田鐘元 安秀琴 劉近春
[摘要] 代謝相關(guān)脂肪性肝?。∕AFLD)/非酒精性脂肪性肝?。∟AFLD)已經(jīng)逐漸上升為全球慢性肝病的首位。導(dǎo)致本病發(fā)生和發(fā)展的機(jī)制一直是眾多學(xué)者和臨床醫(yī)師關(guān)注的重點。巨噬細(xì)胞作為參與MAFLD發(fā)病的重要細(xì)胞之一,在MAFLD的發(fā)病機(jī)制及疾病進(jìn)展中占有重要的地位。本文針對肝臟巨噬細(xì)胞的來源及分類、巨噬細(xì)胞與MAFLD疾病譜的相關(guān)性,及巨噬細(xì)胞與MAFLD的發(fā)病機(jī)制如炎癥、免疫應(yīng)答、胰島素抵抗(IR)、脂質(zhì)代謝、腸道菌群、肥胖等的相關(guān)性進(jìn)行總結(jié),以期為臨床開發(fā)以巨噬細(xì)胞為靶點的藥物提供新的思路。
[關(guān)鍵詞] 代謝相關(guān)脂肪性肝病;非酒精性脂肪性肝病;巨噬細(xì)胞;機(jī)制
[中圖分類號] R575? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2021)34-0183-05
[Abstract] Metabolic dysfunction-associated fatty liver disease (MAFLD)/nonalcoholic fatty liver disease (NAFLD) has gradually risen to the top of chronic liver disease worldwide. The mechanism leading to the occurrence and development of this disease has been the focus of many scholars and clinicians. Macrophages, as one of the important cells involved in the pathogenesis of MAFLD, play an essential role in the pathogenesis and disease progression of MAFLD. In this paper, the source and classification of liver macrophages, the correlation between macrophages and MAFLD disease spectrum, and the correlation between macrophages and the pathogenesis of MAFLD such as inflammation, immune response, insulin resistance(IR), lipid metabolism, intestinal bacteria, and obesity are summarized in order to provide new ideas for the clinical development of macrophage-targeted drugs.
[Key words] Metabolic dysfunction-associated fatty liver disease; Nonalcoholic fatty liver disease; Macrophages; Mechanisms
非酒精性脂肪性肝?。∟onalcoholic fatty liver disease,NAFLD)是一種與代謝紊亂相關(guān)的肝病,鑒于代謝障礙在本病中的重要作用,眾多學(xué)者建議將其更名為代謝相關(guān)脂肪性肝?。∕etabolic dysfunction-associated fatty liver disease,MAFLD)[1],全球MAFLD的發(fā)病率約25%,其中,中東患病率(32%)最高,非洲患病率(13.5%)最低[2],我國患病率約為29.2%[3]。NAFLD長期累計醫(yī)療費用已被證明比非NAFLD高80%[4],給患者及社會造成了極大負(fù)擔(dān)。
目前MAFLD發(fā)病機(jī)制尚未闡明,1998年Day等[5]提出“二次打擊”假說曾被廣為接受,近些年在此基礎(chǔ)上又提出了“多重打擊”學(xué)說,包括胰島素抵抗、脂肪組織分泌的激素、營養(yǎng)因素、腸道微生物群、自噬及表觀遺傳因素等。巨噬細(xì)胞作為固有免疫重要的細(xì)胞群體之一,可通過反應(yīng)激活,發(fā)揮吞噬、抗原遞呈和免疫調(diào)節(jié)等功能,在MAFLD發(fā)病中起著至關(guān)重要的作用。本文就巨噬細(xì)胞在MAFLD中的研究進(jìn)展做一綜述。
1 肝巨噬細(xì)胞介紹
肝巨噬細(xì)胞是一個組異質(zhì)的免疫細(xì)胞群體,其起源于胎兒卵黃囊的庫普弗細(xì)胞(Kupffer cells,KCs)和浸潤的骨髓源性單核細(xì)胞/巨噬細(xì)胞,在先天免疫反應(yīng)、維持組織穩(wěn)態(tài)、疾病進(jìn)展和緩解等方面發(fā)揮著重要的作用[6]。與其他器官相比,肝臟含有豐富的巨噬細(xì)胞,如KCs和浸潤的巨噬細(xì)胞。據(jù)估計,每100個肝細(xì)胞有20~40個巨噬細(xì)胞。肝巨噬細(xì)胞由駐留的KCs和來自循環(huán)單核細(xì)胞/巨噬細(xì)胞組成。KCs和募集的巨噬細(xì)胞在非酒精性脂肪性肝炎(Nonalcoholic steatohepatitis,NASH)的發(fā)展過程中有不同的特征。KCs是肝臟的第一道防線,內(nèi)源性和外源性病原體誘導(dǎo)KCs活化。激活的KCs依靠其吞噬功能清除病原體。隨著疾病的發(fā)展,單核細(xì)胞衍生的巨噬細(xì)胞成為肝臟中的主要巨噬細(xì)胞[7]。循環(huán)中單核細(xì)胞來源的巨噬細(xì)胞在肝臟代謝或毒性損傷發(fā)生時滲入肝臟,來保持體內(nèi)巨噬細(xì)胞數(shù)量的平衡。
根據(jù)其功能,巨噬細(xì)胞一般分為兩個亞類,即經(jīng)典激活的(M1型)巨噬細(xì)胞和交替激活的(M2型)巨噬細(xì)胞。作為對微環(huán)境信號的響應(yīng),巨噬細(xì)胞可以遷移和極化到具有促炎和(或)抗炎反應(yīng)的不同表型,而巨噬細(xì)胞自身動態(tài)的代謝狀態(tài)可對微環(huán)境產(chǎn)生反向調(diào)節(jié)。如高水平的脂多糖和干擾素γ促進(jìn)M1型巨噬細(xì)胞極化,而白細(xì)胞介素IL-4、IL-10和IL-13促進(jìn)M2型巨噬細(xì)胞極化[8]。在疾病的不同時期,優(yōu)勢表型可能會改變。M1型巨噬細(xì)胞在炎癥和損傷期間占主導(dǎo)地位,而M2型巨噬細(xì)胞在組織修復(fù)和恢復(fù)期大量存在。促炎的M1型巨噬細(xì)胞,其特征是增加了促炎細(xì)胞因子、趨化因子及活性氮和氧中間產(chǎn)物[9]。抗炎M2型巨噬細(xì)胞(如M2a、M2b和M2c),其特征是清道夫受體增加和吞噬活性增強(qiáng)[10]。
2巨噬細(xì)胞與MAFLD疾病譜
大量的實驗和臨床數(shù)據(jù)表明,巨噬細(xì)胞在MAFLD的發(fā)展中起著核心作用,促炎癥的巨噬細(xì)胞決定了疾病的嚴(yán)重程度[11]。在人類MAFLD中,門脈巨噬細(xì)胞浸潤發(fā)生在炎癥明顯之前,并且與進(jìn)展性疾病相關(guān)。M1巨噬細(xì)胞是促炎和抗菌細(xì)胞,通過表達(dá)高水平的促炎細(xì)胞因子和產(chǎn)生大量的活性氧和氮物質(zhì)來啟動炎癥過程[12]。在多飲食誘導(dǎo)的脂肪性肝炎小鼠模型中,p38絲裂原活化蛋白激酶在MAFLD患者的肝臟中上調(diào),而巨噬細(xì)胞p38誘導(dǎo)M1極化和促炎細(xì)胞因子分泌,促進(jìn)脂肪性肝炎的進(jìn)展[13]。相反,M2巨噬細(xì)胞具有抗炎和修復(fù)功能,其可通過以下機(jī)制在MAFLD發(fā)揮抗炎作用,精氨酸酶-1(Arginase-1,Arg-1)通過與誘導(dǎo)型一氧化氮合酶(Inducible nitric oxide synthase,iNOS)底物競爭和其他機(jī)制發(fā)揮抗炎的作用;M2型KCs可通過精氨酸酶依賴的機(jī)制促進(jìn)M1型KCs凋亡,限制肝損傷和NASH進(jìn)展[14]。而Arg-1是M2巨噬細(xì)胞的關(guān)鍵標(biāo)志物。
MAFLD/NAFLD疾病譜中,單純性脂肪肝可逐漸進(jìn)展為脂肪性肝炎、肝纖維化、肝硬化甚至肝癌,而巨噬細(xì)胞在不同疾病表現(xiàn)下有著重要的作用。Xiong等[15]利用單細(xì)胞分泌組基因分析鑒定了NASH相關(guān)巨噬細(xì)胞可表達(dá)高水平的髓系細(xì)胞2觸發(fā)受體,與疾病的嚴(yán)重程度相關(guān)。巨噬細(xì)胞在纖維化中可表現(xiàn)出雙重功能,Kupffer細(xì)胞和單核細(xì)胞來源的巨噬細(xì)胞在纖維化進(jìn)展過程中都是促纖維化細(xì)胞并介導(dǎo)肌成纖維細(xì)胞的存活[16];當(dāng)損傷去除后,單核細(xì)胞來源的巨噬細(xì)胞變得抗纖維化,有助于纖維化的消退[17]。在MAFLD的終末期階段肝癌(Hepatocarcinoma,HCC)中,作為腫瘤微環(huán)境的關(guān)鍵成分,巨噬細(xì)胞也被認(rèn)為具有雙重作用,在HCC進(jìn)展過程中具表現(xiàn)為促炎和促腫瘤作用,但在HCC消退過程中可能轉(zhuǎn)變?yōu)榭鼓[瘤作用[18]。
3巨噬細(xì)胞與炎癥
NASH的特點是肝臟中的炎性細(xì)胞浸潤,而肝臟巨噬細(xì)胞在這一過程中起著中心作用[19]。巨噬細(xì)胞產(chǎn)生的細(xì)胞因子(如IL-6、TNF、IL-1b)可直接靶向肝細(xì)胞,促進(jìn)脂肪變性、炎癥和肝細(xì)胞損傷。IL-6是一種多功能細(xì)胞因子,在許多慢性炎癥疾病中發(fā)揮重要作用。在NASH患者中,肝細(xì)胞IL-6的表達(dá)與NAFLD的嚴(yán)重程度呈正相關(guān)[20]。巨噬細(xì)胞極化與微環(huán)境有關(guān),含有脂多糖和干擾素-γ的炎性微環(huán)境誘導(dǎo)巨噬細(xì)胞極化為促炎的M1型。炎癥因子IL-4、IL-10和IL-13可誘導(dǎo)巨噬細(xì)胞向抗炎M2類型(如M2a、M2b和M2c)極化[21]。在NASH中,需要快速而豐富的促炎巨噬細(xì)胞,這在早期是有益的;然而,促炎巨噬細(xì)胞的持續(xù)存在會導(dǎo)致炎癥和纖維化的加重[22]。兩種巨噬細(xì)胞間也可相互作用,研究顯示,抗炎巨噬細(xì)胞可以影響由IL -10驅(qū)動的M1細(xì)胞凋亡,這與非酒精性脂肪肝疾病患者疾病嚴(yán)重程度的改善有關(guān)[23]。此外,肝巨噬細(xì)胞上TLR4信號的激活增加了肝竇內(nèi)中性粒細(xì)胞的粘附,而中性粒細(xì)胞可通過激活和增加肝星狀細(xì)胞(Hepatic stellate cell,HSC)的增殖來加速纖維化[24]。
4巨噬細(xì)胞與免疫應(yīng)答
先天免疫機(jī)制是肝臟炎癥轉(zhuǎn)變的中心,巨噬細(xì)胞起關(guān)鍵作用[25]。免疫應(yīng)答失調(diào)是非酒精性脂肪肝發(fā)生發(fā)展的中心環(huán)節(jié),巨噬細(xì)胞中的模式識別受體(Pattern recognition receptor,PRR)信號也有助于激活各種適應(yīng)性免疫反應(yīng),其中巨噬細(xì)胞-T細(xì)胞相互作用在NAFLD進(jìn)展中起著特別重要的作用。KCs是一種自我更新的巨噬細(xì)胞,排列在竇內(nèi)皮細(xì)胞內(nèi),清除細(xì)胞碎片、病原體和腸源性產(chǎn)物。在健康的肝臟中,它們促進(jìn)了對這些潛在顆??乖哪褪苄?,部分是通過擴(kuò)增調(diào)節(jié)性T細(xì)胞(Regulatory cells,Treg)[26]。KCs的抗原提呈誘導(dǎo)CD4+T細(xì)胞停滯和分泌產(chǎn)生抗原特異性Treg,從而導(dǎo)致免疫耐受。
5 巨噬細(xì)胞與IR
MAFLD的第一次打擊與胰島素抵抗(Insulin resistance,IR)為中心,而巨噬細(xì)胞顯示了與IR的密切聯(lián)系。在高脂飼料喂養(yǎng)的模型中,Kupffer細(xì)胞特異性的核因子κB(Nuclear factor kappa-B,NF-κBNF-κB)沉默改善了胰島素敏感性,減少了細(xì)胞因子的分泌[27];肝巨噬細(xì)胞中維生素D受體的激活通過誘導(dǎo)抗炎表型改善胰島素抵抗、脂肪變性和肝臟炎癥[28];過氧化物酶體增殖物激活受體-γ(Peroxisome proliferators-activated receptors-γ,PPAR-γ)激動劑羅格列酮上調(diào)可使脂質(zhì)誘導(dǎo)的巨噬細(xì)胞極化由M1為主表型變?yōu)镸2型[29],這些均表明巨噬細(xì)胞在肝臟胰島素抵抗中起著關(guān)鍵作用。此外,巨噬細(xì)胞還是炎癥介導(dǎo)的胰島素抵抗的關(guān)鍵調(diào)節(jié)細(xì)胞[30]。缺氧誘導(dǎo)因子-1α(Hypoxia inducible,HIF-1α)是巨噬細(xì)胞糖酵解的主要調(diào)節(jié)因子,它可參與胰島素抵抗的發(fā)生,在脂肪組織炎癥和糖耐量恢復(fù)過程中可表現(xiàn)為HIF-1α的缺失[31]。相反,據(jù)報道巨噬細(xì)胞HIF-2α通過誘導(dǎo)M2極化改善胰島素抵抗和脂肪組織炎癥[32]。
6巨噬細(xì)胞與脂質(zhì)代謝
眾所周知,MAFLD是脂質(zhì)在肝臟的過量沉積,且MAFLD本身與代謝相關(guān)疾病密切相關(guān),而巨噬細(xì)胞在脂質(zhì)代謝中發(fā)揮關(guān)鍵作用。促炎巨噬細(xì)胞可直接刺激脂解,這是增加流向骨骼肌和肝臟的脂質(zhì)流量的關(guān)鍵[33]。KCs來源的IL-1β被證明通過下調(diào)過氧化物酶體增殖物激活受體-α(Peroxisome proliferators-activated receptors-α,PPAR-α)而加劇肝細(xì)胞三酰甘油的蓄積,導(dǎo)致脂肪酸氧化減少[34]。巨噬細(xì)胞通過巨噬細(xì)胞吞噬和清道夫受體介導(dǎo)的途徑攝取低密度脂蛋白、極低密度脂蛋白和氧化的脂蛋白,還可利用清道夫受體攝取富含膽固醇的脂蛋白[35]。巨噬細(xì)胞與斑塊消退有關(guān),這可能與斑塊中巨噬細(xì)胞的表型發(fā)生改變相關(guān),消退斑塊中的巨噬細(xì)胞表達(dá)高水平的Arg-1和CD163,及低水平的促炎基因,包括腫瘤壞死因子-α(TNF-α)[36]。
7 巨噬細(xì)胞與腸道菌群
內(nèi)毒素(LPS)是腸道細(xì)菌的主要成分,在NAFLD的肝臟炎癥和巨噬細(xì)胞極化中起關(guān)鍵作用。臨床證據(jù)表明,在NAFLD受試者中,當(dāng)結(jié)腸黏膜免疫功能因腸道生物失調(diào)而受損時,LPS不再局限于腸腔內(nèi),而是到達(dá)肝臟[37]。肝細(xì)胞質(zhì)膜上的TLR-4將LPS識別為一種配體,促進(jìn)受體二聚化,進(jìn)而激活信號級聯(lián)反應(yīng)。接下來包括TNF-α、白細(xì)胞介素-1β和IL-6的產(chǎn)生,加劇肝臟炎癥狀態(tài),促進(jìn)纖維化形成。而通過益生菌、抗生素、糞便微生物區(qū)系轉(zhuǎn)移和膽汁酸的隔離,恢復(fù)正常的腸道微生物群也可以抑制KCs的激活。
8小結(jié)
MAFLD/NAFLD是一種低度慢性炎癥,與肥胖、胰島素抵抗、2型糖尿?。═2DM)、高血壓、高脂血癥和代謝綜合征密切相關(guān)。肝臟作為體內(nèi)主要的免疫器官發(fā)揮作用,主要富含各種先天免疫細(xì)胞,包括巨噬細(xì)胞、樹突狀細(xì)胞等。這些細(xì)胞的激活進(jìn)一步協(xié)調(diào)多種先天免疫反應(yīng),進(jìn)一步引發(fā)肝臟炎癥。由于非酒精性脂肪肝(Nonalcoholic fatty liver,NAFL)到脂肪性肝炎(NASH)的一系列疾病的全球大流行及病毒性肝炎的有效控制,預(yù)計MAFLD/NAFLD將呈指數(shù)級增長,MAFLD/NAFLD及其相關(guān)的終末期肝病將帶來重大的公共衛(wèi)生負(fù)擔(dān)。此外MAFLD/NAFLD的存在和其嚴(yán)重程度與嚴(yán)重肝外疾病發(fā)生的風(fēng)險也有一定關(guān)系,如高血壓、血脂異常、結(jié)腸癌、慢性腎病、2型糖尿病和心血管疾病等。但由于目前仍缺乏對驅(qū)動本病發(fā)生發(fā)展的具體致病機(jī)制的深入了解,至今臨床上尚無安全有效的藥物治療本病,故此,需要迫切地尋找和開發(fā)治療新思路和方法。
在正常生理條件下,肝臟巨噬細(xì)胞在維持肝臟穩(wěn)態(tài)、促進(jìn)炎癥和介導(dǎo)NAFLD向NASH發(fā)展過程中的纖維化方面發(fā)揮著重要作用。如前文所述,巨噬細(xì)胞可以通過不同的分化、表達(dá)方式,參與了炎癥、免疫應(yīng)答、脂質(zhì)代謝、胰島素抵抗(IR)、腸道菌群失調(diào)等與MAFLD/NAFLD發(fā)生、發(fā)展密切相關(guān)的組分,其中巨噬細(xì)胞的功能和表型多樣性在MAFLD/NAFLD的疾病譜系中起著關(guān)鍵作用。巨噬細(xì)胞的不同功能取決于其不同來源,及在MAFLD/NAFLD進(jìn)展過程中受局部和系統(tǒng)信號影響的激活、分化和極化。肝臟中的巨噬細(xì)胞既能發(fā)揮炎癥作用,也發(fā)揮非炎癥作用。巨噬細(xì)胞的反應(yīng)首先在整合環(huán)境刺激的細(xì)胞表面受體水平上被介導(dǎo),信號在細(xì)胞中通過多個水平的調(diào)節(jié)被轉(zhuǎn)導(dǎo),特定的轉(zhuǎn)錄程序決定效應(yīng)功能。然而,巨噬細(xì)胞的確切作用及代謝應(yīng)激通過單核/巨噬細(xì)胞的招募和激活導(dǎo)致NASH的機(jī)制尚不完全清楚,仍需要進(jìn)一步研究特定的巨噬細(xì)胞亞群及其不同調(diào)節(jié)因子在MAFLD/NAFLD發(fā)生及進(jìn)展中的作用。目前巨噬細(xì)胞已被報道在MAFLD/NAFLD的進(jìn)展中起關(guān)鍵作用,是MAFLD/NAFLD治療的潛在靶點。如類胡蘿卜素是有效的抗氧化劑和抗炎的微量營養(yǎng)素,可以調(diào)節(jié)巨噬細(xì)胞的極化,從而阻止NASH的進(jìn)展,已被用于預(yù)防和治療NAFLD。因此繼續(xù)探索、研究巨噬細(xì)胞參與MAFLD/NAFLD發(fā)病機(jī)制的細(xì)胞和分子過程,以便更好地理解和推動針對以巨噬細(xì)胞為靶點的臨床研究和藥物治療的開展,可能為MAFLD/NAFLD的治療提供新的思路。
[參考文獻(xiàn)]
[1] 薛芮,范建高.代謝相關(guān)脂肪性肝病新定義的國際專家共識簡介[J].臨床肝膽病雜志,2020,36(6):1224-1227.
[2] Ye Q ,Zou B ,Yeo YH,et al. Global prevalence,incidence,and outcomes of non-obese or lean non-alcoholic fatty liver disease:A systematic review and meta-analysis[J]. The Lancet Gastroenterology & Hepatology,2020, 5(8):739-752.
[3] Zhou F,Zhou JH,Wang WX,et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018:A systematic review and meta-analysis[J].Hepatology,2019,70(4): 1119-1133.
[4] Shi Y,Wang Q,Sun Y,et al. The prevalence of lean/nonobese nonalcoholic fatty liver disease[J]. Journal of Clinical Gastroenterology,2020,54(4):378-387.
[5] Day CP,James OF.Steatohepatitis:A tale of two "hits"?[J].Gastroenterology,1998,114(4):842-845.
[6] Wen YK,Lambrecht J,Ju C,et al. Hepatic macrophages in liver homeostasis and diseasesdiversity,plasticity and therapeutic opportunities[J].Cellular&Molecular Immunology, 2021,18(1):45-56.
[7] Tosello-Trampont AC,Landes SG,Nguyen V,et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production[J].J Biol Chem,2012,287(48):40 161-40 172.
[8] Nobs SP,Kopf M. Tissue-resident macrophages:Guardians of organ homeostasis[J]. Trends in Immunology,2021,42(6):495-507.
[9] Sica A,Bronte V.Altered macrophage differentiation and immune dysfunction in tumor development[J].J Clin Invest,2007,117(5):1155-1166.
[10] Kang S,Atsushi K.The spectrum of macrophage activation by immunometabolism[J]. International Immunology,2020,32(7):467-473.
[11] Papatheodoridi A,Chrysavgis L,Koutsilieris M,et al. The role of senescence in the development of non-alcoholic fatty liver disease and progression to no-alcoholic steatohepatitis[J]. Hepatology,2020,71(1):363-374.
[12] Lotowska,Joanna Maria,Sobaniec-Lotowska,et al.The role of kupffer cells in the morphogenesis of nonalcoholic steatohepatitis-ultrastructural findings. The first report in pediatric patients[J].Scand J Gastroenterol,2013,48(3):352-357.
[13] Zhang X,F(xiàn)an LN,Wu JF,et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization[J].J Hepatol,2019,71(1):163-174.
[14] Lopes T,Mosser DM,Gonalves R. Macrophage polarization in intestinal inflammation and gut homeostasis[J]. Inflammation Research,2020,69(12):1163-1172.
[15] Xiong XL,Kuang H,Ansari S,et al. Landscape of intercellular crosstalk in healthy and NASH liver Revealed by single-cell secretome gene analysis[J].Mol Cell,2019, 75(3):644-660.
[16] Duffield JS,F(xiàn)orbes SJ,Constandinou CM,et al. Selective depletion of macrophages reveals distinct,opposing roles during liver injury and repair[J].J Clin Invest,2005,115(1):56-65.
[17] Horst AK,Tiegs G,Diehl L. Contribution of macrophage efferocytosis to liver homeostasis and disease[J]. Frontiers in Immunology,2019,10:2670.
[18] Mantovani A,Schioppa T,Porta C,et al.Role of tumor-associated macrophages in tumor progression and invasion[J] .Cancer Metastasis Rev,2006,25(3):315-322.
[19] Wieckowska A,F(xiàn)eldstein AE.Diagnosis of nonalcoholic fatty liver disease:Invasive versus noninvasive[J].Semin Liver Dis,2008,28(4):386-395.
[20] Park JE,Dutta B,Tse SW,et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift[J]. Oncogene,2019,38(26):5158-5173.
[21] Li Z,F(xiàn)eng PP,Zhao ZB,et al. Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway[J]. Biochemical and Biophysical Research Communications,2019,510(1):20-26.
[22] O. Yu. Kytikovа,Novgorodtseva TP,Denisenko YK,et al. The role of lipids in the signaling mechanisms of toll-like receptors[J].Vestnik Rossiǐskoǐ Akademii Meditsinskikh Nauk/Rossiǐskaia Akademiia Meditsinskikh Nauk,2020,75(6):585-593.
[23] Zhang W,Zhao J,Wang R,et al. Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain[J]. CNS Neuroence & Therapeutics,2019,25(12):1329-1342.
[24] Remmerie A,Martens L,Thoné T,et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver[J]. Immunity,2020, 53(3):641-657.
[25] Franco F,Jaccard A,Romero P,et al. Metabolic and epigenetic regulation of T-cell exhaustion[J]. Nature Meta-bolism,2020,2(10):1001-1012.
[26] Mallick A,Sanabria JA,Schade M,et al. Pnaktide abrogates accelerated liver cells aging/senescence induced by western diet in the rodent[J]. HPB,2019,21(1):139-140.
[27] Dong BN,Zhou Y,Wang W,et al. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation,steatosis,and insulin resistance in mice[J].Hepatology,2019,71(5):1559-1574.
[28] Wu H,Zhong Z,Wang A,et al. LncRNA FTX represses the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via regulating the M1/M2 polarization of kupffer cells[J]. Cancer Cell International,2020, 20(1):266-277.
[29] Zhang K,Shi Z,Zhang M,et al. Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis[J]. Cell Death & Disease,2020,11(2):132.
[30] Yun G,Shyab C,Hja C,et al. Decursin promotes HIF-1α proteasomal degradation and immune responses in hypoxic tumour microenvironment[J]. Phytomedicine,2020, 78:153 318.
[31] Kojta I.Obesity,bioactive lipids,and adipose tissue inflammation in insulin resistance[J]. Nutrients,2020,12(5):1305.
[32] Lair B ,Laurens C,Bosch B,et al. Novel insights and mechanisms of lipotoxicity-driven insulin resistance[J]. International Journal of Molecular Sciences,2020,21(17):6358.
[33] Kurano M,Ikeda H,Iso-O N,et al. Regulation of the metabolism of apolipoprotein M and sphingosine 1-phosphate by hepatic PPARγ activity[J]. Biochemical Journal,2018,475(12):2009-2024.
[34] Tabas I,Bornfeldt KE.Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis[J]. Circulation Research,2020,126(9):1209-1227.
[35] Barrett TJ,Distel E,Murphy AJ,et al. Apolipoprotein AI) promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation[J]. Circulation,2019,140(14):1170-1184.
[36] Kubekina MV,Nikiforov NG,Karagodin VP,et al. Analysis of macrophage transcriptome in atherogenesis[J]. Russian Journal of Cardiology,2019,24(2):92-98.
[37] Wan Y,Tang J,Li J,et al. Contribution of diet to gut microbiota and related host cardiometabolic health:Diet-gut interaction in human health[J]. Gut Microbes,2020, 11(3):1-7.
(收稿日期:2021-06-21)