• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈦摻雜鈣鈦礦制備高效率鈣鈦礦太陽能電池

    2018-09-03 03:25:30張宇豪鄭永進吳立爽諸躍進
    無機化學學報 2018年9期
    關(guān)鍵詞:寧波大學理學院工程系

    田 輝 熊 啟 劉 鵬 張 京 韓 磊 張宇豪 鄭永進 吳立爽 諸躍進

    (寧波大學理學院,微電子科學與工程系,寧波 315211)

    In the pastseveralyears,organic-inorganic perovskite solar cells have become one of the most studied cells for their high efficiency,low fabrication cost and easy solution process[1-5].The core component is the perovskite layer in n-i-p type perovskite solar cells(PSCs),whose properties are quite important for efficient charge transport.As the light absorption layer,perovskite layer generates electron/hole carriers,which are separated and driven to corresponding n and p sides under the effect of built-in internal electrical field.Then,they pass through electron/hole transport layer(ETL/HTL)to converging in electrode[6-7].There are two types of defects in perovskite layer:(1)Deep level intrinsic defects which result in the recombination and trap states in perovskite lattice[8-9];(2)Owing to polycrystalline structure of perovskite,a large amount of defects appear in the poly crystal perovskite grain boundary during solution-based prep-aration processes[8].The large number of trap states nevertheless induce charge carrier recombination and limit the PCE in thin-film solar cells unless they can be further reduced[10].Moreover,the trap states cast awful impact on hysteresis properties,leading to stability concerns over the devices[11].Thus,lowering the charge recombination via reducing defects states in the perovskite polycrystalline thin film is crucial for continued progress in device performance.

    Up to now,three reported methods are certified to solve defect problem produced in the perovskite layer.Firstly,adding functional molecules to act on the grain boundary can effectively passivate the trap states.Insulating polymers,ionic liquid and the semiconducting molecule fullerene are reported to form chemical interactions with the surface atoms thus passivate the trap states[12-13].Secondly,adding an interface layerabove perovskite layereffectively illuminates the surface trap states and reduce the interface recombination[14-15].Thirdly,the extrinsic metal ions(alkali metal ions K+,Na+,Zn2+)are added in the perovskite films to effectively influence the crystallinity and passivate the trap states[16-18].

    In this work,we report a method to improve properties with Ti4+doping in perovskite precursor solution to passivate defect in perovskite.Once investigating the effect of Ti4+,it is found that most of Ti4+was distributed in the polycrystalline perovskite grain boundary.Further research shows size of perovskite grain changed subtly.The bandgap of doped perovskite unchanged after Ti4+doping.And the photoluminescence and carrier transport are obviously enhanced,indicating the trap states are effectively reduced.With optimum content of Ti4+concentration doped in perovskite precursor solution,the efficiency(17.4%)of PSCs demonstrated significant improvement contrast with conventional device(14.0%).Higher efficiency suggests it is an effective method via doping engineering with Ti4+.

    1 Experimental

    1.1 Fabrication of perovskite solar cell device

    The original PSCs are composed of FTO layer/TiO2blocking layer/CH3NH3PbI3(MAPbI3)layer/spiro-OMeTAD/Ag.The pure perovskite precursor solution was prepared by directly mixing CH3NH3I3and PbI2with nCH3NH3I3∶nPbI2=1∶1 in dimethylformamide(DMF).The pure CH3NH3PbI3is a conventional contrast sample.TiCl4ethyl alcohol solution (1 mol·L-1)is added to perovskite precursor solution.Different volume of TiCl4solution is add to make a series of doped perovskite precursor solution with different molar ratios(x%,x=0,0.05,0.1,0.2 and 0.5)of Ti to Pb.Ti4+-x%represents with different concentrations of Ti4+doped the samples.The 60 nm thick TiO2compact layer was synthesized in air via sol-gel method and deposited on the etched and cleaned FTO glass.Titaniumビisopropoxide was added to the mixed solution of isopropanol alcohol,diethanolamine and deionized water then the sol was left stirring for 1 h before using.The deposited TiO2film was annealed in oven for 30 min at 450℃[19].Next,the compact TiO2layer was treated with 0.04 mol·L-1TiCl4at 70 ℃ for 30 min and sintered in oven for 30 min at 500℃.

    Perovskite layerwasdeposited on the TiO2blocking layer by spinning coating the perovskite precursor solution at 2 800 r·min-1for 30 s and treated by anti-solvent chlorobenzene(CB).Then,the substrate was carefully baked on the hot plate to form uniform perovskite film by slow annealing.The hole transport layer was prepared by spinning coating hole transport material (HTM)solution at 3 000 r·min-1for 30 s.HTM solution consists of 60 mmol·L-12,2′,7,7′-tetrakis(N,N-di-p-methox-yphenylamine)-9,9′-spirobifluorene(spiro-MeOTAD)in chlorobenzene with added 80%(n/n)4-tert-butylpyridine(tBP)and 30%(n/n)of lithium bis(trifluoromethanesulfony)imide(Li-TFSI)[20].Then,substrate would be oxidized in dry air for 6 h.Lastly,approximately 100 nm of Ag electrode were evaporated on the HTM with ultrahigh vacuum.

    1.2 Characterization of the devices

    X-ray diffraction patterns(XRD)of the Ti4+doped perovskite films based on FTO glass were acquired by a Bruker instrument(D8 advance,made in Germany)using Cu radiation(λ=0.154 06 nm,applied voltage of 40 kV and current of 800 mA)at scan rate of 4°·min-1and range of 10°~50°for crystal structure and size.The surface morphologies and element analysis of the perovskite films (FTO glass/perovskite layer)were observed by a scanning electron microscope(SEM,Hitachi,SU-70,Japan)with energy dispersive X-ray spectroscopy (EDX).The optical absorption spectrum of the perovskite films based on glass was tested by UV-TR spectrophotometer(Agilent Cary 5000,USA).Steady-state photoluminescence(PL)of the perovskite films was measured by fluorescence spectrophotometer(Agilent,USA)with 532 nm light to excite the two groups of substrates that were respectively based on glass/perovskite and FTO glass/perovskite.Timeresolved PL spectra (excited at 450 nm;monitored at 750 nm)were recorded on Horiba fluorescence spectrometer.The binding energies of the perovskite elements were analyzed by X-ray photoelectron spectroscopy(XPS,Shimadzu,Japan)using Al Kα radiation.Currentvoltage (J-V)characteristics were measured by the equipment consisting of a Keithley 4200 semiconductor analyzer and a sunlight simulator(Newport solar simulator 3A,AM1.5,100 mW·cm-2)requiring to be adjusted with a piece of standard silicon reference cell.The electrochemicalimpedance spectroscopy(EIS)of perovskite solar cells were measured with an electrochemical workstation(Zennium,Germany).

    2 Results and discussion

    2.1 Crystalline and surface morphology of CH3NH3PbI3

    The crystallinity and continuity of the perovskite film are key factors for charge dissociation and charge transmission in device.The XRD patterns of perovskite film with different concentration of Ti4+on FTO glass is shown in Fig.1a,which indicates the change of crystallinity and half-peak width.In Fig.1a,the peaks at 14.06°,28.40°and 43.30°are respectively assigned to the(110),(220)and(330)planes of CH3NH3PbI3[21].The doped Ti4+has ionic radius of 0.064 nm,far smaller than the Pb2+of 0.119 nm.Moreover,Ti has 4 valence electrons to coordinate while Pb has 2 valence electrons to coordinate in CH3NH3PbI3.Therefore,great discrepancy of ionic size and valence states indicates that Ti4+is hardly to substitute the Pb2+in CH3NH3PbI3.The XRD patterns show the perovskite peak position almost does not shift with doping concentration increasing,which illuminates Ti4+does not change the crystalline lattice and therefore Ti4+is not substitutional impurity in the perovskite crystalline.Furthermore,it is noticed that the peak intensity is higher with Ti4+-0.05%and Ti4+-0.1%doped perovskite,compared with the pure one.It means that the crystallinity of doped perovskite is better than that of the pure perovskite.Gradually increasing the Ti4+amount,the XRD peak intensity decreased further,which means the crystallinity of perovskite based on Ti4+with 0.2%~0.5%is worse than of the pure perovskite film.The average size of perovskite grain is circulated according to half-peak width of the perovskite (110)diffraction peaks site based on the Scherrer equation as following:

    Fig.1 (a)XRD patterns of Ti4+doped perovskite film,the inset is the enlarged(110)diffraction peaks;(b)UV-Vis absorption spectra of perovskite films on glass with and without Ti4+,the insert is the enlarged spectra of(b)

    Table 1 Peak position,half-peak width and the calculated grain size of(110)plane

    D=kλ/(βcosθ)where D is the crystalline size,λ is the wavelength of X-ray radiation(0.154 nm),k is the constant taken as 0.89,β is the half-peak width,θ is the peak site of the perovskite(110)diffraction peaks in XRD patterns.As shown In Table 1,the size of perovskite grain gradually decreases with the concentration of Ti4+increasing,which reveals Ti4+as dopant diminishes the size of perovskite grain.

    The optic band gap change was detected.In UVIR spectra of the perovskite films upon cleaned glass(Fig.1b),the absorption of Ti4+-0.1%doped perovskite is the highest of the films,which is ascribed to the high quality and the compactness of the film.The absorption onset and the band edge near 800 nm are enlarged to check the bandgap of the perovskite.It is obvious that the absorption onset has no obvious change with Ti4+doping,which reveals that Ti4+ions have no effect on bandgap,and further verifies Ti4+does not substitute Pb2+to form perovskite structure to modify the energy band gap.

    2.2 Exploration distribution of Ti4+in perovskite

    The top view morphologies of perovskite films were observed by SEM.As is shown in Fig.2(a~c),the size of perovskite grain becomes smaller and more uniform with Ti4+-0.1%and Ti4+-0.2%modification(Fig.2(b,c))than of the pure perovskite grain in Fig.2a,which may be helpful to form continuous film and produce better contact between perovskite layer and HTL[22].

    Fig.2 SEM images of Ti4+with(a)0,(b)0.1%and(c)0.2%perovskite film;(d)Surface morphology exposed under SEM-EDS;SEM-mapping of(e)Pb2+and(f)Ti4+

    The element distribution of perovskite films is further researched.In Fig.2d,polycrystal perovskite film structure and the pinholes between the grain boundaries can be observed under SEM-EDS mapping mode.The SEM-mapping of Ti4+-0.1%perovskite film shows the distribute condition of Pb and Ti in polycrystallineperovskite film (Fig.2(e,f)).In-situ mapping oflead indicatesthatPb isuniformly distributed inside the perovskite films (Fig.2e).By contrast,Ti is intensively distributed at the grain boundaries of polycrystalline perovskite as indicates by the yellow circles in Fig.2f.The above results demonstrate that Ti4+ions are mostly distributed at grain boundary of polycrystalline perovskite as additive.By this way,controlling proper Ti4+dopant might lead to the defect of grain boundary passivated,which alleviates the tendency of non-radiative recombination to carriers by trap states in the grain boundary of polycrystalline perovskite. Meanwhile, controlling proper Ti4+dopant not only diminishes the size of polycrystalline perovskite grain to homogenize the scale of perovskite grain,it also promotes high quality crystallinity of perovskite to be favorable for charge transport.

    When Ti4+is formed at the grain boundary of perovskite films,it does not change the perovskite crystalline lattice structure for not substituting the Pb position.However,Ti4+will interact with the atoms in the perovskite material.Fig.3(a,b)indicates the XPS core level spectra of Pb4f and I3d,respectively.It is clear that the peak positions of Pb4f and I3d moves to lower binding energy when Ti-0.1% is doped in.Because the Ti will also interact with I,the binding energy of Pb is reduced.On the other hand,Cl is introduced in the system which might also interact with Pb,thus the binding energy of I is also reduced.The scheme of the Ti doping position is indicated in Fig.3c,which also indicates the interaction of Ti with the atoms in MAPbI3.

    Fig.3 XPS core level spectra of(a)Pb4f;and(b)I3d;(c)Schema of Ti4+formed at the grain boundary(left),the enlarged grains and the Ti4+interaction with I-in the film

    2.3 Charge transport properties of CH3NH3PbI3

    To investigate the trap states and charge transport properties in Ti4+doped perovskite materials,the PL spectra of perovskite film on glass and on FTO are investigated.Fig.4a is the steady state PL spectra of perovskite films on glass substrates.Obviously,the peak site of emission light does not change which accounts for Ti4+doping did not influence the bandgap.Furthermore,it is found that the peak intensity of Ti4+-0.05%,Ti4+-0.1%doped perovskite significantly rises compared to the conventional sample.The phenomenon suggests few Ti4+-doped perovskite film effectively restrains the recombination from carriers and trap states,which is benefit for the charge transport.It is demonstrated that grain boundary modification weakens non-radiative recombination[23],which influences luminescence yields and power conversion efficiency[24-26].Knowing that Ti4+ions does not directly affect lattice,it just affects the grain size and grain boundary,therefore,it is the Ti4+passivates the trap states at the perovskite grain boundary.However,the PL peak intensity gradually declines with further increasing the dopantdensity which is due to the decreased crystalline property indicated by XRD in Fig.1a.Fig.4b is the PL of perovskite films deposited on FTO substrates.Clearly,peak intensity decreased with enhancing the dopantcontent,which powerfully explains traces of Ti4+ions intensify the ability of carrier extraction from the perovskite to the FTO.By analyzing the PL spectra,it is found that the best concentration is Ti4+-0.1%,with the lowest recombination and highest charge transport property.Therefore,when Ti4+-0.1%ions are doped in perovskite film,it effectively reduces trap states density,block nonradiative recombination and lead to effective charge transport between perovskite layer and ETL/HTL.

    To further investigate the charge transport process with and without Ti4+doped perovskite film,the time-resolved PL(TR-PL)measurements of perovskite films on TiO2substrate were carried out.The PL decay curves obey a bi-exponential decay function with a fast decay process and a slow decay process through curves fitting in Fig.4c.In general,the fast decay process derives from photo-excited carriers trapped by the defect or sharply transporting to electron/hole interlayer,however,the slow decay process displays the irradiative decay process[27-28].And the related parameters of TR-PL decay of the sample with and without Ti4+are shown in Table 2.Clearly,the Ti-0.1%doped perovskite curve is higher than the undoped one during the fast decay process,which means reduction of non-radiative recombination process;nevertheless,the Ti-0.1%doped perovskite curve decays more rapidly than original curve during the slow decay process,which means stronger ability of extraction carrier.The phenomenon explains passivated perovskite has less defect states and better charge extraction to the electrode[29].The average lifetime is 75.49 ns for pure sample,while the average lifetime is 38.43 ns for Ti4+-0.1%sample.This clearly indicates the faster PL quenching is obtained in sample with Ti4+-0.1%(Fig.4c).These TR-PL results also point out the 0.1%Ti4+dopant in perovskite is convenient for charge transport and weakening the recombination of carriers(Table 2).

    Fig.4 Steady state PL spectra of perovskite film on glass(a)and on FTO(b);(c)Time-resolved PL(TR-PL)spectra of perovskite film on TiO2layer

    Table 2 Fitting parameters of TR-PL decay curves to perovskite on TiO2layer

    2.4 Performance of the solar cell devices

    The performances with different Ti4+contents in perovskite were measured to seek for optimum Ti4+concentration,and the detailed photovoltaic parameters were displayed in Table 3 and Fig.5(a,b).Fig.5c is the J-V curves of different Ti4+contents doped devices.The pure PSCs shows JSC=21.4 mA·cm-2,VOC=1.09 V,FF=0.611,and Eff=14.0% (Effis the efficiency).Ti4+-0.1%acquires maximum JSCof 22.3 mA·cm-2.The FF gradually improves when the content in perovskite of Ti4+increase,and FF achieves the highest value of 72.4%with Ti4+-0.1%.Then,FF reduces once Ti4+is over 0.1%.Finally,the best perfor-mance is 17.4% with Ti4+-0.1% in PSCs.Theeffici-ency distribution is provided in supporting information(Fig.S1)and the average values are approximate 14.0%and 17.4%.

    To investigate the recombination process of the devices with grain boundary passivation,the Nyquistplots were obtained.In Fig.5d,the Nyquist plots of the devices were measured in the dark with bias voltage of-1.1 V.There are two semicircles in each Nyquist plot:the left one is related to the charge transport resistance(Rct),which is mainly ascribed to charge extraction and separation at the interface between HTL or ETL and the perovskite layer.The right one is related to the photo carrier recombination resistance(Rrec)in the PSCs system;the starting point′s real part represents the series resistance(Rs)of the solar cells.The relevant equivalent circuit is shown in the insert in Fig.5b[30-31].At applied reverse bias,it demonstrates the devices with Ti4+-0.1%has larger recombination resistance of 220 Ω,much higher than 180 Ω of the undoped device,which indicates the recombination is effectively reduced by Ti4+modification.Furthermore,the Rsis reduced to 18 Ω with Ti4+doped device compared with 29 Ω of the undoped one.It is ascribed to the better crystallinity and more compactness of Ti4+doped perovskite films reduce the contact resistance of the device.

    Table 3 Photovoltaic parameters of planar PSCs with different Ti4+contents

    Fig.5 Variation of VOC,FF(a)and Jsc,Eff(b)with Ti4+content;(c)J-V characteristics of device with different degree of Ti4+in the perovskite layer;(d)Nyquist pot of the device with and without Ti4+(measured at-1.1 V in the dark)

    The variation of photovoltaic parameters coincides with the analysis about device(Fig.5(c,d)).It is easy to know JSCdepends on the density of trap states,because they have a great compact on carrier recombination.With Ti4+-0.1%doped in perovskite,the grain boundary trap states are effectively removed by Ti4+and the device shows large recombination resistance and series resistance is effectively reduced.These merits increasing the rate of carrier transport from perovskite layerto electrodes.FF isalso correlated with the density of trap states and interface contact[32].Because of the fewer trap states,carriers are more apt to transfer to electrodes,which means the device has good FF (FF of Ti4+-0.1%has effectively improved from 61.1% to 72.4%).Duo to these parameters being enhanced,efficiencyofdevices exhibits better performances with Ti4+-0.1%.Experiments proof small dopants about Ti4+ions will contribute to higher photovoltaic parameters as a result of defect passivation.But devices with more dopants(Ti4+with 0.2%~0.5%)exhibit awful performance on account of more defects,which has bad effect on performances of devices.

    3 Conclusions

    In this work,photovoltaic properties get improved with small dopant content of Ti4+in MAPbI3perovskite films.At the same time,the XRD analysis and SEM-mapping indicates the Ti4+is most likely to accumulate at the grain boundary.The steady PL and TR-PL importantly support more powerful ability about carrier transport after Ti4+doping.The Nyquist plots indicate the Ti4+doping effectively reduce the interface recombination and improve the charge transport in the device.Therefore,the grain boundary defect states is effectively reduced by Ti4+modification.Therefore,the device with optimal Ti4+content shows excellent JSC,VOCand FF.Ti-0.1%shows the highest efficiency(17.4%)with doped device under 1sun(AM1.5).

    Acknowledgments:This work was supported by the National Natural Science Foundation of China(Grant No.11374168,11547033),Natural Science Foundation of Zhejiang Province(Grant No.LY18F040004),Scientific Research Foundation for the Returned Overseas Chinese Scholars and the K.C.Wong Magna Fund in Ningbo University,China.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    寧波大學理學院工程系
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    《寧波大學學報(理工版)》征稿簡則
    《寧波大學學報(教育科學版)》稿約
    A Personal Tragedy The professionalism of Stevens
    長江叢刊(2018年13期)2018-05-16 06:42:58
    Research on College Education Based on VR Technology
    西安航空學院專業(yè)介紹
    ———理學院
    電子信息工程系
    機電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    夫妻性生交免费视频一级片| 看十八女毛片水多多多| 欧美日本中文国产一区发布| 亚洲第一区二区三区不卡| 最新的欧美精品一区二区| 久久久久久久久久久久大奶| 秋霞伦理黄片| 青春草亚洲视频在线观看| 最新的欧美精品一区二区| 日本欧美视频一区| 日日爽夜夜爽网站| 亚洲欧洲国产日韩| 亚洲视频免费观看视频| 国产成人欧美| 女性被躁到高潮视频| av在线播放精品| 99热网站在线观看| 国产在线免费精品| 9色porny在线观看| 日韩人妻精品一区2区三区| 久久毛片免费看一区二区三区| 999久久久国产精品视频| 日日爽夜夜爽网站| 亚洲熟女精品中文字幕| 1024香蕉在线观看| 黑人巨大精品欧美一区二区蜜桃| 成年人午夜在线观看视频| 最近中文字幕高清免费大全6| 可以免费在线观看a视频的电影网站 | 免费高清在线观看视频在线观看| 亚洲第一区二区三区不卡| 国产白丝娇喘喷水9色精品| 宅男免费午夜| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区av在线| 另类精品久久| 久久久久人妻精品一区果冻| 女人精品久久久久毛片| 国产精品偷伦视频观看了| 永久免费av网站大全| av有码第一页| 日韩在线高清观看一区二区三区| 精品亚洲成国产av| 国产精品久久久久久精品古装| 久久久久久人妻| 热99久久久久精品小说推荐| 亚洲av日韩在线播放| 精品国产乱码久久久久久小说| 久久久国产一区二区| 国产成人免费无遮挡视频| 国产精品99久久99久久久不卡 | 丝袜脚勾引网站| av电影中文网址| 美女xxoo啪啪120秒动态图| av网站在线播放免费| 精品一区二区免费观看| 国产成人免费观看mmmm| 少妇的丰满在线观看| 极品人妻少妇av视频| 中文字幕人妻熟女乱码| 成人国产麻豆网| 一区在线观看完整版| 18在线观看网站| 精品福利永久在线观看| 这个男人来自地球电影免费观看 | 一级片免费观看大全| 天堂中文最新版在线下载| 老司机影院毛片| av线在线观看网站| 十分钟在线观看高清视频www| 免费播放大片免费观看视频在线观看| 黄片无遮挡物在线观看| freevideosex欧美| 如日韩欧美国产精品一区二区三区| 欧美日韩视频精品一区| 少妇被粗大猛烈的视频| 最近最新中文字幕免费大全7| 日韩中文字幕视频在线看片| 日韩av免费高清视频| 国产精品一区二区在线不卡| 少妇人妻 视频| 久久精品久久久久久噜噜老黄| 五月伊人婷婷丁香| 久久久精品国产亚洲av高清涩受| av免费在线看不卡| 午夜久久久在线观看| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 国产欧美亚洲国产| 日韩伦理黄色片| 熟女少妇亚洲综合色aaa.| 春色校园在线视频观看| 日韩视频在线欧美| 国产免费福利视频在线观看| 久久久国产一区二区| 亚洲一区中文字幕在线| 国产精品国产av在线观看| 成人毛片60女人毛片免费| 十分钟在线观看高清视频www| 嫩草影院入口| 丁香六月天网| 永久网站在线| 国产亚洲午夜精品一区二区久久| 欧美日韩精品网址| 成年动漫av网址| 天堂中文最新版在线下载| 女人精品久久久久毛片| 国产片特级美女逼逼视频| 国产野战对白在线观看| 午夜福利在线观看免费完整高清在| 日韩大片免费观看网站| 国产在视频线精品| 久久久久久久亚洲中文字幕| 天堂中文最新版在线下载| 18禁裸乳无遮挡动漫免费视频| 午夜福利视频精品| 久久久国产欧美日韩av| 永久网站在线| 日韩av免费高清视频| 亚洲一区中文字幕在线| 久久久精品免费免费高清| 亚洲精品视频女| 欧美另类一区| 亚洲精品在线美女| 日韩,欧美,国产一区二区三区| 一区在线观看完整版| 亚洲精品久久午夜乱码| 纯流量卡能插随身wifi吗| 久久久久国产网址| 日韩大片免费观看网站| 一级a爱视频在线免费观看| 蜜桃在线观看..| 免费人妻精品一区二区三区视频| 我的亚洲天堂| 亚洲av在线观看美女高潮| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 一本久久精品| 18+在线观看网站| 亚洲av中文av极速乱| 国产人伦9x9x在线观看 | 边亲边吃奶的免费视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲一码二码三码区别大吗| 久久精品久久久久久久性| 国产成人欧美| 亚洲第一av免费看| 老汉色av国产亚洲站长工具| 午夜福利在线观看免费完整高清在| 国产精品无大码| 国产精品人妻久久久影院| 99久久综合免费| 亚洲精品在线美女| 午夜影院在线不卡| 日韩熟女老妇一区二区性免费视频| 国产女主播在线喷水免费视频网站| 国产精品无大码| 亚洲综合色网址| 国产免费视频播放在线视频| 亚洲欧美一区二区三区国产| 亚洲图色成人| 香蕉丝袜av| 国产男女内射视频| 啦啦啦啦在线视频资源| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| av线在线观看网站| 男女啪啪激烈高潮av片| 热re99久久国产66热| 丝袜喷水一区| 国产精品成人在线| 一级毛片我不卡| 久久狼人影院| 看非洲黑人一级黄片| 精品卡一卡二卡四卡免费| 精品亚洲成a人片在线观看| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 国产精品偷伦视频观看了| av一本久久久久| 国产成人av激情在线播放| 精品国产国语对白av| 热re99久久精品国产66热6| 国产成人精品一,二区| 90打野战视频偷拍视频| 最黄视频免费看| 9色porny在线观看| 热99国产精品久久久久久7| 精品99又大又爽又粗少妇毛片| 少妇被粗大的猛进出69影院| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| 成人漫画全彩无遮挡| 九色亚洲精品在线播放| 精品99又大又爽又粗少妇毛片| 久久婷婷青草| 免费高清在线观看日韩| 欧美bdsm另类| 国产视频首页在线观看| 在线 av 中文字幕| 999久久久国产精品视频| 日韩电影二区| 久久精品国产亚洲av高清一级| 一本色道久久久久久精品综合| 欧美另类一区| 欧美人与性动交α欧美软件| 欧美亚洲日本最大视频资源| 一个人免费看片子| 日韩在线高清观看一区二区三区| 亚洲国产精品一区二区三区在线| 日本午夜av视频| 亚洲欧洲日产国产| 高清欧美精品videossex| 女的被弄到高潮叫床怎么办| 欧美成人午夜免费资源| 狠狠精品人妻久久久久久综合| 一个人免费看片子| 黄频高清免费视频| 久久精品久久久久久噜噜老黄| www.熟女人妻精品国产| 综合色丁香网| 一区二区三区乱码不卡18| 九九爱精品视频在线观看| 国产成人精品福利久久| 看非洲黑人一级黄片| 欧美少妇被猛烈插入视频| 少妇猛男粗大的猛烈进出视频| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 老女人水多毛片| 国产在线视频一区二区| 久久免费观看电影| 自拍欧美九色日韩亚洲蝌蚪91| 久久韩国三级中文字幕| 国产精品国产三级国产专区5o| 少妇精品久久久久久久| 深夜精品福利| 亚洲成人av在线免费| 国产极品粉嫩免费观看在线| 校园人妻丝袜中文字幕| 天堂俺去俺来也www色官网| 80岁老熟妇乱子伦牲交| 永久免费av网站大全| 亚洲av福利一区| 午夜老司机福利剧场| 韩国精品一区二区三区| 国产成人精品福利久久| 日本色播在线视频| 综合色丁香网| 麻豆精品久久久久久蜜桃| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| 国产精品人妻久久久影院| 夜夜骑夜夜射夜夜干| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| av福利片在线| 啦啦啦中文免费视频观看日本| 日韩中文字幕欧美一区二区 | 七月丁香在线播放| 大片免费播放器 马上看| 国产在线一区二区三区精| 伦理电影大哥的女人| 免费人妻精品一区二区三区视频| 亚洲精品国产一区二区精华液| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 丝袜美腿诱惑在线| 女人精品久久久久毛片| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 亚洲中文av在线| 久久精品久久久久久噜噜老黄| av国产精品久久久久影院| 国产精品久久久久久久久免| 欧美+日韩+精品| 欧美精品一区二区免费开放| 在线观看美女被高潮喷水网站| 亚洲精品在线美女| 熟女av电影| 两性夫妻黄色片| 日本爱情动作片www.在线观看| 国产成人欧美| 大香蕉久久网| 精品一区二区三区四区五区乱码 | 国产精品国产av在线观看| 国产成人精品无人区| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 美女午夜性视频免费| 人成视频在线观看免费观看| 高清av免费在线| 国产成人免费无遮挡视频| 久久精品国产鲁丝片午夜精品| 伊人久久国产一区二区| 亚洲三级黄色毛片| 一区福利在线观看| 国产成人午夜福利电影在线观看| 亚洲中文av在线| 电影成人av| 搡女人真爽免费视频火全软件| 精品一区在线观看国产| av在线播放精品| 高清欧美精品videossex| 亚洲四区av| 中文字幕亚洲精品专区| 亚洲少妇的诱惑av| 成人午夜精彩视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 久久精品aⅴ一区二区三区四区 | 国产成人精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| a级毛片黄视频| 久久久欧美国产精品| 日韩精品有码人妻一区| 国产一级毛片在线| 街头女战士在线观看网站| 美女国产高潮福利片在线看| 国产熟女欧美一区二区| av在线播放精品| 尾随美女入室| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 久久精品夜色国产| 欧美精品人与动牲交sv欧美| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 国产 一区精品| 97精品久久久久久久久久精品| 免费观看在线日韩| 国产精品 国内视频| 久久 成人 亚洲| 黄片小视频在线播放| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 亚洲人成电影观看| 午夜激情av网站| 欧美xxⅹ黑人| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 亚洲精品在线美女| 国产乱来视频区| 欧美日本中文国产一区发布| 亚洲av成人精品一二三区| 国产一区二区在线观看av| 一本大道久久a久久精品| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 国产97色在线日韩免费| 高清欧美精品videossex| 美女午夜性视频免费| 久久99蜜桃精品久久| 日日爽夜夜爽网站| 午夜影院在线不卡| 亚洲精品aⅴ在线观看| 久久午夜综合久久蜜桃| 晚上一个人看的免费电影| 90打野战视频偷拍视频| 2018国产大陆天天弄谢| 国产成人欧美| 人体艺术视频欧美日本| 男女高潮啪啪啪动态图| 啦啦啦啦在线视频资源| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| 最新的欧美精品一区二区| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 高清欧美精品videossex| 色网站视频免费| 午夜福利视频精品| 国产成人精品在线电影| 好男人视频免费观看在线| 久久精品人人爽人人爽视色| 国精品久久久久久国模美| 亚洲久久久国产精品| 青春草亚洲视频在线观看| 国产乱人偷精品视频| 1024视频免费在线观看| 久久 成人 亚洲| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| av在线观看视频网站免费| 又黄又粗又硬又大视频| 伦精品一区二区三区| 精品久久久久久电影网| 人妻人人澡人人爽人人| 少妇的逼水好多| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 国产不卡av网站在线观看| 视频区图区小说| 人妻少妇偷人精品九色| 久久久久精品人妻al黑| 亚洲国产欧美在线一区| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 国产精品女同一区二区软件| 国产亚洲精品第一综合不卡| 亚洲av国产av综合av卡| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 亚洲美女视频黄频| 国产精品免费视频内射| 国产精品一区二区在线观看99| 亚洲欧洲精品一区二区精品久久久 | 成年美女黄网站色视频大全免费| 一区二区日韩欧美中文字幕| 亚洲av国产av综合av卡| 久久久精品94久久精品| 亚洲精品一区蜜桃| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 免费大片黄手机在线观看| av一本久久久久| 国产一区有黄有色的免费视频| 日韩伦理黄色片| 亚洲精品在线美女| 午夜福利网站1000一区二区三区| 色播在线永久视频| 成年人免费黄色播放视频| 国产亚洲最大av| 国产精品香港三级国产av潘金莲 | 国产野战对白在线观看| 免费在线观看黄色视频的| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 一本大道久久a久久精品| 看免费成人av毛片| 一级毛片电影观看| 国产日韩欧美亚洲二区| 大香蕉久久成人网| 国产精品熟女久久久久浪| 国产成人午夜福利电影在线观看| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 母亲3免费完整高清在线观看 | 成人影院久久| 午夜免费观看性视频| 少妇人妻久久综合中文| 蜜桃国产av成人99| 一级,二级,三级黄色视频| 久久久久精品性色| 大话2 男鬼变身卡| 性色avwww在线观看| 成人亚洲精品一区在线观看| 最近中文字幕高清免费大全6| 免费在线观看完整版高清| 91久久精品国产一区二区三区| 日韩视频在线欧美| 日韩精品有码人妻一区| 人妻系列 视频| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀 | 最近中文字幕2019免费版| 男男h啪啪无遮挡| 久久久精品免费免费高清| 欧美精品国产亚洲| videos熟女内射| 久久久久精品人妻al黑| 欧美日韩亚洲国产一区二区在线观看 | 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 波多野结衣一区麻豆| 国产 精品1| 春色校园在线视频观看| 欧美黄色片欧美黄色片| 国产片内射在线| 日韩电影二区| 爱豆传媒免费全集在线观看| 中文字幕制服av| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 青青草视频在线视频观看| 免费看不卡的av| 一级片'在线观看视频| 韩国精品一区二区三区| 中文欧美无线码| 少妇人妻精品综合一区二区| 满18在线观看网站| 最近手机中文字幕大全| 亚洲av电影在线进入| 免费观看无遮挡的男女| 国产探花极品一区二区| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 国产精品人妻久久久影院| 老女人水多毛片| 亚洲综合色惰| 亚洲av在线观看美女高潮| 69精品国产乱码久久久| 蜜桃国产av成人99| 亚洲精品,欧美精品| 人妻系列 视频| 这个男人来自地球电影免费观看 | a 毛片基地| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 午夜福利在线观看免费完整高清在| 美国免费a级毛片| 永久免费av网站大全| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 久久国内精品自在自线图片| 国产成人精品久久久久久| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 一边摸一边做爽爽视频免费| xxxhd国产人妻xxx| 日韩免费高清中文字幕av| 欧美日韩精品网址| 黄片小视频在线播放| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区 | 国产精品一区二区在线观看99| www.精华液| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 亚洲av电影在线进入| 欧美另类一区| 黑人巨大精品欧美一区二区蜜桃| 国产福利在线免费观看视频| 国产男女内射视频| 亚洲精品中文字幕在线视频| 精品酒店卫生间| 国产一区二区三区综合在线观看| 日本av免费视频播放| 曰老女人黄片| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 人妻系列 视频| 你懂的网址亚洲精品在线观看| 人人妻人人澡人人爽人人夜夜| 国产片内射在线| 97在线人人人人妻| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 麻豆乱淫一区二区| 亚洲成av片中文字幕在线观看 | 看非洲黑人一级黄片| av女优亚洲男人天堂| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 黑人巨大精品欧美一区二区蜜桃| 免费高清在线观看日韩| 日韩制服骚丝袜av| 午夜91福利影院| 欧美日韩亚洲高清精品| 免费黄频网站在线观看国产| 亚洲精品美女久久久久99蜜臀 | av电影中文网址| 国产又爽黄色视频| 中文天堂在线官网| 中国三级夫妇交换| 欧美日韩av久久| av视频免费观看在线观看| 香蕉丝袜av| 亚洲国产欧美在线一区| 国产免费一区二区三区四区乱码| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| a级毛片在线看网站| 黑人猛操日本美女一级片| 亚洲婷婷狠狠爱综合网| 乱人伦中国视频| 欧美激情 高清一区二区三区| 日韩一本色道免费dvd| 可以免费在线观看a视频的电影网站 | 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 国产1区2区3区精品| 欧美av亚洲av综合av国产av | 国产又色又爽无遮挡免| 欧美精品国产亚洲| 色婷婷久久久亚洲欧美| 国产成人精品久久久久久| 午夜老司机福利剧场| 大香蕉久久网| 欧美中文综合在线视频| 国产色婷婷99| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 国产精品熟女久久久久浪| 国产毛片在线视频| 精品第一国产精品| 亚洲人成网站在线观看播放| 欧美日韩精品成人综合77777| 999精品在线视频| 91aial.com中文字幕在线观看| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 美女大奶头黄色视频| 99久久综合免费| 精品亚洲成国产av| 日韩伦理黄色片| 亚洲精品日本国产第一区|