• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitogenome and phylogenetic analyses support rapid diversification among species groups of small-eared shrews genus Cryptotis (Mammalia: Eulipotyphla:Soricidae)

    2021-02-10 13:07:16KaiHeXingChenYinBinQiuZhuLiuWenZhiWangNealWoodmanJesMaldonadoXinghuaPan
    Zoological Research 2021年6期

    Kai He, Xing Chen, Yin-Bin Qiu, Zhu Liu, Wen-Zhi Wang, Neal Woodman, Jesús E.Maldonado, Xinghua Pan,*

    1 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong 510515, China

    2 Wildlife Forensic Science Service, Kunming, Yunnan 650223, China

    3 School of Zoology, Faculty of Life sciences, Tel Aviv University, Tel Aviv 6997801 Israel

    4 College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157012, China

    5 Guizhou Academy of Testing and Analysis, Guiyang, Guizhou 550002, China

    6 U.S.Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708, USA

    7 Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA

    8 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA

    ABSTRACT

    The small-eared shrew genus Cryptotis is the third largest in the family Soricidae and occurs in North,Central, and northern South America.In Mexico and Central and South America, most species inhabit geographically isolated moist, montane habitats at middle and high elevations in a typical sky-island pattern.The 49 recognized species have been partitioned into as many as six species groups based on morphological and molecular phylogenetic studies.The relationships among these species groups are poorly resolved, and their evolutionary histories, including migration patterns and locomotor adaptations, remain unclear.Herein, we provide a new phylogeny incorporating complete mitochondrial genomes (mitogenomes) and supermatrix approach.We compared different evolutionary scenarios using approximately unbiased (AU), Kishino-Hasegawa(KH), and Shimodaira-Hasegawa (SH) statistical tests.The phylogenetic hypothesis based on mitogenomes revealed novel relationships supporting a basal position for the Cryptotis parvusgroup in the genus, and a close relationship between C.gracilis and one clade of the C.thomasi-group.The former relationship is consistent with the least derived humerus morphology and northern distribution of the species.The latter relationship implies multiple migrations between Central and South America.The lack of fine resolution for the species group relationships may be due partly to the lack of taxon sampling.In contrast, multi-approach analyses suggest that the unresolved relationships may be a result of rapid diversification during the early stages of Cryptotis evolution.

    Keywords: Cryptotis; Capture hybridization;Hard polytomy; Mitochondrial genome; Rapid diversification; Soricidae

    INTRODUCTION

    A robust phylogeny is a fundamental tool for testing evolutionary hypotheses, but one that remains unavailable for most animal taxa as few species have been sequenced and even fewer have more than a few short gene fragments available.Although some universally used gene fragments(e.g., cytbandCOIfor mammals) provide genetic barcodelike information and are helpful for molecular identification of new and existing species, they often provide insufficient signals for phylogenetic reconstruction because of low mutation or high saturation rates.

    The small-eared shrews (Mammalia: Eulipotyphla:Soricidae:Cryptotis) consist of 49 recognized species that are widely distributed across North America through Central America and the northern montane areas of South America(Woodman, 2019).In the last 20 years, systematic studies increased the number of species by 50%, including the discovery of at least 15 species in isolated mountain areas where they are vulnerable to habitat alteration and climate change.Cryptotisis now the third largest genus of the shrew family Soricidae afterCrocidura(ca.198 species) andSorex(ca.86 species) (Burgin & He, 2018).The recognized species ofCryptotishave been variously partitioned into three(Choate, 1970), four (Woodman & Timm, 1998), five (He et al.,2015), or six (Woodman, 2019) species groups based on morphological and poorly-resolved molecular phylogenetic studies (Supplementary Table S1).Species in two of these groups, i.e.,Cryptotisgoodwini-group andCryptotisgoldmanigroup, have evolved morphologies consistent with different levels of adaptation to a semi-fossorial lifestyle (Guevara,2017; He et al., 2015; Woodman & Gaffney, 2014).At present,however, the relationships between and within these groups are incompletely resolved, and it remains unclear to what extent they evolved independently and convergently (He et al.,2015).

    In the two most recent comprehensive phylogenetic studies ofCryptotis(Baird et al., 2018; He et al., 2015), support values among species groups were all below the level of significance(Bayesian posterior probabilities (PP)<0.9 and Maximum likelihood bootstrap support (BS)<50).In part, this likely reflects the fact that most species are represented by only one(in most cases mitochondrial cytb) or a few genes, making it difficult to resolve relationships except among closely related species.Those genetic relationships that have been revealed,however, have provided new and unexpected phylogenetic relationships that conflict with the traditional species-grouping hypotheses (He et al., 2015; Woodman, 2019).These results suggest that the genus has a highly complex evolutionary history.

    Most species ofCryptotisinhabit humid montane habitats at mid to high elevations.Several species in Mexico and Central and South America occupy relatively small areas isolated by intervening lowlands, thus forming sky islands (He & Jiang,2014; Heald, 1951; McCormack et al., 2009).The evolutionary history in this genus is likely affected by complex topography and periodic climatic fluctuations, resulting in migration and isolation.In the current study, we investigated whether complete mitochondrial genomes (mitogenomes) can be used to inform and stabilize the phylogeny ofCryptotisand our understanding of its evolutionary history.We also used a supermatrix approach to construct a new and more complete phylogeny of the genus.

    MATERIALS AND METHODS

    Sampling and mitogenome sequencing

    We sequenced 13 samples representing 11 recognized species ofCryptotis.We included two samples each ofCryptotismerriamiandCryptotisparvusas these species were previously discovered to contain two genetically distinct,but morphologically cryptic, lineages (He et al., 2015).Tissue samples were obtained from the Center for Conservation Genomics and the National Museum of Natural History,Smithsonian Institution, Washington, DC (loan no.: #2067019;Supplementary Table S2).We used a capture hybridization approach to obtain the complete mitogenomes (Chen et al.,2018).In brief, we extracted total DNA using a DNeasy Blood& Tissue Kit (Qiagen, USA) and sheared the DNA into small fragments to generate genomic DNA libraries.We generated biotin-linked homemade mitogenome probes using long-range polymerase chain reaction (PCR) amplicons.The DNA libraries and probes were incubated to capture mitochondrial libraries.The enriched libraries were amplified and sequenced using the Illumina high-throughput sequencing platform.We used FastQC v0.11.9 (Andrews, 2010) and Trimmomatic v0.32 (Bolger et al., 2014) for quality control and data trimming, respectively, and mapped the reads to mitogenomes ofBlarinabrevicauda,Blarinahylophaga,Blarinella quadraticauda,Blarinellawardi, andPantherinagriseldausing Geneious R11 v11.05 (Biomatters Ltd., New Zealand) (Ripma et al., 2014).Blarinais the sister genus toCryptotis, andBlarinella+Pantherinais sister toBlarina+Cryptotis(He et al.,2018).We mapped the reads to each of the reference mitogenomes iteratively up to 25 times before generating the consensus sequences (Kearse et al., 2012).To confirm and improve our assemblies (i.e., reconciliation; Zimin et al.,2008), we repeated the mapping three times, and aligned the 15 consensus mitogenomes.Any missing data and incongruent positions were carefully checked by eye before generating the final consensus assemblies.Finally, we used the annotation transferring function in Geneious R11 to generate annotations for each mitogenome.The newly obtained mitogenomes are deposited in GenBank (accession Nos.MZ457409-MZ457421).

    Mitogenome phylogeny and hypothesis testing

    We used the 12S, 16S rRNA, and coding genes (exceptND6,which is on the light chain of the mitogenome) to estimate maximum-likelihood (ML) and Bayesian gene trees (Duchêne et al., 2011).We included one mitogenome per species representingB.brevicauda,B.hylophaga,Bl.quadraticauda,Bl.wardi, andP.griseldaas the outgroups forCryptotis, and included sixSorexspecies and six Nectogalini shrews for comparison.We usedCrocidurapalawanensisandSuncus murinus, representing two ancient lineages in Crocidurinae, to root the tree (Supplementary Table S2; Hutterer et al., 2018).We grouped the data by gene and codon positions and used PartitionFinder v2.1.1 (Lanfear et al., 2017) to determine the best partitioning scheme under the GTR+G model based on a greedy algorithm, resulting in a nine-partition scheme(Supplementary Table S3).RAxML v8.2.12 (Stamatakis,2014) was used to estimate the ML tree and CIPRES Science Gateway was used for implementation (Miller et al., 2015).We conducted rapid bootstrap analysis and searched for the bestscoring ML tree without the use of the BFGS searching algorithm (parameter: -f a --no-bfgs).BEAST v2.6 was used to estimate the Bayesian gene tree (Bouckaert et al., 2014).Mitogenome alignment was partitioned as mentioned above.We used a relaxed lognormal clock model, a Birth-Death model for the tree prior, and ran Markov chain Monte Carlo(MCMC) simulations for 50 million generations, with sampling every 5 000 generations.Analyses were conducted twice and Tracer v1.7 was used to examine the posterior distribution of each parameter in the log file to ensure that analyses reached a stationary state.The first 15% of MCMC samples were removed before the generation of the consensus tree.The RAxML and BEAST trees were identical except for two poorly supported nodes (see Results section).We also tested several alternative partitioning schemes and compared the results using the Shimodaira-Hasegawa (SH) test in RAxML(parameter: -f H) (Shimodaira & Hasegawa, 2001).

    To examine potentially conflicting phylogenetic signals between genes, we calculated the partitioning Bremer support for each mitochondrial gene on each internal node of the best RAxML gene tree (Baker & Desalle, 1997) using PAUP v4.3.99.169.0 (Swofford, 2003) and a Tcl script (G?ker et al.,2009).To test the rapid diversification hypothesis, we collapsed the two poorly supported nodes (i.e.,C.mexicanusandC.goldmani; see Results section) on our best ML tree using TreeView v1.66 and generated all 15 possible dichotomic trees using the function “resolve_polytomy” in the ETE Toolkit v3.0 (Huerta-Cepas et al., 2016).We then calculated the site-wise log-likelihood supports using RAxML(-f G) and performed approximately unbiased (AU)(Shimodaira, 2002), Kishino-Hasegawa (KH) (Kishino &Hasegawa, 1989), and SH tests using CONSEL v0.20(Shimodaira & Hasegawa, 2001).

    Sequence data matrix and hypothesis testing

    We downloaded two mitochondrial (cytb, 16S rRNA) and two nuclear (ApoBandBRCA1) genes of theCryptotisspecies and all outgroup species included in the mitogenome analyses from GenBank.We used these four genes and the mitogenomes to generate a gene matrix.The sequence manipulation is described in detail in the Supplementary Text.We obtained a sequence matrix of 136 samples and 14 955 bp in the alignment.The mitochondrial genes were partitioned as mentioned above and each nuclear gene was considered as one partition.To test alternative scenarios regarding the monophyly of known species groups, we constrained their monophyly, estimated the ML tree using RAxML, and performed AU, KH, and SH analyses as mentioned above.

    RESULTS

    Mitogenome phylogeny

    The sequence alignments were uploaded to the GitHub repository (github.com/yinbinqiu/Cryptotis_phy).The mitogenome ML and Bayesian trees were congruent and generally well supported (BS>90, PP>0.95; Figure 1A).Relationships among allSorexspecies were strongly supported, as were the relationships betweenBlarinelliniandBlarininiand betweenBlarinaandCryptotis(i.e., BS=100,PP=1.0).WithinCryptotis, there was strong support for the monophyly of theC.nigrescens-group (C.nigrescens,C.mayensis, andC.merriami),C.parvus-group (C.parvusandC.tropicalis), and for a clade consisting of three species of theC.goodwini-group (C.lacertosus,C.mam, andC.oreoryctes),which has been recovered previously (Baird et al., 2018; He et al., 2015).Our analysis recovered two novel relationships supporting: (i) theC.parvus-group as one of the first branches inCryptotis(BS=100, PP=1.0), and (ii) a close relationship between theC.gracilisandC.nigrescens-groups (BS=93,PP=1.0).These two relationships have not been observed in previous studies.He et al.(2015) and Baird et al.(2018)showed theC.mexicanusgroup (includingC.magnus+C.phillipsii) as the first but weakly supported branch.Cryptotis graciliswas previously embedded in theC.goldmani-group but only supported by Bayesian analysis, which can be overestimated (Baird et al., 2018; He et al., 2015).We also observed several unresolved relationships: (i) the sister relationship of Soricini and Nectogalini+Anourosoricini in our outgroups was moderately supported, although this was not unexpected (see He et al., 2021); (ii) the relationships among Nectogalini water shrews were not resolved as observed by He et al.(2010); and (iii) withinCryptotis, the phylogenetic positions of two species,C.mexicanusandC.goldmani, were not resolved (BS<56, PP<0.94).

    Because a suboptimal partitioning scheme may produce highly supported but incorrect nodes in a tree (Kainer &Lanfear, 2015), we first tested whether the phylogenetic relationships, especially the novel relationships, were due to a suboptimal partitioning scheme.We estimated the ML trees using two alternative partitioning schemes (Supplementary Table S3).All analyses resulted in similar topologies and did not affect the phylogenetic positions of either theC.parvusgroup orC.gracilis(data not shown), suggesting that the novel relationships were not attributable to the partitioning scheme but may be the result of conflicting or poor phylogenetic signaling.

    Figure 1 RAxML phylogenetic tree of Soricidae shrews estimated using mitogenomes (A) and concatenated alignment of mitochondrial and nuclear genes (B)

    We next examined whether the unresolved relationships ofC.mexicanusandC.goldmanimay be due to conflicting phylogenetic signals or a lack of any signal based on partitioned Bremer values of all genes for each node(Supplementary Figure S1).None of the genes supported or rejected the position ofC.goldmani(i.e., partitioned Bremer support (PBS)=0; Supplementary Table S4).The phylogenetic position ofC.mexicanuswas supported by seven genes,including the 12S rRNA and six coding genes (1≤PBS≤9), but was rejected by the other seven genes (?5≤PBS≤?1).We therefore split the mitogenome alignment into two subdatasets based on PBS support for the position ofC.mexicanus(i.e., PBS+ and PBS? alignments) and estimated the best ML trees individually.While the genes characterized by PBS+ recovered the same topology amongCryptotisspecies (Supplementary Figure S2A), the genes characterized by PBS? supported different phylogenetic relationships amongC.gracilis,C.mexicanus, andC.goldmaniwith very low BS values (Supplementary Figure S2B).The PBS+ genes rejected this alternative tree based on SH analysis at a significance level of 0.05, whereas the PBS? genes could not significantly reject the best ML gene tree.Collectively,although we observed conflicting support over the phylogenetic position ofC.mexicanus(but notC.goldmani)among the different genes, the genes causing the conflict did not strongly support an alternative phylogeny nor did they reject the best phylogenetic hypothesis.Thus, the poorly resolved relationships are unlikely due to strong conflicting signals.

    We then asked whether the undetermined phylogenetic relationships were likely due to rapid diversification, and thus“hard polytomy”.We evaluated all alternative phylogenetic positions ofC.mexicanus andC.goldmaniusing the AU, KH,and SH tests.Among the 14 alternative trees, only two supportedC.mexicanusandC.goldmanion the basal branches after theC.parvus-group, and they were significantly worse than the best ML tree at the 0.05 level in all three tests (Supplementary Figure S3; Supplementary Table S5).Because the mitogenome data could not reject the alternative hypothesis, these results suggest that a rapid diversification scenario is plausible.

    Multi-locus comprehensive phylogeny

    Based on the mitogenome-nuclear gene concatenation tree(comprehensive tree hereafter), eight clades were recovered inCryptotis(Supplementary Table S1), seven of which were well supported (Figure 1B; BS≥90); clade III, supporting the monophyly of theC.goldmani-group, was only weakly supported (BS=55).The comprehensive tree was congruent with the mitogenome gene tree in supporting both the basal position of theC.parvus-group (BS=78) and a close relationship betweenC.gracilisand theC.nigrescens-group(BS=90).

    In addition to the non-monophyleticC.goodwini-group, two other hypothesized species groups, i.e.,C.mexicanus- andC.thomasi-groups, were each determined to be paraphyletic(Supplementary Table S1).We tested whether the monophyly of these two species groups could be rejected using the AU,KH, and SH tests.Unsurprisingly, the monophyly of theC.mexicanus-group could not be rejected as the BS values supporting the paraphyletic relationships were low(Supplementary Table S6).Congruent with the mitogenome results (Supplementary Figure S3), we also could not reject the sister relationship between theC.goldmani-group andC.goodwini-group, which were previously considered part of the same species group (He et al., 2015; Woodman & Timm,1998).We also could not reject the grouping ofC.graciliswith species from theC.thomasi-group (clade VIII)(Supplementary Table S6).Thus, based on the above analyses, the current six-species-group scenario is not violated (except forC.gracilis(see below)).

    Fossorial morphology is becoming a common theme in the evolutionary trajectory ofCryptotis(He et al., 2015; Woodman& Wilken, 2019).Species in the widely separated clades III and VI (C.goldmani- andC.goodwini-groups, respectively)are characterized by enlarged forefeet and claws and a modified humerus.We tested whether these animals could instead be part of a monophyletic clade and thus support the hypothesis of a single evolutionary transition to fossoriality.Our analysis could not reject this hypothesis statistically(Supplementary Table S6); thus, whether there was a single or multiple trajectories toward greater fossoriality remains unresolved.

    Species in theC.thomasi-group are mainly distributed in montane areas of northern South America but also in Costa Rica and Panama (Woodman & Timm, 2017).We identified a paraphyletic relationship for theC.thomasi-group, as reported previously (Zeballos et al., 2018), with monophyly statistically rejected (Supplementary Table S6).However, when constraining the monophyly ofC.thomasi-group+C.gracilis(i.e., clades V and VIII), this hypothesis could not be rejected,even though the unconstrained comprehensive tree moderately supported a sister relationship between clades VII and VIII (Figure 1B; BS=76).Cryptotisgracilisis mainly distributed in the mountains of Panama and Costa Rica in southern Central America.Thus, our results suggest that either theC.thomasi-group species migrated to South America multiple times, or the ancestor ofC.gracilismigrated in the reverse direction from South America to Central America.The latter is a plausible scenario given the distributions of two members of theC.thomasigroup, i.e.,C.endersiin Panama andC.monteverdensisin Costa Rica,(Pine et al., 2002; Woodman & Timm, 2017).

    DISCUSSION

    Our results revealed novel relationships supporting a basal position for theC.parvus-group.The humerus ofC.parvusis the least derived among livingCryptotis(Woodman & Gaffney,2014).Although this does not necessarily signify thatC.parvusis the most primitive species of the genus, it is a plausible hypothesis.

    The non-monophyletic relationships of theC.thomasi-group suggest their ancestors may have migrated to South America multiple times or that reverse migration to Central America also occurred.We have not yet includedC.colombianaorC.brachyonyx, the two Colombian members of theC.nigrescens-group, in our taxon sampling.Combined with more robust results from analyses of theC.thomasigroup, theC.nigrescensgroup provides important insights regarding patterns of mammalian migration between Central and South America.Exchanges between these two regions are likely to have occurred several times and could be more complicated than currently understood.Although divergence dating estimates could help clarify the timing of South American colonization (de Abreu-Jr et al., 2020), there are fewCryptotisfossils prior to the late Pleistocene.These are exclusively from the US, and their relationship with modern species is unclear(www.paleobiodb.org, last accessed 29 July 2021).

    Despite the limited number of species sampled (11 of 49 recognized species), the use of mitogenomes undoubtably improved overall support of the phylogenetic relationships.Improving taxon sampling, especially for three of the eight major clades that were missed in the comprehensive gene tree, may better resolve these relationships.Although phylogenomic data are generally recommended, such data are more costly to obtain and may be hampered by the presence of non-orthologous sequences (Andermann et al.,2020).However, as the costs of next-generation sequencing(NGS) continue to decrease, using whole-genome shotgun sequencing to obtain mitochondrial sequences has become more economical (Gan et al., 2014).NGS also makes it possible to obtain complete mitogenomes from museum specimens up to 120 years old (de Abreu-Jr et al., 2020).This is highly recommended forCryptotisas many species are only represented by old museum specimens (Woodman, 2019).

    Several relationships, such as the positions ofC.mexicanusandC.goldmani(Figure 1A), could not be finely resolved,even with the availability of mitogenome data.This is due to insufficient rather than conflicting phylogenetic signals embedded within the data, as supported by partitioned Bremer analysis (Supplementary Figure S2) and SH tests(Supplementary Figure S3).Similarly, the relationships among species groups in the comprehensive tree were not well supported, nor could they be rejected statistically(Supplementary Table S6).The “hard polytomy”-like structure may be due to rapid diversification events.ManyCryptotisspecies inhabit high elevational habitats (Supplementary Figure S4) restricted to small montane areas and isolated by lowlands (Woodman, 2019; Zeballos et al., 2018).These sky islands can facilitate allopatric isolation and speciation (He &Jiang, 2014; McCormack et al., 2009).In addition, species can migrate and colonize new mountains during cool, humid periods (e.g., glacial periods), which could potentially result in rapid diversification, such as observed in the recent radiation ofCrocidurashrews (Giarla & Esselstyn, 2015).The specioseCryptotisgroup is a good model for understanding how geographic and climatic changes have shaped species diversity in the sky island mountains of Central and northern South America.In addition, their high elevational habitat and limited distribution means these animals are more vulnerable to the effects of anthropogenically induced global warming and habitat destruction.As such, more attention should be paid to the ecology and conservation of these enigmatic small montane mammals.

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    K.H.designed the study, analyzed the data, and wrote the manuscript; X.C.conducted the laboratory experiments;Y.B.Q.drew the figures, submitted the sequences to GenBank, and submitted the data to GitHub; Z.L.and J.E.M.collected samples; Z.L., W.Z.W., N.W., J.E.M., and X.P.revised the manuscript; X.P.supervised the work.All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We thank the curators and collection staff from the Smithsonian Institution, National Museum of Natural History,for access to tissue samples under their care.Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US government.

    成人国产一区最新在线观看| 成年女人毛片免费观看观看9| 十八禁网站免费在线| 身体一侧抽搐| netflix在线观看网站| 夜夜夜夜夜久久久久| 日韩大码丰满熟妇| 舔av片在线| 国产不卡一卡二| 两个人的视频大全免费| 看黄色毛片网站| 熟女少妇亚洲综合色aaa.| 男人的好看免费观看在线视频 | 黄色片一级片一级黄色片| 国产成人精品久久二区二区91| 日韩三级视频一区二区三区| 久久国产乱子伦精品免费另类| 久久香蕉精品热| 蜜桃久久精品国产亚洲av| 国产精品精品国产色婷婷| av中文乱码字幕在线| 亚洲午夜理论影院| 黄色a级毛片大全视频| 午夜精品在线福利| 国产伦人伦偷精品视频| 男女做爰动态图高潮gif福利片| 国产爱豆传媒在线观看 | 亚洲男人天堂网一区| 大型黄色视频在线免费观看| 手机成人av网站| xxx96com| 欧美成人免费av一区二区三区| 久久九九热精品免费| 最近最新免费中文字幕在线| 亚洲一码二码三码区别大吗| 免费高清视频大片| 久久精品aⅴ一区二区三区四区| 999久久久国产精品视频| 777久久人妻少妇嫩草av网站| 无限看片的www在线观看| netflix在线观看网站| 我要搜黄色片| 国产高清激情床上av| 亚洲真实伦在线观看| 久久久久久人人人人人| 国产99白浆流出| 成人国产综合亚洲| 91九色精品人成在线观看| 亚洲av片天天在线观看| 国产精品野战在线观看| 国产精品亚洲av一区麻豆| 国产亚洲欧美98| 欧美色欧美亚洲另类二区| 亚洲成a人片在线一区二区| 后天国语完整版免费观看| 两性夫妻黄色片| 一级片免费观看大全| 久久精品国产亚洲av高清一级| 国产精品精品国产色婷婷| 欧美性猛交╳xxx乱大交人| 99久久精品热视频| 日韩成人在线观看一区二区三区| 久久精品人妻少妇| 日本黄大片高清| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 伦理电影免费视频| 首页视频小说图片口味搜索| 可以在线观看的亚洲视频| 久久亚洲真实| 日韩av在线大香蕉| 中国美女看黄片| 后天国语完整版免费观看| 亚洲五月婷婷丁香| 亚洲精品中文字幕一二三四区| 丝袜美腿诱惑在线| 麻豆国产97在线/欧美 | 欧美日韩乱码在线| 亚洲狠狠婷婷综合久久图片| 99在线人妻在线中文字幕| 精品少妇一区二区三区视频日本电影| 国产精品久久电影中文字幕| 中文字幕熟女人妻在线| 亚洲午夜精品一区,二区,三区| 国产精品 欧美亚洲| 国产成人精品无人区| 2021天堂中文幕一二区在线观| 精品一区二区三区av网在线观看| 啪啪无遮挡十八禁网站| 国产一区二区三区视频了| 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 亚洲欧美精品综合一区二区三区| 亚洲av成人精品一区久久| 成人三级做爰电影| 特大巨黑吊av在线直播| 99久久精品国产亚洲精品| 国产成人一区二区三区免费视频网站| 日韩有码中文字幕| 在线观看免费午夜福利视频| 国产成人影院久久av| 国产成人精品无人区| 久久久精品欧美日韩精品| 亚洲av日韩精品久久久久久密| 18禁国产床啪视频网站| 亚洲国产精品sss在线观看| 久久人人精品亚洲av| 亚洲全国av大片| 婷婷亚洲欧美| 一二三四在线观看免费中文在| 成年版毛片免费区| 搡老熟女国产l中国老女人| 人人妻人人看人人澡| 50天的宝宝边吃奶边哭怎么回事| e午夜精品久久久久久久| 一进一出抽搐gif免费好疼| 亚洲一区二区三区色噜噜| 一区二区三区国产精品乱码| 毛片女人毛片| 亚洲国产欧美一区二区综合| 色精品久久人妻99蜜桃| 久久久久久大精品| 90打野战视频偷拍视频| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 脱女人内裤的视频| 麻豆一二三区av精品| 99久久99久久久精品蜜桃| 亚洲最大成人中文| 国产伦在线观看视频一区| 看免费av毛片| 中文在线观看免费www的网站 | 久久久久久人人人人人| 日本成人三级电影网站| 韩国av一区二区三区四区| 亚洲av中文字字幕乱码综合| 怎么达到女性高潮| 久久伊人香网站| 老司机午夜福利在线观看视频| 麻豆国产av国片精品| 一级作爱视频免费观看| 在线观看免费日韩欧美大片| 国产精品自产拍在线观看55亚洲| 天天添夜夜摸| 欧美成人一区二区免费高清观看 | 香蕉丝袜av| 久久中文字幕一级| 亚洲国产欧美人成| 十八禁网站免费在线| 国产精品一区二区三区四区久久| www日本黄色视频网| 日韩成人在线观看一区二区三区| 亚洲精品一区av在线观看| 少妇粗大呻吟视频| 成人国产综合亚洲| 欧美激情久久久久久爽电影| 久久婷婷成人综合色麻豆| 色在线成人网| 国产野战对白在线观看| 村上凉子中文字幕在线| 免费av毛片视频| 国产91精品成人一区二区三区| 久久精品aⅴ一区二区三区四区| 男女下面进入的视频免费午夜| 国产成人系列免费观看| 国产又色又爽无遮挡免费看| 成人国产一区最新在线观看| 伊人久久大香线蕉亚洲五| 日本黄色视频三级网站网址| 三级国产精品欧美在线观看 | 国产精品亚洲美女久久久| 久久久久久久久中文| 看免费av毛片| 亚洲色图 男人天堂 中文字幕| 夜夜爽天天搞| 最近最新免费中文字幕在线| 国产av又大| 黄色片一级片一级黄色片| 久久久久久亚洲精品国产蜜桃av| 久久伊人香网站| 日本在线视频免费播放| 日日夜夜操网爽| 国产99久久九九免费精品| 好看av亚洲va欧美ⅴa在| 99国产精品一区二区三区| 欧美不卡视频在线免费观看 | 久久久久久大精品| 亚洲七黄色美女视频| 国产成人精品无人区| 母亲3免费完整高清在线观看| 中国美女看黄片| 成年人黄色毛片网站| 色综合欧美亚洲国产小说| 欧美黄色淫秽网站| 国产区一区二久久| svipshipincom国产片| 两个人看的免费小视频| 国产成人精品久久二区二区免费| 亚洲专区字幕在线| 国产精品99久久99久久久不卡| 成人特级黄色片久久久久久久| 久久欧美精品欧美久久欧美| 美女大奶头视频| 久久久久久久久久黄片| 午夜亚洲福利在线播放| 在线观看午夜福利视频| 韩国av在线不卡| 日本撒尿小便嘘嘘汇集6| 国产综合懂色| av在线亚洲专区| 国产黄片美女视频| 日韩欧美 国产精品| 欧美日韩在线观看h| 在线观看一区二区三区| 国产一区亚洲一区在线观看| 99国产精品一区二区蜜桃av| 亚洲最大成人手机在线| 日本撒尿小便嘘嘘汇集6| 最近最新中文字幕大全电影3| 尾随美女入室| 高清午夜精品一区二区三区 | 亚洲国产精品成人综合色| 日本与韩国留学比较| 成人毛片a级毛片在线播放| avwww免费| 黄色视频,在线免费观看| 一本一本综合久久| 如何舔出高潮| 国产欧美日韩精品一区二区| 搞女人的毛片| 1000部很黄的大片| 男人舔女人下体高潮全视频| 亚洲内射少妇av| 国产精华一区二区三区| 国产片特级美女逼逼视频| 少妇人妻精品综合一区二区 | kizo精华| 亚洲久久久久久中文字幕| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影小说 | 成人一区二区视频在线观看| 晚上一个人看的免费电影| 可以在线观看的亚洲视频| 国产成人aa在线观看| 能在线免费看毛片的网站| videossex国产| 日韩亚洲欧美综合| 91在线精品国自产拍蜜月| 少妇裸体淫交视频免费看高清| 久久韩国三级中文字幕| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美激情性xxxx在线观看| a级毛片a级免费在线| 国产精品日韩av在线免费观看| 丰满人妻一区二区三区视频av| av天堂在线播放| 在线a可以看的网站| 亚洲无线观看免费| 国产精品人妻久久久久久| 亚洲人成网站在线观看播放| 免费观看精品视频网站| 国产色爽女视频免费观看| av在线老鸭窝| 国产精品麻豆人妻色哟哟久久 | 亚洲在线观看片| 国产大屁股一区二区在线视频| 久久精品国产99精品国产亚洲性色| 给我免费播放毛片高清在线观看| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久com| 91在线精品国自产拍蜜月| 最新中文字幕久久久久| 亚洲欧美成人综合另类久久久 | 久久婷婷人人爽人人干人人爱| 午夜福利高清视频| 久久精品91蜜桃| 欧美不卡视频在线免费观看| 欧美日韩国产亚洲二区| 国产高清三级在线| 国产中年淑女户外野战色| 美女cb高潮喷水在线观看| 久久国内精品自在自线图片| 亚洲av一区综合| 中文字幕熟女人妻在线| 丰满人妻一区二区三区视频av| 波多野结衣高清无吗| av天堂在线播放| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av| 国产老妇女一区| 国产白丝娇喘喷水9色精品| 国产探花极品一区二区| 九草在线视频观看| 国产毛片a区久久久久| 在线观看免费视频日本深夜| 亚洲无线观看免费| 看免费成人av毛片| 12—13女人毛片做爰片一| 伦理电影大哥的女人| av在线蜜桃| 精品国产三级普通话版| 国产伦精品一区二区三区视频9| 日日撸夜夜添| 日韩制服骚丝袜av| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 国产私拍福利视频在线观看| 乱人视频在线观看| 国产av不卡久久| 长腿黑丝高跟| 淫秽高清视频在线观看| 99热精品在线国产| 欧美极品一区二区三区四区| 午夜久久久久精精品| 成人综合一区亚洲| 亚洲国产日韩欧美精品在线观看| 久久久久国产网址| 网址你懂的国产日韩在线| av在线亚洲专区| 伦理电影大哥的女人| 日本黄色视频三级网站网址| 神马国产精品三级电影在线观看| h日本视频在线播放| 午夜免费男女啪啪视频观看| 成人综合一区亚洲| 国产成人a区在线观看| 天堂网av新在线| 日韩一区二区视频免费看| 青春草视频在线免费观看| 可以在线观看毛片的网站| 精品久久久久久久久久久久久| 欧美最黄视频在线播放免费| 青春草视频在线免费观看| 可以在线观看毛片的网站| 小说图片视频综合网站| 国产成人精品久久久久久| 午夜福利高清视频| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 亚洲精品国产成人久久av| 丝袜美腿在线中文| 亚洲精品久久国产高清桃花| 在线免费十八禁| 欧美另类亚洲清纯唯美| 国产精品永久免费网站| 亚洲第一电影网av| 国产精品电影一区二区三区| 成人一区二区视频在线观看| 日韩国内少妇激情av| 全区人妻精品视频| 边亲边吃奶的免费视频| 国产高潮美女av| av免费观看日本| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩高清在线视频| 黄色配什么色好看| 三级经典国产精品| 欧美最新免费一区二区三区| 欧美+亚洲+日韩+国产| 亚洲自拍偷在线| 3wmmmm亚洲av在线观看| 国产成人91sexporn| av在线天堂中文字幕| 能在线免费看毛片的网站| 精品人妻熟女av久视频| 老司机福利观看| 成人综合一区亚洲| 黄色一级大片看看| 寂寞人妻少妇视频99o| 蜜臀久久99精品久久宅男| 亚洲av.av天堂| 国产精品国产三级国产av玫瑰| 岛国在线免费视频观看| 久久久久九九精品影院| 国产精品一二三区在线看| 国产精品伦人一区二区| 嘟嘟电影网在线观看| 久久久久久久亚洲中文字幕| 伦精品一区二区三区| 在线观看免费视频日本深夜| 99国产极品粉嫩在线观看| 国产蜜桃级精品一区二区三区| 狂野欧美激情性xxxx在线观看| 一区二区三区免费毛片| av在线播放精品| 人妻系列 视频| 观看免费一级毛片| 亚洲欧美成人精品一区二区| 日韩精品青青久久久久久| 一区福利在线观看| 人人妻人人澡人人爽人人夜夜 | av在线观看视频网站免费| 国产成人精品婷婷| 国模一区二区三区四区视频| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 1024手机看黄色片| 欧美潮喷喷水| 亚洲成人久久性| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 国产久久久一区二区三区| 亚洲经典国产精华液单| 免费人成在线观看视频色| 黄色一级大片看看| 在线免费观看的www视频| 禁无遮挡网站| 婷婷精品国产亚洲av| 在线免费观看的www视频| 春色校园在线视频观看| 伊人久久精品亚洲午夜| 亚洲自拍偷在线| 69av精品久久久久久| av专区在线播放| 国产老妇女一区| 长腿黑丝高跟| 简卡轻食公司| 又爽又黄无遮挡网站| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 深夜精品福利| 久久九九热精品免费| 久久久久久久久久久丰满| 日韩av不卡免费在线播放| 国产av不卡久久| 男人和女人高潮做爰伦理| 亚洲丝袜综合中文字幕| 日本黄色视频三级网站网址| 日日撸夜夜添| 久久久久九九精品影院| 免费av观看视频| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 卡戴珊不雅视频在线播放| 人妻系列 视频| 中文亚洲av片在线观看爽| 亚洲欧美成人综合另类久久久 | 成人二区视频| 国内精品久久久久精免费| 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区| 亚洲自偷自拍三级| 国产精品久久视频播放| 啦啦啦啦在线视频资源| 在线观看免费视频日本深夜| www.色视频.com| 亚洲av熟女| 日本黄色片子视频| 中文字幕熟女人妻在线| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 国产高清三级在线| 亚洲成人av在线免费| av免费在线看不卡| 国产精品久久视频播放| 久久这里有精品视频免费| 在线观看av片永久免费下载| 亚洲av成人av| 亚洲欧美中文字幕日韩二区| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 国产片特级美女逼逼视频| 亚洲成av人片在线播放无| 高清日韩中文字幕在线| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 国产爱豆传媒在线观看| 国产亚洲91精品色在线| 干丝袜人妻中文字幕| 内射极品少妇av片p| 久久精品久久久久久噜噜老黄 | 只有这里有精品99| 一级二级三级毛片免费看| 一级黄片播放器| 免费人成在线观看视频色| 成人亚洲欧美一区二区av| 亚洲成人中文字幕在线播放| 最近视频中文字幕2019在线8| 人妻系列 视频| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 一夜夜www| 精品99又大又爽又粗少妇毛片| 人人妻人人看人人澡| 村上凉子中文字幕在线| 99热全是精品| 国产精品1区2区在线观看.| 国产国拍精品亚洲av在线观看| 亚洲在线观看片| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| av在线老鸭窝| 午夜福利在线在线| 毛片一级片免费看久久久久| 久久精品久久久久久久性| 国产乱人视频| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 婷婷色综合大香蕉| 日本黄色片子视频| 此物有八面人人有两片| 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 九九在线视频观看精品| a级毛片a级免费在线| 欧美丝袜亚洲另类| 久久久久久久亚洲中文字幕| 91麻豆精品激情在线观看国产| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 蜜桃亚洲精品一区二区三区| 日本与韩国留学比较| 少妇熟女欧美另类| 日本黄大片高清| 亚洲婷婷狠狠爱综合网| 欧美日韩国产亚洲二区| 舔av片在线| av在线亚洲专区| 偷拍熟女少妇极品色| 国产午夜精品一二区理论片| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址| 又粗又硬又长又爽又黄的视频 | 国产综合懂色| 热99在线观看视频| 如何舔出高潮| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| 欧美bdsm另类| av卡一久久| 美女xxoo啪啪120秒动态图| 波多野结衣巨乳人妻| 国产蜜桃级精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 中国国产av一级| 国产老妇女一区| 久久久久久久久久久免费av| 久久人人爽人人片av| 直男gayav资源| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 只有这里有精品99| 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 欧美xxxx性猛交bbbb| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区免费观看| 人人妻人人澡欧美一区二区| 亚洲国产欧美在线一区| 国产片特级美女逼逼视频| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 在线观看66精品国产| 国产美女午夜福利| 不卡一级毛片| 麻豆av噜噜一区二区三区| 男的添女的下面高潮视频| 亚洲最大成人手机在线| 欧美日韩在线观看h| 中国美女看黄片| 亚洲精品亚洲一区二区| 1024手机看黄色片| 日韩欧美精品v在线| 久久久国产成人精品二区| 免费电影在线观看免费观看| 又爽又黄a免费视频| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 午夜老司机福利剧场| 一级黄色大片毛片| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载 | 亚洲人成网站在线播| 久久热精品热| 一级毛片电影观看 | 亚洲欧美精品专区久久| 99国产精品一区二区蜜桃av| 婷婷亚洲欧美| av又黄又爽大尺度在线免费看 | 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 亚洲综合色惰| 国产av一区在线观看免费| 村上凉子中文字幕在线| 69av精品久久久久久| 成年版毛片免费区| 噜噜噜噜噜久久久久久91| 免费看日本二区| 永久网站在线| av在线天堂中文字幕| 国产乱人偷精品视频| 一个人看视频在线观看www免费| 日韩欧美一区二区三区在线观看| 日韩 亚洲 欧美在线| 成人高潮视频无遮挡免费网站| 长腿黑丝高跟| 免费看日本二区| 波多野结衣高清无吗| 久久6这里有精品| 成人高潮视频无遮挡免费网站| 有码 亚洲区| 中文字幕制服av| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 欧美+日韩+精品| 欧美激情在线99| 中国美白少妇内射xxxbb|