• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties*

    2021-01-21 02:08:06QiChen陳啟XinjianLi李欣健YaoWang王遙LijieChang常立杰JianWang王健YuewenZhang張躍文HonganMa馬紅安andXiaopengJia賈曉鵬
    Chinese Physics B 2021年1期
    關(guān)鍵詞:紅安王健

    Qi Chen(陳啟), Xinjian Li(李欣健), Yao Wang(王遙), Lijie Chang(常立杰), Jian Wang(王健),Yuewen Zhang(張躍文), Hongan Ma(馬紅安),?, and Xiaopeng Jia(賈曉鵬)

    1State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    2Key Laboratory of Material Physics of Ministry of Education,School of Physics and Microeletronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: high pressure and high temperature,,icrostructure,Al-doped ZnO,thermoelectric

    1. Introduction

    With increasing global attention on energy and environmental issues, thermoelectric materials have attracted extensive attention because they can directly convert waste thermal energy into electrical energy without producing pollution.[1]The core of this technology lies in the choice of thermoelectric materials, which are strong lightweight materials that do not release harmful gases during utilizing. Some traditional thermoelectric materials contain intermetallic compounds such as Bi2Te3and PbTe, and have shown improved thermoelectric properties.[2–5]However, they are also toxic, expensive, and thermally unstable. In recent years, oxide-based thermoelectric materials have been investigated because most traditional thermoelectric materials are easily oxidized and fail at hightemperatures (≥800 K). Zinc oxides are abundant, inexpensive, and environmentally friendly materials that have been investigated as alternative thermoelectric materials for hightemperature applications because of their excellent thermal and chemical stability in air.[6]

    The performance of thermoelectric materials is measured by the dimensionless figure of merit, zT =S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature,and κ is the thermal conductivity.High-performance thermoelectric materials have a high power factor (S2σ) and low thermal conductivity (κ).[7,8]However,these parameters are closely related to each other so that it is difficult to integrate good electrical properties and low thermal conductivity in a single material.[9,10]This universal principle has become a bottleneck preventing further improvements in thermoelectric materials.

    Many studies have focused on decreasing the thermal conductivity of ZnO-based thermoelectric materials,[11,12]while increasing the power factor can also optimize zT values. The thermoelectric material ZnO exhibits a high Seebeck coefficient (~340 V·K-1), whereas its electrical conductivity(~10 S·m-1)is still too low for practical applications.[13]Synthesis at atmospheric pressure is complicated and relatively long and can produce low-density samples, and the donor dopant (such as Al) has limited solubility in ZnO matrixes.[14,15]These factors limit the electrical conductivity and power factor of ZnO-based thermoelectric materials.High-pressure high-temperature (HPHT) methods can accelerate synthesis by using pressure to improve the solubility of the donor dopant in ZnO and to increase the density of the sample.[16]

    Many efforts have been devoted to studying the thermoelectric properties of ZnO.[17,18]Tanaka et al. used ZnO ceramics sintered by hot-pressing and obtained a power factor of 4.5 μW·cm-1·K-2at 900 K.[19]Guilmeau et al. sintered Al-doped ZnO in air and obtained a maximum power factor of 4.0 μW·cm-1·K-2at 1000 K.[20]Colder et al. synthesized Zn1-xNixO through a liquid route and reached a maximum power factor of 5.6 μW·cm-1·K-2at 900 K.[21]Cai et al.synthesized ZnO by sol-gel processing and reached a maximum power factor of 1.0 μW·m-1·K-2at 773 K.[22]The above literature shows that the thermoelectric properties of ZnO are greatly affected by the synthesis conditions, microstructure,and density of the sample.

    ZnO has poor electrical conductivity, and increasing its power factor is key to making it an excellent thermoelectric material. The utilizing of high pressures may improve its electrical properties by forming a polycrystalline structure, changing the lattice structure, or increasing the oxygen vacancies.[23]Grain refinement can reduce the thermal conductivity at high pressures. Bulk nanomaterials scatter phonons with short mean free paths but have little effect on long-range phonons. However,multi-scale hierarchical structures can scatter full-spectrum phonons, which reduces the thermal conductivity. At the same time, doping can produce enough inherent defects to improve the electrical and thermal properties of ZnO.

    Here,we employ a high-pressure technique to investigate the effect of different synthesis temperatures on the thermoelectric properties, morphologies, and structures of Al-doped ZnO.

    2. Materials and methods

    Commercially available ZnO(99.99%,50 nm)and Al2O3(99.99%,30 nm,α-phase)powders were weighed and mixed in a stoichiometric ratio of Zn0.98Al0.02O. The accuracy of the balance was 0.0001 g. The obtained powders were cold-pressed into 10.5×6 mm cylinders and then wrapped in molybdenum foil to prevent contamination. Before synthesis,the cylinders were assembled in chambers. The synthesis was conducted with a large-volume cubic high-pressure apparatus(CHPA,SPD-6×1200)at different synthesis temperatures(973 K, 1023 K, 1073 K, and 1123 K) at the same pressure(3 GPa)for 30 min. The samples obtained at 973 K,1023 K,1073 K, and 1123 K were denoted as Zn0.98Al0.02O-973,Zn0.98Al0.02O-1023, Zn0.98Al0.02O-1073, and Zn0.98Al0.02O-1123, respectively. Platinum-rhodium thermocouples were placed in the chamber to measure the temperature and changes of resistance in comparison with the standard materials, calibrated with temperature. The chamber was quickly quenched to room temperature at high pressure before unloading the pressure. Figure 1 presents a schematic diagram of the chamber.

    The phase structure was measured by an x-ray diffractometry (XRD, Rigaku D/Max 2550V/PC, Japan Cu-Kα radiation, λ = 0.15418 nm) with 2θ range from 30?to 70?.Rietveld refinement was performed on the XRD data to obtain the lattice parameters. The cross-sectional morphologies and detailed microstructures were observed using a fieldemission scanning electron microscope(FESEM;JEOL JSM-6700F) and a high-resolution transmission electron microscope(HRTEM;JEOL JEM-2200FS),respectively. The samples in dimensions 3×3×6 mm were cut into two pieces by an STX-202A wire cutter. One piece was measured with a Namicro-III L (JouleYacht, China) thermoelectric test system to measure the electrical conductivity σ and Seebeck coefficient from 323 K to 973 K. The other sample was measured with the LFA-427 (Germany, NETZSCH) laser flash method to test the thermal diffusion coefficient κ in the same temperature range. Using the relation κ =λCpD to calculate the thermal conductivity(the heat capacity Cpof the sample was calculated by the Dulong–Petit law,and the sample density D was measured by an AE124J electronic balance via Archimedes’principle). All the samples were measured by an HMS-5500(Hall Effect Measurement System)to determine the Hall coefficient RH,carrier concentration n,and carrier mobility μ.

    Fig.1. Schematic of HPHT reactive sintering chamber for Zn0.98Al0.02O.

    3. Analysis and discussion

    We compared the electrical conductivity of ZnO and Zn0.98Al0.02O obtained using the same synthesis parameters(Fig. 2) and found that Al-doped ZnO shows a much higher electrical conductivity because the Al dopant produces electrons via the following reaction:[14,24]

    Fig. 2. The electrical conductivity of Zn0.98Al0.02O and ZnO sintered at 973 K.

    Fig. 3. Temperature dependences of the (a) electrical conductivity and (b)Seebeck coefficient of samples obtained at different synthesis temperatures.HPHT sintering temperature effect on the (c) Hall coefficient RH, carrier concentration n,and carrier mobility μ of Zn0.98Al0.02O synthesized at different synthesis temperatures.

    Figure 3 shows the changes in the electrical properties of the samples with temperature. Figure 3(a) illustrates that the electrical conductivity increases with the temperature before beginning to slowly decrease. At about 453 K, the electrical conductivity of the samples sharply increases. The sample shows metallic behavior at test temperatures higher than 500 K,which is consistent with the previously reported trends.We speculate that this change may arise from the modulation of energy bands by high pressure and high temperature.[26]The electrical conductivity of all the samples reaches a maximum between 400 K and 500 K, and the highest electrical conductivity is obtained in the sample synthesized at 1123 K.At 373 K, the electrical conductivity of Zn0.98Al0.02O-1123 increases from 552 S/m to 6×104S/m as the sintering temperature increases. Figure 3(b) shows that the absolute value of the Seebeck coefficient gradually increases with the test temperature. The Seebeck coefficients of all the samples are negative, which shows that electrical transmission proceeds mainly via electron conduction. At the same test temperature,the absolute value of the Seebeck coefficient decreases at higher sintering temperatures. In addition,Hall measurement was conducted to understand the carrier transport. Figure 3(c)shows that increasing the sintering temperature will increase oxygen deficiency(the carrier concentration of Zn0.98Al0.02O-1123 reaches 6.16×1019cm-3).

    Figure 4 shows that the power factor of Zn0.98Al0.02O-1123 increases significantly with the test temperature, and a maximum power factor of 6.42 μW·cm-1·K-2is obtained at 973 K.The power factor does not appear to be saturated,suggesting that it can continue to increase at temperatures higher than 1000 K.

    Fig. 4. Temperature dependence of the power factor during the optimization of HPHT temperature.

    Figure 5(a) presents the temperature dependences of the sample’s total thermal conductivity(κtot),which is contributed by both the electronic thermal conductivity κeand the lattice thermal conductivity κlat,where κeis proportional to the electrical conductivity, κe= σLT (the Wiedemann–Franz law).Here,L is the Lorentz number(2.45×10-8V2·K-2).[27]Subtracting κefrom κtotwe obtain κlat,as plotted in Fig.5(b). The results show that the total thermal conductivity κtotand lattice thermal conductivity κlatof the sample remain small as the HPHT sintering temperature increases.

    Fig.5. (a)Total thermal conductivity and(b)lattice thermal conductivity of Zn0.98Al0.02O versus temperature.

    The electrical and thermal properties of zinc oxide thermoelectric materials can be optimized by adjusting the pressure and temperature during HPHT.The dimensionless figures of merit of our samples as a function of temperature, zT, are depicted in Fig.6. Here zT greatly increases as the electrical performance of zinc oxide is improved, whereas zT does not appear to become saturated as the test temperature increases,suggesting that zT will continue to increase above 1000 K.In general,the zT value increases with the sintering temperature,showing that the HPHT sintering temperature plays a dominant role in the thermoelectric performance of the sample.

    Fig.6. Temperature dependences of the zT values of Zn0.98Al0.02O.

    3.1. Relative density and band structure

    Figure 7 shows the XRD pattern of the sample optimized by HPHT. No impurity peaks were detected in the XRD pattern, indicating that Al was completely doped into ZnO. It is also shown that HPHT improved the solubility of Al in ZnO.[28]Within the range of 2θ (30?–70?),the peak positions of all the samples are consistent with hexagonal ZnO (space group P63mc,PDF No.80-75). This indicates that hexagonal ZnO was sintered within 30 min(the structure model of ZnO on the left side of the label in Fig.7). Conventional synthesis methods often require more than 12 hours, which means that the utilizing of a high pressure greatly improved the synthesis efficiency.The peak intensity of the XRD pattern gradually increases with the synthesis temperature. It can be inferred that high temperature can promote the synthesis of Zn0.98Al0.02O.

    Fig. 7. XRD patterns of Zn0.98Al0.02O synthesized at 3 GPa and at different temperatures.

    To study the effect of the synthesis temperature under high pressure on the relative density of Zn0.98Al0.02O,we obtained the Rietveld structural refinement from the XRD data using GSAS (general structure analysis system). Figure 8(a)shows the refined curves of the sample synthesized at 1123 K and 3 GPa. The lattice constants of the sample synthesized at 3 GPa were obtained from the refined results(a=b=3.245 ?A;c=5.198 ?A).The lattice structure of ZnO was changed(ambient pressure a=b=3.25 ?A;c=5.2 ?A).All other samples were refined in the same way,and the XRD refinement results were inserted into the following formula to calculate the theoretical density(TD):[29]

    where MZn0.98Al0.02Ois the relative molecular mass of Zn0.98Al0.02O,Vunitis the unit cell volume of the sample,and NAis Avogadro’s number. Archimedes’principle was used to obtain the true density of the sample (ρ). Figure 8(b) shows that the relative density (RD) of the samples (RD=ρ/TD)increases at higher sintering temperatures.[30,31]

    Fig. 8. (a) X-ray Rietveld refinement profile of Zn0.98Al0.02O synthesized at 1123 K. (b) Relative density of samples at different synthesis temperatures.

    The refinement results were used to calculate the band structures using CASTEP software package. The band gap was underestimated using density functional theory(local density approximation). We found that the energy band structure at high pressure underwent tremendous changes(ambient pressure band gap=3.2 eV),possibly due to changes in its lattice structure. The band structure details at 3 GPa are shown in Fig.9,and the results at different pressures show a similar trend. Both the conduction band minimum(CBM)and the valence band maximum(VBM)are located at vector G in Fig.9,which means that ZnO synthesized at high pressures(3 GPa)is a direct band gap semiconductor.[32]

    Fig.9. Band structure at 3 GPa.

    3.2. Microstructure and morphological characterization

    To optimize the HPHT temperature and determine its effects on the micro morphology (Fig. 10) of the samples, the fracture surfaces of the samples were characterized by scanning electron microscopy (SEM). Figures 10(a)–10(d) give the low-magnification SEM images showing the sample morphologies. Regardless of the sintering temperature, all the samples were covered with deposits of various sizes, which decrease the thermal conductivity. From Figs. 10(a)–10(d),the grain size generally coarsens, and the crystallinity of the sample is improved at higher synthesis temperatures,with increasingly fewer pores between grains. Figures 10(e)–10(h)show the high-magnification SEM images of the sample morphologies.Nanoscale grains of various sizes are randomly distributed between the sample surface and the crystal surface due to grain refinement at 3 GPa.

    HPHT synthesis methods provide more freedom for adjusting the synthesis pressure, which can be used to tune the thermoelectric properties of a material.[33]The micromorphologies of samples synthesized using HPHT change at different temperatures, and the ideal ZnO morphology could be obtained by changing the pressure and temperature during HPHT synthesis.

    The micromorphology of Zn0.98Al0.02O-1123 was characterized by TEM(Fig.11).Figure 11(a)shows fringes(black areas), along with particles of various shapes and sizes. Figure 11(d) presents the medium-magnification TEM image,which also shows fringes in the sample. Figure 11(f) gives the localized electron diffraction pattern of the yellow rectangular frame in Fig. 11(d) and shows that HPHT is useful for manufacturing polycrystalline structures. Figure 11(b)shows the presence of many lattice defects (white circles) and dislocations (red circles). The small image on the upper left of Fig.11(b)is the IFFT transform of the red area,which makes changes in the fringes more obvious. Figures 11(c)and 11(e)show many lattice defects(white circles)and crystal shear defects (green circles). The small graph on the upper left of Fig.11(c)is the FFT of the white circle area. The distribution of the frequency domain corresponding to defects is helpful for analyzing the defects. Figures 11(b),11(c),and 11(e)contain fringes with different pitches. These fringes belong to the(102)crystal plane detected by XRD.The slight change in the interplanar spacing is caused by the application of a pressure of 3 GPa.

    The utilizing of high pressure can form many lattice defects, and high-pressure quenching promotes the growth of nanoscale grains. The defects improve the thermoelectric properties of the material,suggesting that HPHT can be used to obtain desired morphologies.[34]

    The HPHT sintering temperature greatly affects the electrical properties of Zn0.98Al0.02O, showing that the electrical properties of the sample are improved due to changes in the microstructure and morphology of the material.

    Fig. 10. (a)–(d) Low-magnification SEM images of the sample morphologies used to optimize the temperature during HPHT synthesis and(e)–(h) high-magnification SEM images of the same samples: (a) and (e) Zn0.98Al0.02O-973; (b) and (f) Zn0.98Al0.02O-1023; (c) and (g)Zn0.98Al0.02O-1073;(d)and(h)Zn0.98Al0.02O-1123.

    Fig.11. (a)and(d)Low-magnification TEM images taken from a representative Zn0.98Al0.02O-1123 sample;(b),(c)and(e)HRTEM images of this sample showing the presence of multiple microstructures;(f)the electron diffraction pattern of the yellow selection in(d).

    In conventionally sintered thermoelectric materials, the thermal conductivity increases at higher temperatures, which does not help increase the zT of thermoelectric materials because the relative density decreases at higher synthesis temperatures. Although the thermal conductivity of a sample can be effectively reduced at lower densities,the electrical properties are also greatly reduced. However,the utilizing of HPHT increases the degrees of freedom of the pressure compared with conventional methods, allowing the electrical and thermal properties of thermoelectric materials to be adjusted.

    The thermal conductivity of the sample decreases monotonously as the test temperature increases, possibly due to grain refinement at a high pressure.

    There is a well-known relationship between phonon relaxation time τ and lattice thermal conductivity κlat

    where CV, v, and l are the constant-volume specific heat,phonon velocity,and phonon mean-free path,respectively.[35]For a particular material,CVand v are different.The relaxation time of phonon scattering can be written as

    where τp, τn, τme, τmi, and τuare the relaxation times corresponding to point defect phonon scattering, nanoscale scattering agents, mesoscale scattering agents, micrometer-scale grain boundaries,and Umklapp scattering,respectively.[36]

    The XRD data show that HPHT changes the ZnO lattice structure, and the SEM and TEM images show that HPHT makes a multi-scale hierarchical structure form and defects serve as phonon scattering sources. Phonon scattering mechanisms are affected by the size scale of the media,[36]but all size scales can hinder phonon propagation and increase scattering. The samples exhibit low thermal conductivity because the multi-scale hierarchical structure induces full-spectrum phonons scattering. Finally, the phonon propagation in samples obtained at high temperatures is dominated by highfrequency phonons with short and medium length scales. The shorter lattice thermal conductivity at a high temperature occurs mainly because of high-frequency phonons scattering by point defects and Umklapp scattering. Increasing the test temperature enhances all scattering effects, which explains why the lattice thermal conductivity of our samples decreases at higher test temperatures.

    4. Conclusion

    To improve the electrical properties of ZnO while maintaining a low thermal conductivity, the temperature in the HPHT synthesis is optimized. As the synthesis temperature increases at 3 GPa, the band gap of ZnO greatly decreases,and its microporosity gradually decreases. HPHT increases the electrical conductivity of Zn0.98Al0.02O to 6×104S/m at 373 K,and its power factor increases to 6.42 μW·cm-1·K-2at 973 K.The electrical properties are greatly improved because HPHT changes the band structure and increases the relative density of the zinc oxide. Grain refinement and the production of a multi-scale hierarchical structure at high pressure are the main factors for retaining zinc oxide’s low thermal conductivity. Finally, improved zT values(0.09 at 973 K)are obtained in Zn0.98Al0.02O-1123.

    猜你喜歡
    紅安王健
    王健
    美聯(lián)儲(chǔ)的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場(chǎng)
    Exact solution of an integrable quantum spin chain with competing interactions?
    Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility*
    新疆天椒紅安農(nóng)業(yè)科技有限責(zé)任公司
    辣椒雜志(2021年4期)2021-04-14 08:28:12
    紅安脫貧摘帽喜賦
    “王健扇藝展”
    Synthesis of diamonds in Fe C systems using nitrogen and hydrogen co-doped impurities under HPHT?
    紅安民間傳統(tǒng)文化的保護(hù)與發(fā)展
    學(xué)習(xí)紅安精神 提升教師素質(zhì)
    亚洲无线观看免费| 老司机影院成人| 在线观看免费高清a一片| 99久国产av精品国产电影| 99久久人妻综合| 91狼人影院| 九九在线视频观看精品| av免费观看日本| 麻豆国产97在线/欧美| 亚洲精品影视一区二区三区av| 人妻系列 视频| 美女被艹到高潮喷水动态| 看十八女毛片水多多多| 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 久久久久九九精品影院| 国产 一区 欧美 日韩| 免费看不卡的av| 中文天堂在线官网| 成人特级av手机在线观看| 18禁裸乳无遮挡免费网站照片| 熟妇人妻不卡中文字幕| av福利片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人爽人人片va| 最后的刺客免费高清国语| 一级av片app| 国产在线男女| 亚洲精品自拍成人| 国产成年人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 直男gayav资源| 国产成人精品一,二区| 黄色一级大片看看| 深夜a级毛片| 日韩av免费高清视频| 午夜精品在线福利| 久久精品熟女亚洲av麻豆精品 | 欧美激情在线99| 人妻少妇偷人精品九色| 久久久久性生活片| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 久久久久免费精品人妻一区二区| 人妻一区二区av| 身体一侧抽搐| 亚洲精品视频女| 久久久久久伊人网av| 五月玫瑰六月丁香| 久久99热这里只频精品6学生| 中文乱码字字幕精品一区二区三区 | 国产精品久久久久久久久免| 尤物成人国产欧美一区二区三区| 久久精品熟女亚洲av麻豆精品 | 国产男女超爽视频在线观看| 欧美高清成人免费视频www| 免费少妇av软件| 少妇的逼水好多| 精品久久久噜噜| 看黄色毛片网站| 搞女人的毛片| 一区二区三区高清视频在线| 别揉我奶头 嗯啊视频| videos熟女内射| 欧美变态另类bdsm刘玥| 国产一区二区三区综合在线观看 | 国产精品爽爽va在线观看网站| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 高清视频免费观看一区二区 | 中文在线观看免费www的网站| 色综合色国产| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 国产精品蜜桃在线观看| 国产成人精品福利久久| 美女黄网站色视频| 久99久视频精品免费| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 18+在线观看网站| 久久久亚洲精品成人影院| a级毛片免费高清观看在线播放| 国产老妇伦熟女老妇高清| 免费观看精品视频网站| 日韩人妻高清精品专区| 国产精品爽爽va在线观看网站| 人妻系列 视频| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 日本免费a在线| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 久久久久久久久久黄片| 国产片特级美女逼逼视频| 日韩欧美一区视频在线观看 | 亚洲精品中文字幕在线视频 | 成人一区二区视频在线观看| 欧美xxⅹ黑人| 麻豆国产97在线/欧美| 99久国产av精品国产电影| 成人美女网站在线观看视频| 国产永久视频网站| 精品一区二区免费观看| 女人十人毛片免费观看3o分钟| av女优亚洲男人天堂| 久热久热在线精品观看| 成年女人看的毛片在线观看| 国产精品三级大全| 水蜜桃什么品种好| 久久久久国产网址| 五月玫瑰六月丁香| 色视频www国产| 尾随美女入室| 久久久久精品久久久久真实原创| 亚洲av免费高清在线观看| 国产成人精品一,二区| 91久久精品电影网| or卡值多少钱| 99久久人妻综合| 精品熟女少妇av免费看| 中国国产av一级| 亚洲精品456在线播放app| 99久久九九国产精品国产免费| 欧美bdsm另类| av卡一久久| 国产 一区 欧美 日韩| 亚洲欧美一区二区三区黑人 | 国产精品不卡视频一区二区| 免费观看a级毛片全部| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 国产男女超爽视频在线观看| 淫秽高清视频在线观看| 日本三级黄在线观看| 全区人妻精品视频| 国产精品女同一区二区软件| 尤物成人国产欧美一区二区三区| ponron亚洲| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 汤姆久久久久久久影院中文字幕 | 日韩成人伦理影院| 国产成人91sexporn| 亚洲av免费高清在线观看| 日韩电影二区| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 午夜福利高清视频| 卡戴珊不雅视频在线播放| 在线观看人妻少妇| 自拍偷自拍亚洲精品老妇| 日本av手机在线免费观看| 欧美高清性xxxxhd video| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 伊人久久精品亚洲午夜| 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 最近2019中文字幕mv第一页| .国产精品久久| 亚洲av免费在线观看| 精品一区二区三区视频在线| kizo精华| 最近最新中文字幕免费大全7| 亚洲成人久久爱视频| 日韩国内少妇激情av| 亚洲国产精品专区欧美| 麻豆av噜噜一区二区三区| 国内精品一区二区在线观看| 2018国产大陆天天弄谢| 高清毛片免费看| 日本黄大片高清| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 欧美三级亚洲精品| 亚洲精品久久午夜乱码| 真实男女啪啪啪动态图| 久久99精品国语久久久| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区| 国产黄片视频在线免费观看| 亚洲av成人精品一区久久| av在线观看视频网站免费| 女人十人毛片免费观看3o分钟| 天堂影院成人在线观看| 亚洲国产精品sss在线观看| 能在线免费看毛片的网站| a级一级毛片免费在线观看| 精品人妻视频免费看| 男女视频在线观看网站免费| 欧美潮喷喷水| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 一个人观看的视频www高清免费观看| 亚洲18禁久久av| 一边亲一边摸免费视频| 久久久色成人| 亚洲av在线观看美女高潮| 全区人妻精品视频| 中文精品一卡2卡3卡4更新| 一级黄片播放器| 日韩精品青青久久久久久| 午夜福利视频精品| 极品教师在线视频| 亚洲最大成人中文| 日韩视频在线欧美| 成人高潮视频无遮挡免费网站| 亚洲欧美成人综合另类久久久| videossex国产| 日本三级黄在线观看| 国产高清不卡午夜福利| 亚洲国产av新网站| 欧美xxxx黑人xx丫x性爽| av免费在线看不卡| 国产精品综合久久久久久久免费| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 亚洲人成网站高清观看| 日韩一本色道免费dvd| 亚州av有码| 国产精品熟女久久久久浪| 日韩一区二区视频免费看| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 如何舔出高潮| 久久人人爽人人片av| 狠狠精品人妻久久久久久综合| 国产成人精品福利久久| 在线观看一区二区三区| 天天躁日日操中文字幕| 99久国产av精品| 成年版毛片免费区| 色吧在线观看| 婷婷色综合www| 国产精品麻豆人妻色哟哟久久 | a级一级毛片免费在线观看| 成人鲁丝片一二三区免费| 久久久精品免费免费高清| 欧美区成人在线视频| 亚洲精品日韩av片在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品第二区| 欧美+日韩+精品| 日本色播在线视频| 成人午夜高清在线视频| av女优亚洲男人天堂| 国产精品人妻久久久影院| 嫩草影院精品99| 久久精品国产亚洲网站| 中文字幕av在线有码专区| 黄片无遮挡物在线观看| 日韩强制内射视频| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产97在线/欧美| 一本久久精品| 青春草视频在线免费观看| 男人舔奶头视频| 日本爱情动作片www.在线观看| 狠狠精品人妻久久久久久综合| 免费无遮挡裸体视频| 国产亚洲一区二区精品| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 人妻夜夜爽99麻豆av| 综合色av麻豆| 人妻系列 视频| 国产一区二区三区综合在线观看 | 69av精品久久久久久| 伊人久久国产一区二区| 国产免费福利视频在线观看| 久久精品综合一区二区三区| 国产视频内射| 网址你懂的国产日韩在线| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 国产精品久久视频播放| 老女人水多毛片| 亚洲精品视频女| 高清欧美精品videossex| 亚洲色图av天堂| 一级二级三级毛片免费看| 联通29元200g的流量卡| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲网站| 国产午夜福利久久久久久| 亚洲精品影视一区二区三区av| 97超碰精品成人国产| 91在线精品国自产拍蜜月| 丝袜喷水一区| 国产 亚洲一区二区三区 | 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 一区二区三区免费毛片| 中文资源天堂在线| 欧美性感艳星| 看黄色毛片网站| 少妇的逼好多水| 国产乱人偷精品视频| 国产不卡一卡二| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 午夜爱爱视频在线播放| 三级国产精品欧美在线观看| 国产成人a∨麻豆精品| 日本熟妇午夜| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 亚洲欧洲日产国产| 成人欧美大片| 国国产精品蜜臀av免费| 欧美一级a爱片免费观看看| 哪个播放器可以免费观看大片| 亚洲欧美一区二区三区国产| 我的老师免费观看完整版| 日本一二三区视频观看| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 国产高清三级在线| 国产精品无大码| 99久国产av精品国产电影| 亚洲精品一二三| 亚洲av免费在线观看| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 色视频www国产| 日韩人妻高清精品专区| 国产精品一区www在线观看| 免费观看av网站的网址| 美女内射精品一级片tv| 人体艺术视频欧美日本| 毛片女人毛片| 纵有疾风起免费观看全集完整版 | 欧美最新免费一区二区三区| 午夜福利视频精品| 国产男女超爽视频在线观看| 亚洲综合精品二区| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区 | 我的女老师完整版在线观看| 蜜桃久久精品国产亚洲av| 久久精品国产自在天天线| 色视频www国产| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 国产永久视频网站| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 亚洲国产av新网站| 久久久a久久爽久久v久久| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| 亚洲av.av天堂| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 精品久久久久久电影网| 亚洲精品一区蜜桃| 日日撸夜夜添| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 丝袜喷水一区| 一边亲一边摸免费视频| 久久久欧美国产精品| 男女国产视频网站| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 国产亚洲精品av在线| or卡值多少钱| 日韩国内少妇激情av| 啦啦啦中文免费视频观看日本| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 大陆偷拍与自拍| 精品久久久久久久末码| 国产午夜福利久久久久久| 久久久色成人| 成人毛片a级毛片在线播放| 高清欧美精品videossex| 午夜福利在线观看免费完整高清在| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 麻豆乱淫一区二区| 精品人妻视频免费看| 免费看av在线观看网站| 精华霜和精华液先用哪个| 久久久久久久大尺度免费视频| 国内揄拍国产精品人妻在线| 国产综合懂色| 久久久久久久久久黄片| 日韩欧美一区视频在线观看 | 黄色配什么色好看| 日韩av在线大香蕉| av天堂中文字幕网| 春色校园在线视频观看| 三级国产精品欧美在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 麻豆av噜噜一区二区三区| 自拍偷自拍亚洲精品老妇| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 在线观看人妻少妇| 国国产精品蜜臀av免费| 久久久欧美国产精品| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 亚洲欧美清纯卡通| 国产女主播在线喷水免费视频网站 | 夫妻性生交免费视频一级片| 毛片女人毛片| 婷婷色麻豆天堂久久| 干丝袜人妻中文字幕| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 免费不卡的大黄色大毛片视频在线观看 | 五月伊人婷婷丁香| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 99久久精品一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲欧美成人精品一区二区| 69av精品久久久久久| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 亚洲av中文av极速乱| 久久99热6这里只有精品| 国产一区二区三区av在线| 成年av动漫网址| 七月丁香在线播放| 一级毛片aaaaaa免费看小| 亚洲最大成人av| 亚洲国产精品国产精品| 免费av毛片视频| 国产日韩欧美在线精品| av一本久久久久| 国产伦在线观看视频一区| 在线观看免费高清a一片| 国产有黄有色有爽视频| 午夜激情欧美在线| 深夜a级毛片| 91精品国产九色| 日韩精品有码人妻一区| 中文在线观看免费www的网站| 亚洲精品色激情综合| 亚洲丝袜综合中文字幕| 搡老妇女老女人老熟妇| 色网站视频免费| 简卡轻食公司| 国产精品福利在线免费观看| 亚洲精品国产av蜜桃| 久久久久久久久大av| 真实男女啪啪啪动态图| 夫妻午夜视频| 岛国毛片在线播放| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 啦啦啦韩国在线观看视频| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 嫩草影院精品99| 91狼人影院| 我要看日韩黄色一级片| 建设人人有责人人尽责人人享有的 | 成人性生交大片免费视频hd| 黄色日韩在线| 啦啦啦中文免费视频观看日本| 色综合色国产| 一二三四中文在线观看免费高清| 亚洲成色77777| 听说在线观看完整版免费高清| 日本三级黄在线观看| 草草在线视频免费看| 一级av片app| 免费观看在线日韩| 欧美zozozo另类| 亚洲av二区三区四区| 国产黄片视频在线免费观看| 亚洲,欧美,日韩| 九色成人免费人妻av| 欧美97在线视频| 亚洲18禁久久av| av在线老鸭窝| 亚洲国产精品专区欧美| av线在线观看网站| 成人国产麻豆网| 久久草成人影院| 美女大奶头视频| 亚洲av不卡在线观看| 只有这里有精品99| 亚洲精品中文字幕在线视频 | 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 国产永久视频网站| 精品人妻熟女av久视频| 大话2 男鬼变身卡| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 久久这里有精品视频免费| av又黄又爽大尺度在线免费看| 亚洲av成人精品一区久久| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 亚洲18禁久久av| 成年女人在线观看亚洲视频 | 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 卡戴珊不雅视频在线播放| 夫妻性生交免费视频一级片| 最近手机中文字幕大全| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 亚洲精品,欧美精品| 国产综合懂色| 搡老乐熟女国产| 精品不卡国产一区二区三区| 日韩一区二区三区影片| 色吧在线观看| 在线播放无遮挡| 亚洲精品影视一区二区三区av| 边亲边吃奶的免费视频| 亚洲久久久久久中文字幕| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添av毛片| 午夜老司机福利剧场| 亚洲精品亚洲一区二区| 高清毛片免费看| 亚洲精品国产成人久久av| 国产成人精品福利久久| 亚洲人与动物交配视频| 国产成人91sexporn| 亚洲国产日韩欧美精品在线观看| 18禁在线无遮挡免费观看视频| 男人舔奶头视频| 天堂影院成人在线观看| 欧美日韩视频高清一区二区三区二| 九九在线视频观看精品| 毛片女人毛片| 亚洲精品亚洲一区二区| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 午夜激情久久久久久久| 亚洲av成人精品一区久久| 国产成人精品婷婷| 国产精品人妻久久久久久| 亚洲av电影在线观看一区二区三区 | 能在线免费观看的黄片| 久久久久久九九精品二区国产| 久久久久精品性色| 亚洲精品乱码久久久久久按摩| 色视频www国产| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 日韩制服骚丝袜av| 国产免费又黄又爽又色| 国产亚洲午夜精品一区二区久久 | 伦理电影大哥的女人| 好男人视频免费观看在线| 在线天堂最新版资源| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件| 日本一本二区三区精品| 丰满乱子伦码专区| 亚洲精品一二三| 69av精品久久久久久| 国产午夜福利久久久久久| 成人亚洲精品av一区二区| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 精品久久久久久成人av| or卡值多少钱| 寂寞人妻少妇视频99o| 久久久久久久大尺度免费视频| 男女国产视频网站| 免费观看在线日韩| 91精品国产九色| 2018国产大陆天天弄谢| 成人亚洲欧美一区二区av| 亚洲精品456在线播放app| 久久久久久国产a免费观看| 人体艺术视频欧美日本| 啦啦啦啦在线视频资源| 亚洲国产欧美在线一区| 国产精品1区2区在线观看.| 美女高潮的动态| 国产男人的电影天堂91| 一个人看视频在线观看www免费| 五月天丁香电影| 热99在线观看视频| 看黄色毛片网站| 国产精品嫩草影院av在线观看|