品一区二区三区| 日韩三级视频一区二区三区| www.精华液| 亚洲 国产 在线| 国产精品 国内视频| 国产99久久九九免费精品| 亚洲国产毛片av蜜桃av| 久久九九热精品免费| 亚洲最大成人中文| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 国产成人影院久久av| 搞女人的毛片| 久久亚洲精品不卡| 精品久久蜜臀av无| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 99国产精品99久久久久| av视频免费观看在线观看| 精品无人区乱码1区二区| 脱女人内裤的视频| 男女做爰动态图高潮gif福利片 | 真人一进一出gif抽搐免费| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美精品永久| 18禁观看日本| 日韩大码丰满熟妇| 色播在线永久视频| 1024香蕉在线观看| 午夜福利成人在线免费观看| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出| 少妇的丰满在线观看| 91老司机精品| 99精品久久久久人妻精品| 国语自产精品视频在线第100页| 91成年电影在线观看| 国产精品电影一区二区三区| 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 美女免费视频网站| 亚洲成国产人片在线观看| 91字幕亚洲| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 18禁裸乳无遮挡免费网站照片 | 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 一夜夜www| 亚洲午夜理论影院| 国产一区二区激情短视频| 制服人妻中文乱码| 中文字幕人成人乱码亚洲影| 国产成人av教育| 老汉色∧v一级毛片| 久久午夜亚洲精品久久| 亚洲欧美精品综合一区二区三区| 两个人视频免费观看高清| 一本大道久久a久久精品| 黄色视频,在线免费观看| 男男h啪啪无遮挡| 国产一区二区激情短视频| 我的亚洲天堂| 久久精品国产亚洲av香蕉五月| 日韩高清综合在线| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 免费少妇av软件| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 国产乱人伦免费视频| 亚洲av第一区精品v没综合| 亚洲国产日韩欧美精品在线观看 | 女人精品久久久久毛片| 亚洲专区中文字幕在线| 国产精华一区二区三区| 一级a爱视频在线免费观看| 成人免费观看视频高清| 91老司机精品| 18禁国产床啪视频网站| 正在播放国产对白刺激| 精品一品国产午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清无吗| 三级毛片av免费| 男人舔女人的私密视频| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 一级毛片高清免费大全| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| www.自偷自拍.com| 男人操女人黄网站| 日本黄色视频三级网站网址| 亚洲一码二码三码区别大吗| 久久精品亚洲精品国产色婷小说| 淫秽高清视频在线观看| 91精品国产国语对白视频| 国产成年人精品一区二区| 欧美大码av| 午夜免费观看网址| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 亚洲av电影不卡..在线观看| 久久久久亚洲av毛片大全| 99久久国产精品久久久| 999久久久国产精品视频| 亚洲成av人片免费观看| 激情视频va一区二区三区| 一级片免费观看大全| 国产乱人伦免费视频| 十八禁人妻一区二区| 亚洲中文字幕一区二区三区有码在线看 | 欧美激情久久久久久爽电影 | 亚洲精品国产色婷婷电影| 国产精品久久久人人做人人爽| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 国产精品一区二区免费欧美| 99国产精品免费福利视频| 精品久久久久久久久久免费视频| 久久中文看片网| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 成人永久免费在线观看视频| 亚洲中文av在线| 国产熟女xx| 一夜夜www| 亚洲欧美精品综合一区二区三区| 日韩高清综合在线| 亚洲国产高清在线一区二区三 | 搡老岳熟女国产| 日本三级黄在线观看| 欧美老熟妇乱子伦牲交| 精品一区二区三区av网在线观看| 国产一区二区在线av高清观看| 美国免费a级毛片|