• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the shear bearing capacity of RC shear walls using artificial neural networks

    2021-03-06 02:45:54,

    ,

    School of Civil and Transportation Engineering; Civil Engineering Technology Research Center of Hebei Province, Hebei University of Technology, Tianjin 300401, P. R. China)

    Abstract: In various areas of civil engineering, the artificial neural network (ANN) model is used to solve complex problems. In this study, ANN models were used to predict the shear bearing capacity of RC shear walls. Based on the results of 160 experiments, a database was constructed that included the performance of RC shear walls under cyclic loading. One hundred and forty samples were chosen to train the ANN models, and 20 were used for validation. There were fourteen inputs parameters: concrete compressive strength, aspect ratio, axial compression ratio, vertical bar yield strength, horizontal bar yield strength, web vertical reinforcement ratio, web horizontal reinforcement ratio, boundary region vertical reinforcement ratio, boundary region horizontal reinforcement ratio, sectional area ratio, sectional height thickness ratio, total section area, wall height, and section shape. ANN1 and ANN2 were normalized in intervals of [0, 1] and [0.1, 0.9], respectively. The shear force of the RC shear walls was the output data for both models. The predictions by the ANN models and the code methods from GB 50011 and ACI 318 were compared. The results reveal that the developed models exhibit better prediction and generalization capacity for RC shear walls than the code methods.

    Keywords:artificial neural network; shear wall; reinforced concrete; model prediction; shear bearing capacity

    1 Introduction

    Reinforced concrete (RC)shear walls are often used in building structures due to their capacity to resist lateral loads under seismic action[1]. The concrete strength, aspect ratio, axial compression ratio, vertical or horizontal web reinforcement ratio, and vertical or horizontal boundary region reinforcement ratio are critical design parameters that govern the lateral load resistance capacity of RC shear walls[2-3]. The formula used in domestic and foreign codes to calculate the shear bearing capacity is an empirical formula determined by statistical analysis, that reflects the main physical and geometric parameters and considers the factors that influence the reliability. Differences in the calculation model and calculation method are incorporated in current codes, such as GB 50011, ACI 318, and EC2. Furthermore, the strength of the concrete used in the formula for calculating the shear bearing capacity is also different. Generally, most existing methods of calculating the shear bearing capacity of RC shear walls are based on models with limited experimental data, such as shear walls using high-strength steel bars. Therefore, further research on more reliable and effcient structural assessement is needed.

    ANNs have been used for simulating engineering problems[4-6]. To predict the axial bearing capacity, Du et al.[7]suggested two ANN models of rectangular concrete-filled steel tubular columns. Kotsovou et al.[8]established an ANN model to predict the load bearing capacity of beam-column joints. However, the ANN models and experimental data are limited. In this study, shear bearing capacity predictions of RC shear walls were developed using artificial neural networks. The developed ANN model provides a reference for prefabricated concrete shear walls, the seismic performance of which are equivalent to cast-in-place RC walls[9-12].

    2 Data collection

    As shown in Fig.1,test results for 160 RC shear walls with rectangular or barbell sections was found in the literature [2-3, 13-29]. The test information included all parameters that may have an impact on the behavior of the RC shear walls. The test samples exhibited good deformation ability. The parameters for all samples were consistent.

    The size parameters of the wall (b,h, andH), the yield strength of the horizontal reinforcementsfy, the concrete compressive strengthfc, the aspect ratio λ, the axial compression ratioμ, and the shear forceVare included to train and test the ANN models. Finally, 160 test samples were obtained and are summarized in Table 1.

    Fig.1 Typical test setup under cyclic loading and section for RC shear

    3 Artificial neural networks

    3.1 Background information

    ANN is an operational model that mimics the neural network of the human brain from the perspective of information processing. ANN is an artificial intelligence technology that can solve complex problems based on input parameters. The effects of these parameters are not explicitly illustrated or quantified. ANNs have the ability to learn, summarize, classify, and predict, and it have been achieved remarkable results in many practical applications over the past years. In this study, ANNs are used to predict the shear bearing capacity of RC shear walls.

    Table 1 Test data of RC shear walls

    This study uses a back-propagation (BP) algorithm, as shown in Fig.2. A typical artificial neuron is shown in Fig.3. Three layers are included in the ANNs: input layer, hidden layer, and output layer. Each layer compriseskneurons, three neurons, and two neurons, respectively.

    Fig.3 A typical artificial

    The connections between interrelated neurons with a set specific weight are multiplied by the input data produced by the neuron. The values obtained in a particular layer are passed through the link and summed up with the bias (refer to Fig.2)[8]A predefined activation is used to represent the relationship between the inputs and the outputs, as shown in the following

    (1)

    whereyiis the output of the ANN,wijis the weight coefficients of thejthneuron,xjis the input data,θiis the bias of the neuron, andg(·) is the activation function. In this study, input and hidden layers used sigmoid activation functions, and the output layer used the tan-sigmoid activation function.

    3.2 Input and output data

    The input parameters were selected based on the dominant effect of the parameters on the behavior of the RC shear wall, and included the concrete compressive strength (fc), the aspect ratio (λ), the axial compression ratio (μ), the vertical reinforcement yield strength (fy,vw), the horizontal reinforcement yield strength (fh,vw), the vertical reinforcement web ratio (ρvw), the horizontal reinforcement web ratio (ρhw), the vertical reinforcement boundary region ratio (ρvc), the horizontal reinforcement boundary region ratio (ρhc), the sectional area ratio of the boundary region to the total cross-section area (Ab/Ag), the sectional height thickness ratio (lw/tw), the total section area (Ag), the wall height (H), and the section shape (the rectangular section is “0” and the barbell section is “1”).

    Since the performance of the RC shear walls specified in the code is determined by the limit of the shear load capacity, we take the maximum shear (Vmax) as the target parameter. The maximum and minimum values of the input and output data are listed in Table 2. Table 3 shows the correlation between the input parameters used for the prediction of the shear bearing capacity of the RC shear walls. Some parameters are weakly correlated while others are strongly correlated. For example, the correlation coefficient between thelw/twandAb/Agwas -0.763, which indicates a strong negative relationship. The correlation coefficient between theHandλwas 0.449, which indicates a weak positive relationship. The sequence of the correlation for the input parameters from strong to weak wereAg,ρvc,ρhc,fc,Ab/Ag, section shape,fy,vw,fh,vw,H,ρhw,λ,ρvw,μ, andlw/tw.

    Table 2 Maximum and minimum values of the input and output data

    Table 3 Correlation matrix for input parameters

    To minimize the deviation of the ANN and low convergence rates, the values of the input and output data are normalized using Eq.(2).

    (2)

    3.3 Training and testing of the ANNs

    In this study, the network was built using the ANN toolbox in MATLAB. The BP network with 15 hidden layers was used to build the model of RC shear walls. The 160 experimental samples were randomly divided into two groups, 140 samples for training, and 20 samples for testing. In order to verify the effect of normalization equation on the ANNs prediction, the two control groups ANN1 and ANN2 were normalized in the range [0, 1] and [0.1, 0.9].

    The training process of the neural network involves adjusting the network’s weights and deviations (initially randomly assigned) to optimize the network’s performance in the iterative process. The error performance index of the forward network is MSE, which is the mean square error between the network output and the target. The neural network would modify the network node weight, according to MSE. At the same time, in order to reduce the error in each iteration, ANN used the back-error propagation algorithm. After the error was calculated, the weights and bias were readjusted.

    The calibration procedure of the ANN model is shown in Fig.4. This was repeated until one of the following conditions was met: 1) After 500 training sessions, the algorithm will stop the training process. 2) The error-index reaches 10-5. 3) The validation check occurs 10 times.

    The ANN values (ANN-output) and test values (targets) are illustrated in Fig.5. The ANNs predicted values were close to the experimental values with good deformation ability, indicating that the ANN1 and ANN2 models successfully learned the relationship between input and output data. In addition, the predicted values and test values that were closer to each other in different normalized ranges were in the range [0, 1] rather than the range [0.1, 0.9].

    Fig.4 Calibration procedure of the ANN

    Fig.5 ANN predicted values and test

    The ratio of output to target OTR, mean valueMV, and standard deviationSDare used to evaluate the behavior of the model.

    OTRi=Oi/Ti

    (3)

    (4)

    (5)

    WhereOiandTiare the prediction values of the ANN models and the maximum shear of the experimental samples, respectively.nis the total sample number.

    Curves of OTR and sample number for ANN1, ANN2, GB 50011, and ACI 318 are presented in Fig.6. Two predicted values in the ANN1 model exhibited the errors of 8.1% and 8.7%, which were overestimated. Two predicted values in the ANN2 model exceeded the error of 8.0%. One was underestimated and the other was overestimated. TheSDwas 0.036 1 in ANN1 and 0.041 2 in ANN2 (refer to Table 4). Therefore, the ANN1 model was superior to the ANN2 model in calculating the shear bearing capacity of RC shear walls.

    Fig.6 OTRs-sample numbers curves for ANN1, ANN2,

    Table 4 MVs and SDs with testing data

    4 Comparative studies of ANN models and design codes

    The methods proposed by GB 50011 and ACI 318 are presented as follows

    (6)

    Vu=φ(Vc+Vs)

    (7)

    (8)

    (9)

    The outputs of the RC shear walls are the results calculated by the formulas Eqs.(6) to (9).

    Fig.6 shows the OTRs calculated by ANN1, ANN2, GB 50011, and ACI 318. Table 4 listsMVs andSDs using the testing data for ANN1, ANN2, GB 50011, and ACI 318.

    Results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well.

    The results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well. There were two outputs with an error of over 8% for both ANN1 and ANN2, but they did not exceed 10%. Two out of twenty in ANN1 were overestimated. One was overestimated in ANN2, and the other was underestimated. These results show that the ANN model exhibited a significant improvement compared to the standard GB 50011 and ACI 318. Compared with the experimental data, fourteen results predicted by GB 50011 exceed 10% difference based on theOTRs. There were sixteen predicted results with errors exceeding 10% in ACI 318. TheSDs of ANN1 and ANN2 were 0.036 1 and 0.041 2, much lower than those of GB 50011 and ACI 318 (refer to Table 3). Compared with GB 50011 and ACI 318, the ANNs exhibited better performance on predicting the shear bearing capacity of RC shear walls.

    There were thirteen results with errors exceeding 10% in GB 50011 and three in ACI 318 were underestimated. TheMVs of the results predicted by GB 50011 and ACI 318 were 0.954 4 and 0.825 6, respectively. ANN models exhibited higherMVs than GB 50011 and ACI 318, indicating that the formulas were conservative in GB 50011 and ACI 318 due to the usage of high strength materials. TheSDof GB 50011 and ACI 318 reached 0.189 7 and 0.223 6, which were larger than the ANN models.

    The ANN1 and ANN2 models had the two largestMVs, while ANN1 and ANN2 exhibited smallerSDs. Thus, ANN models can accurately predict the shear bearing capacity of RC shear walls. Compared with the design codes, ANN models may be safer.

    5 Conclusions

    Two ANN models with fourteen input parameters were developed, based on experimental data. An efficient learning model based on ANNs was proposed to evaluate the load bearing capacity of RC shear walls. The prediction results show that ANN models predict the load bearing capacity favorably using parameters such as the aspect ratio, the axial compression ratio, the concrete and reinforcement strength, the boundary region and web reinforcement ratio, and the sectional ratio and size, thus accurate predictions can be provided.

    The ANN1 and ANN2 models exhibit a better correlation with the experimental results than the codes GB 50011 and ACI 318. The ANN models exhibit better accuracy in prediction and generalization capacity. The BP algorithm can be effectively adopted in the shear strength prediction of RC shear walls.

    Application of developed ANNs can be extended by further experimental tests including other shaped sections as input data. More studies on RC shear walls including high strength concrete and high strength reinforcements are valuable for the structures adopting RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Natural Science Foundation of Hebei Province (No. E2018202290).

    少妇丰满av| 人妻夜夜爽99麻豆av| 午夜日本视频在线| 99热网站在线观看| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 九草在线视频观看| 免费观看a级毛片全部| 男女国产视频网站| 免费黄色在线免费观看| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 黄片wwwwww| 男女边吃奶边做爰视频| 男插女下体视频免费在线播放| 国产欧美日韩一区二区三区在线 | 国产一区二区亚洲精品在线观看| 在线免费十八禁| 新久久久久国产一级毛片| 国产一区二区三区综合在线观看 | 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 久久精品国产自在天天线| 欧美性猛交╳xxx乱大交人| av女优亚洲男人天堂| 欧美丝袜亚洲另类| 在线播放无遮挡| 免费大片黄手机在线观看| 永久免费av网站大全| h日本视频在线播放| 婷婷色麻豆天堂久久| 男女边摸边吃奶| 成人特级av手机在线观看| 国产成人freesex在线| 成人毛片60女人毛片免费| 日本午夜av视频| 国产精品av视频在线免费观看| 国产男女内射视频| 成人无遮挡网站| 亚洲综合精品二区| 精品一区二区三区视频在线| 丝瓜视频免费看黄片| 80岁老熟妇乱子伦牲交| 免费观看在线日韩| 国产又色又爽无遮挡免| 少妇高潮的动态图| 亚洲国产日韩一区二区| 成人亚洲精品一区在线观看 | 新久久久久国产一级毛片| 97超碰精品成人国产| 久久久久久久久久成人| 久久久久久久久久人人人人人人| 男女啪啪激烈高潮av片| 国产真实伦视频高清在线观看| 亚洲av福利一区| 久久午夜福利片| 简卡轻食公司| 色视频www国产| 亚洲国产精品国产精品| 国产伦精品一区二区三区四那| www.av在线官网国产| 亚洲性久久影院| 在线a可以看的网站| 亚洲av中文av极速乱| 久久久久久久久大av| 国产精品三级大全| 午夜免费鲁丝| 欧美激情在线99| 在线免费十八禁| 狠狠精品人妻久久久久久综合| 国产免费又黄又爽又色| 小蜜桃在线观看免费完整版高清| 高清午夜精品一区二区三区| 亚洲天堂av无毛| 精品久久国产蜜桃| 欧美zozozo另类| 美女国产视频在线观看| av.在线天堂| 美女脱内裤让男人舔精品视频| 亚洲精品亚洲一区二区| 国产精品偷伦视频观看了| 搡女人真爽免费视频火全软件| 一边亲一边摸免费视频| 国产免费视频播放在线视频| 亚洲国产欧美在线一区| 国产男女内射视频| 国产成人a∨麻豆精品| 国产精品一区www在线观看| 国产v大片淫在线免费观看| 国产成人精品一,二区| 尾随美女入室| 美女脱内裤让男人舔精品视频| 国产亚洲5aaaaa淫片| 亚洲国产精品专区欧美| 亚洲精品国产色婷婷电影| 欧美xxxx黑人xx丫x性爽| 午夜激情福利司机影院| 在线观看一区二区三区激情| 不卡视频在线观看欧美| 久久久久久伊人网av| 亚洲最大成人手机在线| 97超碰精品成人国产| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 久久久久久久国产电影| 亚洲电影在线观看av| 免费av毛片视频| 国模一区二区三区四区视频| 天堂网av新在线| 日本黄大片高清| 国产成人福利小说| 欧美极品一区二区三区四区| 1000部很黄的大片| 国精品久久久久久国模美| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 成人特级av手机在线观看| 成人二区视频| 亚洲经典国产精华液单| 国产av不卡久久| 亚洲精品成人av观看孕妇| 国产毛片在线视频| 狂野欧美白嫩少妇大欣赏| tube8黄色片| 国产免费一级a男人的天堂| 国产男人的电影天堂91| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看| 大码成人一级视频| 国内精品宾馆在线| 在线看a的网站| 五月玫瑰六月丁香| 男女国产视频网站| 亚洲欧美中文字幕日韩二区| 精品99又大又爽又粗少妇毛片| 熟女av电影| 日韩欧美 国产精品| 亚洲av男天堂| 欧美激情在线99| 嘟嘟电影网在线观看| a级一级毛片免费在线观看| 成人免费观看视频高清| 自拍偷自拍亚洲精品老妇| 国产精品一及| 免费观看无遮挡的男女| 少妇熟女欧美另类| 久久精品国产亚洲av天美| 国产久久久一区二区三区| 久久人人爽人人爽人人片va| 久久久精品欧美日韩精品| 国产老妇伦熟女老妇高清| 联通29元200g的流量卡| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 一级毛片 在线播放| 欧美成人一区二区免费高清观看| 亚洲精品456在线播放app| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 亚洲av.av天堂| 在线观看国产h片| 黄色视频在线播放观看不卡| 一级爰片在线观看| 日韩欧美 国产精品| 国产av不卡久久| 高清欧美精品videossex| 欧美极品一区二区三区四区| 中文资源天堂在线| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 又爽又黄a免费视频| 熟女av电影| 亚洲精品日韩在线中文字幕| 欧美bdsm另类| 嫩草影院新地址| 干丝袜人妻中文字幕| 尾随美女入室| 只有这里有精品99| 97人妻精品一区二区三区麻豆| 国产精品秋霞免费鲁丝片| 欧美一区二区亚洲| 熟女人妻精品中文字幕| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 日日啪夜夜撸| 日韩强制内射视频| 国产精品一区www在线观看| 国产日韩欧美在线精品| 在线天堂最新版资源| 国产精品秋霞免费鲁丝片| 亚洲精品乱久久久久久| 久久99热这里只频精品6学生| 干丝袜人妻中文字幕| 伊人久久精品亚洲午夜| 国产女主播在线喷水免费视频网站| 亚洲av日韩在线播放| 国产精品一及| 欧美成人a在线观看| 精品亚洲乱码少妇综合久久| 老司机影院毛片| 亚洲成人中文字幕在线播放| 97在线视频观看| 一本久久精品| 国产精品伦人一区二区| 赤兔流量卡办理| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 午夜福利视频精品| 成人二区视频| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 高清av免费在线| 99久久精品国产国产毛片| 成年av动漫网址| 看免费成人av毛片| 哪个播放器可以免费观看大片| 最近中文字幕高清免费大全6| 丝袜脚勾引网站| 99热这里只有是精品50| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久亚洲| 一级二级三级毛片免费看| 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 亚洲,一卡二卡三卡| 国产91av在线免费观看| 免费看av在线观看网站| 热99国产精品久久久久久7| 国产高清三级在线| 免费观看av网站的网址| www.色视频.com| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 国产大屁股一区二区在线视频| 五月开心婷婷网| av播播在线观看一区| 亚洲av一区综合| 视频中文字幕在线观看| 五月天丁香电影| 欧美一级a爱片免费观看看| 人体艺术视频欧美日本| 中国三级夫妇交换| 久久久色成人| 国产成人精品一,二区| 插逼视频在线观看| 免费电影在线观看免费观看| 亚洲国产最新在线播放| 高清毛片免费看| 黄色日韩在线| 久久99热这里只有精品18| 国产视频内射| 日韩人妻高清精品专区| 老司机影院成人| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 少妇的逼水好多| 久久久久久伊人网av| 女人被狂操c到高潮| 国产高潮美女av| 国产成人a∨麻豆精品| 欧美老熟妇乱子伦牲交| 一级毛片电影观看| 美女被艹到高潮喷水动态| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 国产免费福利视频在线观看| 天堂网av新在线| 色网站视频免费| 久久久成人免费电影| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 国产黄片美女视频| 国产精品av视频在线免费观看| 嫩草影院入口| 九九爱精品视频在线观看| 九草在线视频观看| 免费av毛片视频| 男人和女人高潮做爰伦理| 国产高清三级在线| 男的添女的下面高潮视频| 一级毛片电影观看| 又爽又黄无遮挡网站| 国产黄片美女视频| 国产欧美另类精品又又久久亚洲欧美| 简卡轻食公司| 国产伦在线观看视频一区| 国产一区二区在线观看日韩| 天堂俺去俺来也www色官网| 一级毛片黄色毛片免费观看视频| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 男女国产视频网站| 成人午夜精彩视频在线观看| 国产亚洲91精品色在线| 真实男女啪啪啪动态图| 七月丁香在线播放| 欧美高清性xxxxhd video| 欧美日韩在线观看h| 少妇人妻精品综合一区二区| 日韩av在线免费看完整版不卡| 大香蕉97超碰在线| 精品熟女少妇av免费看| 一区二区三区乱码不卡18| 成人高潮视频无遮挡免费网站| 国产高清国产精品国产三级 | 亚洲国产精品999| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 大码成人一级视频| 黄色欧美视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品中文字幕在线视频 | 人妻 亚洲 视频| 黑人高潮一二区| 又爽又黄a免费视频| 在线观看一区二区三区| 性色av一级| 2022亚洲国产成人精品| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 好男人在线观看高清免费视频| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| 网址你懂的国产日韩在线| 欧美日韩视频高清一区二区三区二| 久久这里有精品视频免费| 各种免费的搞黄视频| 新久久久久国产一级毛片| 亚洲美女视频黄频| 日日啪夜夜爽| 一级毛片 在线播放| 久久精品国产a三级三级三级| 欧美bdsm另类| 免费黄网站久久成人精品| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 插逼视频在线观看| 97热精品久久久久久| 黄色一级大片看看| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 国产精品爽爽va在线观看网站| 国产高清三级在线| 在线观看三级黄色| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 日韩视频在线欧美| 久久久国产一区二区| 欧美97在线视频| xxx大片免费视频| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 99热这里只有是精品50| 久久久国产一区二区| 国产免费又黄又爽又色| 亚洲欧洲日产国产| 97超碰精品成人国产| 国产视频首页在线观看| 麻豆成人av视频| 免费大片18禁| 久久鲁丝午夜福利片| 国产黄片视频在线免费观看| 成人免费观看视频高清| 最后的刺客免费高清国语| 在线a可以看的网站| 欧美成人一区二区免费高清观看| 免费观看av网站的网址| 亚洲国产色片| 天天躁夜夜躁狠狠久久av| 国产成人aa在线观看| 91午夜精品亚洲一区二区三区| 毛片女人毛片| 国产女主播在线喷水免费视频网站| 亚洲国产色片| 2022亚洲国产成人精品| 在线免费观看不下载黄p国产| 国产高潮美女av| 黄色视频在线播放观看不卡| 日产精品乱码卡一卡2卡三| 三级国产精品片| av播播在线观看一区| 国产精品久久久久久精品古装| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 久久99热这里只有精品18| av在线app专区| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 免费看a级黄色片| 99热全是精品| 精华霜和精华液先用哪个| 亚洲精品国产av蜜桃| 少妇人妻 视频| 高清毛片免费看| 国产成人91sexporn| av在线app专区| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 久久ye,这里只有精品| 国产毛片在线视频| 少妇猛男粗大的猛烈进出视频 | 国产精品嫩草影院av在线观看| 国产高潮美女av| 久久久久国产精品人妻一区二区| 插逼视频在线观看| 国内精品宾馆在线| 男女边摸边吃奶| 韩国高清视频一区二区三区| 99热国产这里只有精品6| av线在线观看网站| 777米奇影视久久| 欧美97在线视频| 久久久久久国产a免费观看| 国产成人午夜福利电影在线观看| 最近中文字幕高清免费大全6| 国产精品.久久久| 欧美日韩国产mv在线观看视频 | 在线观看三级黄色| 午夜免费男女啪啪视频观看| 最近中文字幕高清免费大全6| 成人免费观看视频高清| 毛片女人毛片| 午夜日本视频在线| 国产精品蜜桃在线观看| 色吧在线观看| 国产伦精品一区二区三区四那| 嫩草影院精品99| 国产成人一区二区在线| 嫩草影院入口| 在线看a的网站| 少妇 在线观看| 2021天堂中文幕一二区在线观| 亚洲精品456在线播放app| 搡女人真爽免费视频火全软件| 老师上课跳d突然被开到最大视频| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 国产综合精华液| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 亚洲av中文av极速乱| 国产一级毛片在线| 亚洲av.av天堂| 日韩电影二区| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 婷婷色综合www| 在线观看av片永久免费下载| 又爽又黄无遮挡网站| 亚洲国产av新网站| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 久久精品国产亚洲av涩爱| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆| 久久久久网色| 男人舔奶头视频| 国产精品蜜桃在线观看| 亚洲av免费在线观看| 久热这里只有精品99| 精品少妇久久久久久888优播| 国产成人精品福利久久| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频 | av.在线天堂| 精品少妇久久久久久888优播| 日韩成人伦理影院| 美女xxoo啪啪120秒动态图| 亚洲国产精品999| 男女国产视频网站| 人人妻人人看人人澡| 精品一区在线观看国产| 欧美潮喷喷水| 亚洲国产欧美人成| 成人午夜精彩视频在线观看| 91久久精品国产一区二区三区| 免费看不卡的av| 日韩强制内射视频| 18+在线观看网站| 成年版毛片免费区| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 男女那种视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 成人二区视频| 中文欧美无线码| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 性插视频无遮挡在线免费观看| 国产伦理片在线播放av一区| 久久精品综合一区二区三区| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久 | 欧美日韩精品成人综合77777| 欧美3d第一页| 亚洲一区二区三区欧美精品 | 一级毛片黄色毛片免费观看视频| 丝袜美腿在线中文| 欧美激情国产日韩精品一区| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 国产男女内射视频| 国产综合懂色| 亚洲综合色惰| 高清毛片免费看| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 男男h啪啪无遮挡| 午夜视频国产福利| 精品午夜福利在线看| 免费黄频网站在线观看国产| 日韩大片免费观看网站| 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品 | 国产高潮美女av| 下体分泌物呈黄色| av在线观看视频网站免费| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久av| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 欧美老熟妇乱子伦牲交| 在线观看三级黄色| 亚洲欧美日韩卡通动漫| 免费大片黄手机在线观看| 熟女av电影| 69人妻影院| 国产精品福利在线免费观看| 黄色视频在线播放观看不卡| 国产永久视频网站| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 街头女战士在线观看网站| 欧美成人精品欧美一级黄| 国产精品久久久久久精品电影| av黄色大香蕉| 啦啦啦在线观看免费高清www| av专区在线播放| 日韩av免费高清视频| 日韩欧美一区视频在线观看 | 乱码一卡2卡4卡精品| 啦啦啦在线观看免费高清www| 国产伦精品一区二区三区四那| 亚洲精品国产色婷婷电影| 久久久久久久久久成人| 亚洲国产精品成人综合色| 人体艺术视频欧美日本| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 成人黄色视频免费在线看| 丝瓜视频免费看黄片| 中国三级夫妇交换| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 亚洲精品国产av成人精品| 日韩欧美 国产精品| 天堂俺去俺来也www色官网| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 色吧在线观看| 赤兔流量卡办理| 一本久久精品| 日本色播在线视频| 日韩欧美一区视频在线观看 | 精品少妇久久久久久888优播| 永久免费av网站大全| 欧美成人午夜免费资源| 国产精品精品国产色婷婷| 免费观看在线日韩| 成人亚洲精品av一区二区| 国产亚洲最大av| 亚洲国产精品国产精品| 青青草视频在线视频观看| 亚洲精品aⅴ在线观看| 久久精品国产a三级三级三级| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 狠狠精品人妻久久久久久综合| 国产精品爽爽va在线观看网站| 免费观看av网站的网址| 在线亚洲精品国产二区图片欧美 | 国产成人精品福利久久| 在线免费观看不下载黄p国产| 日韩大片免费观看网站| 国产欧美亚洲国产| 一级黄片播放器| 亚洲一级一片aⅴ在线观看| 亚洲在久久综合| 狂野欧美激情性bbbbbb| 亚州av有码| 看免费成人av毛片| 国产中年淑女户外野战色| 丰满人妻一区二区三区视频av| 精品少妇黑人巨大在线播放| 国产美女午夜福利| 亚洲av.av天堂| 黄色配什么色好看| 久久久久性生活片|