呂 銘,陳蔚芳,蘇 川,韋子祥
(南京航空航天大學(xué)機(jī)電學(xué)院,南京 210016)
主軸是數(shù)控機(jī)床的關(guān)鍵功能部件,其精度直接影響機(jī)床的加工精度。主軸回轉(zhuǎn)誤差過(guò)大,將影響機(jī)床的工作性能和壽命,這對(duì)精密機(jī)床來(lái)說(shuō)是不允許的。隨著加工精度要求的提高,對(duì)高速主軸的回轉(zhuǎn)誤差進(jìn)行動(dòng)態(tài)檢測(cè)具有重要意義。目前常見(jiàn)的主軸誤差測(cè)試方法有靜態(tài)打表法、單向法、雙向法、多步法、多點(diǎn)法[1-3]等。在回轉(zhuǎn)誤差測(cè)量中往往還涉及到誤差分離技術(shù),Wei G等提出的混合法利用兩個(gè)線位移傳感器和一個(gè)角位移傳感器同時(shí)進(jìn)行測(cè)量[4],能夠?qū)A度誤差和主軸的回轉(zhuǎn)誤差進(jìn)行完全分離,也能很好地測(cè)出表面形貌里的高頻成分。譚久彬等通過(guò)分析多步法誤差分離技術(shù)的原理誤差,提出鑒相法誤差分離技術(shù)[5],擴(kuò)展了無(wú)諧波抑制范圍,并簡(jiǎn)化測(cè)量過(guò)程和測(cè)量系統(tǒng)。對(duì)于標(biāo)準(zhǔn)球或檢測(cè)棒安裝偏心的消除,KimK、梁淑卿等[6-7]將其視為正余弦信號(hào),通過(guò)濾除一階諧波分量進(jìn)行消除,該方法由于采用近似算法,存在誤差。
目前較先進(jìn)的主軸回轉(zhuǎn)誤差測(cè)量方法設(shè)備和工裝成本高,檢測(cè)方法較繁瑣,檢測(cè)的實(shí)時(shí)性也沒(méi)有很好地解決,不適用于廣泛運(yùn)用。為此,本文在前人研究基礎(chǔ)上,結(jié)合時(shí)域和頻域的信號(hào)分析方法,以FFT頻域分析和集合經(jīng)驗(yàn)?zāi)B(tài)分解方法為理論基礎(chǔ),提出了一種新的主軸回轉(zhuǎn)誤差測(cè)試方法。通過(guò)建立理論誤差模型分析了各回轉(zhuǎn)信號(hào)的特征,彌補(bǔ)了兩點(diǎn)法無(wú)法完全分離偏心誤差的缺陷,降低了對(duì)設(shè)備精度和傳感器安裝位置精度的要求。
主軸系統(tǒng)的回轉(zhuǎn)誤差包含了軸向竄動(dòng)、徑向跳動(dòng)和傾角擺動(dòng)誤差[8]。測(cè)量主軸軸向竄動(dòng)時(shí),只需要在主軸端面安置一個(gè)位移傳感器進(jìn)行測(cè)量即可,本文不多贅述。主軸的徑向跳動(dòng)和傾角擺動(dòng)都屬于徑向誤差:徑向跳動(dòng)為單個(gè)截面的徑向誤差,包含了二維信息,故可以采用雙向正交測(cè)量法進(jìn)行間接測(cè)量;傾角擺動(dòng)可由兩個(gè)截面的徑向誤差數(shù)據(jù)求得,故準(zhǔn)確測(cè)量徑向跳動(dòng)誤差是評(píng)估主軸回轉(zhuǎn)誤差的重要前提。徑向跳動(dòng)誤差的測(cè)量結(jié)果中一般包含了檢測(cè)棒制造和安裝的誤差、傳感器安裝偏心引入的偏心誤差和主軸變形誤差等。為了準(zhǔn)確評(píng)估主軸回轉(zhuǎn)誤差,需要從綜合誤差中剔除偏心誤差以及變形誤差。對(duì)于主軸回轉(zhuǎn)誤差常以回轉(zhuǎn)精度作為評(píng)判指標(biāo),其測(cè)量原理是:主軸帶動(dòng)軸端的檢測(cè)棒做回轉(zhuǎn)運(yùn)動(dòng)時(shí)產(chǎn)生徑向跳動(dòng),點(diǎn)激光位移傳感器測(cè)量與測(cè)試棒間的位移變化數(shù)據(jù)并轉(zhuǎn)化為模擬電壓信號(hào),采集系統(tǒng)進(jìn)行定時(shí)信號(hào)采集,最終使用最小二乘圓法評(píng)價(jià)主軸回轉(zhuǎn)誤差。
如圖1所示為主軸徑向跳動(dòng)的示意圖,圖中O為主軸理想回轉(zhuǎn)中心,由主軸的支撐部件確定。
圖1 徑向跳動(dòng)原理圖
Oi為主軸平均旋轉(zhuǎn)中心,由于電主軸旋轉(zhuǎn)存在徑向跳動(dòng),故圖中點(diǎn)O和點(diǎn)Oi不重合;ri為檢測(cè)棒的徑向跳動(dòng)誤差;R為檢測(cè)棒橫截面半徑;θi為檢測(cè)棒回轉(zhuǎn)角。隨著電主軸的運(yùn)行,主軸支撐結(jié)構(gòu)的變形將導(dǎo)致主軸平均旋轉(zhuǎn)中心在不同溫度場(chǎng)下產(chǎn)生偏移,加上運(yùn)動(dòng)過(guò)程中主軸的隨機(jī)跳動(dòng),點(diǎn)激光位移傳感器與被測(cè)圓柱表面間的距離實(shí)時(shí)發(fā)生變化。兩個(gè)位移傳感器的位移信號(hào)xi和yi可表示為:
xi(θi)=Sx(θi)+ex(θi)+rx(θi)
(1)
yi(θi)=Sy(θi)+ey(θi)+ry(θi)
(2)
式(1)和式(2)中,Sx(θi)、Sy(θi)為檢測(cè)棒相差90°的兩個(gè)測(cè)點(diǎn)的表面形狀誤差,ex(θ)、ey(θ)為傳感器安裝誤差在X、Y方向上帶來(lái)的偏心誤差;rx(θi)、ry(θi)為徑向誤差運(yùn)動(dòng)在X、Y方向上的分量。如圖2所示,采用雙向正交測(cè)量法測(cè)量主軸徑向位移。
圖2 雙向正交測(cè)量法
主軸旋轉(zhuǎn)過(guò)程中,以高精度檢測(cè)棒作為基準(zhǔn),沿檢測(cè)棒軸向布置兩組點(diǎn)激光位移傳感器(每組兩個(gè),共4個(gè)),每組傳感器沿X、Y坐標(biāo)軸方向呈正交分布安裝,即圖中的S1、S2、S3、S4。每組實(shí)驗(yàn)測(cè)得的位移信號(hào)中不僅包含回轉(zhuǎn)誤差信號(hào)xi和yi,還混入了采集系統(tǒng)自身的噪聲信號(hào)、檢測(cè)棒自身制造和安裝的誤差以及傳感器安裝偏心帶來(lái)的偏心誤差信號(hào)。換言之,由xi和yi所確定的為圓截面幾何中心的軌跡而非回轉(zhuǎn)軸心的軌跡。為得到精確的主軸回轉(zhuǎn)誤差,必須盡量減小或者消除檢測(cè)棒形狀誤差S和偏心誤差e。
徑向跳動(dòng)誤差主要特點(diǎn)為周期性以及徑向性。所謂周期性即圓輪廓信號(hào)主要由轉(zhuǎn)速基頻和倍頻成分組成;徑向性指圓截面實(shí)際輪廓為一個(gè)封閉曲線輪廓,且各點(diǎn)徑向尺寸各有差異。采用高精度檢測(cè)棒情況下,徑向誤差信號(hào)主要包含了偏心誤差以及回轉(zhuǎn)誤差,使用傅里葉級(jí)數(shù)可表示為:
(3)
式中,k表示圓輪廓諧波分量階數(shù);S0為數(shù)據(jù)中的直流分量,與傳感器安裝位置和主軸變形有關(guān);Ak、Bk為i階諧波對(duì)應(yīng)的幅值。
圖3 偏心誤差原理圖
CIRP統(tǒng)一文件認(rèn)為主軸徑向回轉(zhuǎn)誤差中不存在一次諧波,采樣信號(hào)中的一次諧波完全由偏心引起,但相關(guān)領(lǐng)域內(nèi)的部分學(xué)者對(duì)上述觀點(diǎn)持否定態(tài)度。為了探究偏心帶來(lái)的實(shí)際影響,本文對(duì)偏心作用進(jìn)行了進(jìn)一步分析,其原理如圖3所示。
圖中O為主軸回轉(zhuǎn)中心,O′為截面幾何中心,ri為偏心距,θ為回轉(zhuǎn)角,R為截面半徑,e為傳感器與主軸回轉(zhuǎn)中心的偏移量,D為位移傳感器軸線與y軸的交點(diǎn)到被測(cè)點(diǎn)的距離。假設(shè)檢測(cè)棒不存在形狀誤差,通過(guò)幾何關(guān)系可得到:
(4)
當(dāng)e=1 mm,R=30 mm,ri在0~0.014 mm范圍內(nèi)變化時(shí),對(duì)D進(jìn)行頻譜分析,結(jié)果如圖4所示。當(dāng)ri=0.005 mm,R=30 mm,e在0~3 mm范圍內(nèi)變化時(shí),對(duì)D進(jìn)行頻譜分析,結(jié)果如圖5所示。從圖中分析可知,ri和e均對(duì)雙方具有放大作用,信號(hào)主要以基波為主,e<1 mm,ri<0.012 mm時(shí)頻譜中的基波賦值近似等于ri,此時(shí)可忽略高次諧波的影響,通過(guò)濾除基波消除偏心誤差。但隨著ri和e的增大,高次諧波在頻譜中所占比重以指數(shù)形式增長(zhǎng),此時(shí)僅濾除基波無(wú)法很好地將偏心誤差完全消除。
故在不同的偏移量和偏心距情況下,僅靠傅里葉變換消除一階諧波去除偏心誤差的做法在傳感器安裝精度不高的情況下并不能完全分離偏心誤差信號(hào),需要找到一種可靠的方法有效分離偏心誤差。
圖4 諧波幅值與偏心距ri的變化規(guī)律 圖5 諧波幅值與偏移量e的變化規(guī)律
評(píng)定
EEMD算法以EMD算法為基礎(chǔ),在EMD分解過(guò)程中加入極小幅度的白噪聲,可以有效抑制模態(tài)混疊現(xiàn)象,使分離得到的固有模態(tài)分量(Intrinsic Mode Function,IMF)具有實(shí)際物理意義。同時(shí),得益于白噪聲均勻分布的特點(diǎn),將其投射到不同頻率尺度的信號(hào)中,可有效抑制IMF的不連續(xù)性。EEMD算法步驟如下:
(1)向被分解信號(hào)xi(t)中加入均值0、幅值標(biāo)準(zhǔn)差為常數(shù)的高斯白噪聲,進(jìn)行信號(hào)歸一化處理;
(2)使用EMD算法分解歸一化信號(hào),獲得各階IMF函數(shù);
(3)重復(fù)步驟(1)和步驟(2),每次加入強(qiáng)度相同序列不同的高斯白噪聲;
(4)利用白噪聲頻譜為零的特點(diǎn),將上述各階IMF函數(shù)進(jìn)行集成平均處理從而消除人為加入的白噪聲對(duì)真實(shí)IMF的影響,獲得x(t)的EEMD分解,即:
(5)
EEMD 算法可根據(jù)被分析信號(hào)特征,將含相關(guān)源在內(nèi)的信號(hào)分解成一系列線性、平穩(wěn)的IMF分量,即將多變量信號(hào)分解成若干單分量調(diào)幅、調(diào)頻信號(hào)之和,該過(guò)程可視為線性濾波。在分解過(guò)程中加入的高斯白噪聲將直接影響其分解效果,白噪聲賦值過(guò)大將影響高頻信號(hào)的間隔分布,賦值過(guò)低則無(wú)法影響低頻極值點(diǎn)的選取,喪失時(shí)間尺寸補(bǔ)充的作用。故EEMD算法需加入有效的白噪聲準(zhǔn)則[9],具體如下:
(6)
式中,ηh為分解信號(hào)有效高頻成分幅值標(biāo)準(zhǔn)差;ηg為加入高斯白噪聲幅值標(biāo)準(zhǔn)差;ηf為分解信號(hào)幅值標(biāo)準(zhǔn)差。
根據(jù)美國(guó)ASME標(biāo)準(zhǔn),可以對(duì)主軸總誤差(RTRE)按照頻率劃分為同步誤差(RSRE)和異步誤差(RARE)。同步誤差又叫平均誤差,指主軸回轉(zhuǎn)基頻整倍數(shù)的那些分量的總和;異步誤差又叫隨機(jī)誤差,是指總誤差減掉同步誤差的剩余分量,包括主軸回轉(zhuǎn)基頻整數(shù)倍以外的其他誤差成分以及基頻以內(nèi)的周期性諧波成分。這種分離方式對(duì)于工程評(píng)價(jià)和誤差源辨識(shí)是具有實(shí)際意義的。研究中通過(guò)對(duì)信號(hào)進(jìn)行FFT變換后得到對(duì)應(yīng)的頻譜圖,使用合適的梳狀濾波器對(duì)信號(hào)中的同步異步成分進(jìn)行提取分離,圖6為典型的梳狀濾波器頻率特性圖。
圖6 梳狀濾波器頻率特性
當(dāng)采用高精度測(cè)試棒的情況下,實(shí)驗(yàn)測(cè)得的信號(hào)中需要分離信號(hào)的直流分量和偏心誤差,具體評(píng)定方法流程如圖7所示,基本步驟如下:
(1)對(duì)采集的位移數(shù)據(jù)先進(jìn)行均值處理,濾除采集系統(tǒng)中的高斯白噪聲信號(hào);將濾波后的信號(hào)進(jìn)行EEMD處理,從高頻到低頻分解為若干IMF分量和一個(gè)殘余分量。中低階的IMF代表了數(shù)據(jù)的局部特征,包含了信號(hào)的高頻分量,主要為主軸各回轉(zhuǎn)誤差信號(hào);傳感器偏心誤差包含在若干高階IMF分量之中;殘余分量和接近殘余分量的高階IMF分量則與傳感器初始安裝位置和主軸變形誤差有關(guān),隨著溫度變化可反映主軸的回轉(zhuǎn)中心偏移量。
圖7 主軸回轉(zhuǎn)誤差評(píng)定流程
(2)以信號(hào)波數(shù)為指標(biāo),去除各分量中的偏心誤差以及直流分量。對(duì)于每個(gè)IMF分量波數(shù)的計(jì)算采用如下方式:
Di(k)=(imfi(k+1)-imfi(k))×fs
(7)
式中,Di(k)為IMF序列對(duì)應(yīng)的一階導(dǎo)數(shù)序列,計(jì)算Di(k)與x軸的交點(diǎn)個(gè)數(shù)Ni,則每階IMF序列的波數(shù)Wi為[Ni/2],[*]表示向下取整。
由前面分析可知,當(dāng)以傅里葉級(jí)數(shù)表示偏心誤差時(shí),信號(hào)主要由基頻信號(hào)和若干不確定的高次諧波組成。換言之,對(duì)于這類三角波形,傅里葉變換必然會(huì)產(chǎn)生多個(gè)三角諧波,也就造成了偏心誤差的諧波成分不確定的情況。而EEMD方法擺脫了必須以三角函數(shù)作為基本分解單元的束縛,可自適應(yīng)各種不同的波形進(jìn)行頻段分離。由于偏心誤差帶來(lái)的周期與轉(zhuǎn)速周期相同,即偏心誤差對(duì)應(yīng)的波形其波數(shù)為1波/周,故波數(shù)小于1波/周的IMF分量為偏心誤差信號(hào);殘余分量為熱誤差變形與傳感器初始值的綜合量,其變化量代表了主軸回轉(zhuǎn)中心的偏移量。將波數(shù)截止值設(shè)為1波/周,濾除波數(shù)小于截止值的IMF分量和殘余分量。
(3)濾除偏心誤差信號(hào)以及殘余分量后,將剩余的IMF分量重構(gòu)即為真實(shí)的回轉(zhuǎn)誤差信號(hào)。主軸回轉(zhuǎn)誤差計(jì)算分兩個(gè)步驟完成:第一步以重構(gòu)后的信號(hào)計(jì)算主軸的總回轉(zhuǎn)誤差;第二步借助FFT頻域分析技術(shù),將時(shí)域信號(hào)轉(zhuǎn)換為頻域信號(hào)后使用梳狀濾波器分離并提取其同步分量和異步分量,分別進(jìn)行IFFT后計(jì)算各自的同步回轉(zhuǎn)誤差和異步回轉(zhuǎn)誤差。
圖8 回轉(zhuǎn)誤差試驗(yàn)臺(tái)
主軸回轉(zhuǎn)誤差試驗(yàn)臺(tái)如圖8所示,被測(cè)對(duì)象為30 kW/24 000 r/min的高精度內(nèi)藏式高速電主軸,前端夾持一個(gè)高精度檢測(cè)棒;信號(hào)采集設(shè)備使用武漢uTekl動(dòng)態(tài)信號(hào)分析系統(tǒng),最高采樣頻率160 MHz;以軸向?yàn)榛鶞?zhǔn)將MTI點(diǎn)激光位移傳感器沿X、Y坐標(biāo)軸方向呈正交分布安裝;電主軸軸承溫度使用鉑熱電阻進(jìn)行測(cè)量。測(cè)試系統(tǒng)搭建方案如圖9所示。
圖9 測(cè)試系統(tǒng)方案圖
圖10 去噪后的主軸X向原始數(shù)據(jù)
如圖10所示為3000 r/min情況下,單個(gè)截面X方向上經(jīng)過(guò)均值濾波去除白噪聲后的數(shù)據(jù)。對(duì)X方向的數(shù)據(jù)進(jìn)行EEMD分解后得到9個(gè)IMF以及殘余分量(見(jiàn)圖11)。根據(jù)本文計(jì)算波數(shù)的方法,IMF4分量的波數(shù)為1波/周,即4階到9階的IMF分量屬于偏心誤差,殘余分量為變形和傳感器初始安裝位置的綜合距離信息。分離得到的偏心誤差信號(hào)與殘余分量所對(duì)應(yīng)的頻域如圖12所示,從頻域圖中可看到,偏心誤差主要由1階到5階的諧波組成,且1階基頻分量為主要成分,結(jié)果與前文對(duì)于偏心誤差的分析相吻合。將余下的低階IMF分量合并后重構(gòu)組成回轉(zhuǎn)誤差信號(hào)。對(duì)同一截面Y方向上的數(shù)據(jù)進(jìn)行相同處理后,使用X、Y方向的回轉(zhuǎn)誤差信號(hào)求解回轉(zhuǎn)軸心的軌跡,對(duì)應(yīng)的極坐標(biāo)圖如圖13所示,利用軸心軌跡并結(jié)合最小二乘圓方法即可求得主軸的各回轉(zhuǎn)誤差。
圖11 X向原始數(shù)據(jù)EEMD結(jié)果
圖12 X向偏心誤差頻譜圖
圖13 回轉(zhuǎn)誤差軌跡圖
多工況下,主軸回轉(zhuǎn)誤差的結(jié)果如圖14所示,隨著主軸轉(zhuǎn)速的上升,軸承溫度以及主軸回轉(zhuǎn)誤差均呈現(xiàn)增大趨勢(shì),且回轉(zhuǎn)誤差以同步誤差為主。特定轉(zhuǎn)速下,由于主軸處于共振區(qū),主軸回轉(zhuǎn)誤差會(huì)呈現(xiàn)異常增大趨勢(shì),此類工況將會(huì)對(duì)軸承支撐系統(tǒng)壽命以及工件質(zhì)量造成一定影響,故實(shí)際工作中避免共振區(qū)間顯得至關(guān)重要。
為驗(yàn)證測(cè)量方案的可靠性,每個(gè)轉(zhuǎn)速下分別測(cè)量5次回轉(zhuǎn)誤差,對(duì)應(yīng)的數(shù)據(jù)如圖15所示,從圖中可以看到,轉(zhuǎn)速?gòu)? 000~7 000 r/min過(guò)程中,每個(gè)工況下綜合回轉(zhuǎn)誤差的標(biāo)準(zhǔn)差最大值為0.046,表明該測(cè)試方案的數(shù)據(jù)重復(fù)度良好,算法的魯棒性較強(qiáng)。
圖14 多工況下的回轉(zhuǎn)誤差實(shí)驗(yàn)結(jié)果
圖15 測(cè)量方案可靠性實(shí)驗(yàn)數(shù)據(jù)
基于FFT頻域分析和集合經(jīng)驗(yàn)?zāi)B(tài)分解方法提出的一種主軸回轉(zhuǎn)誤差測(cè)試方法,能有效分離偏心誤差與熱誤差變形后得到主軸的同步與異步誤差。優(yōu)化的誤差分離算法無(wú)需大量原始檢測(cè)數(shù)據(jù)作為支撐,提高了檢測(cè)實(shí)時(shí)性的同時(shí)降低了設(shè)備工裝精度的要求。多工況下的實(shí)驗(yàn)表明,主軸轉(zhuǎn)速上升將造成軸承組溫度升高,主軸回轉(zhuǎn)誤差也將逐漸增大,且主要以同步誤差為主;在某些轉(zhuǎn)速下由于主軸處于共振區(qū),主軸回轉(zhuǎn)誤差會(huì)異常增大,應(yīng)避免主軸在此類轉(zhuǎn)速下工作;該測(cè)試方法在同一工況下結(jié)果重復(fù)度良好,具有較強(qiáng)的魯棒性,能為電主軸性能測(cè)試提供一定的理論依據(jù)以及技術(shù)支撐。