• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates*

    2021-01-21 02:12:54ZeYuanYang楊澤園JunWang王俊GuoFengWu武國峰YongQingHuang黃永清XiaoMinRen任曉敏HaiMingJi季海銘andShuaiLuo羅帥
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王俊永清

    Ze-Yuan Yang(楊澤園), Jun Wang(王俊),?, Guo-Feng Wu(武國峰), Yong-Qing Huang(黃永清),Xiao-Min Ren(任曉敏), Hai-Ming Ji(季海銘), and Shuai Luo(羅帥)

    1State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: GaAs on Si,thermal stress,V-groove,finite-element method

    1. Introduction

    Silicon (Si) is a fundamental material of modern electronic technology, and about 95% of all semiconductor devices are manufactured by using Si substrates.[1]But, the physical properties of Si limit its application to optoelectronic devices. Gallium arsenide(GaAs)is a matured secondgeneration semiconductor material with the direct bandgap structure and high electron mobility, which is a favorable optoelectronic material. The quality of GaAs layers directly affects the performances of GaAs optoelectronic devices. The research of directly epitaxial GaAs on Si substrates can combine the matured Si-based integrated circuit process with excellent GaAs-based optoelectronic devices to realize Si-based optoelectronic integration. In addition, the GaAs-on-Si substrate will have a high market potential,which is the basis for manufacturing many kinds of optoelectronic devices, such as lasers,[2,3]solar cells,[4]and photodetectors.[5]

    However, obtaining high crystal quality GaAs on Si is still a challenge because of a high density of threading dislocations generated by 4% lattice mismatch and 119% thermal expansion coefficient(TEC)mismatch,anti-phase boundaries (APBs) formation as a consequence of the polar GaAs grown on nonpolar Si system. Many upwardly propagated threading dislocations appear in the GaAs layer.In order to inhibit the threading dislocations from upward propagating,several approaches have been employed for the epitaxial growth,such as two-step or three-step growth method,[6,7]thermal cycles annealing,[8]quantum dots dislocation filters,[9]strained layer superlattice buffer layers,[10]graded buffer layers,[11]and amorphous Si buffer layer.[12]These methods are used individually to grow the epitaxial layer, still resulting in high dislocation density. This is why two or three of these methods are commonly used together in GaAs/Si epitaxial growth.The dislocation density of the GaAs/Si epitaxial layer has decreased to about 105-cm-2orders of magnitude.[13]Nevertheless,these methods need to be less time-consuming before being employed in an industrial manufacturing process.

    An alternative approach is to use a nanopatterned Si substrate with SiO2as a mask.[14,15]The method enables the epitaxial layer to realize area-selective growth on the substrate,since forming the nuclei of deposited material on the Si surface requires much lesser free energy than that required on the mask surface. With the development of etching technology,the technology for fabricating nanoscale patterned substrates is becoming more and more matured and cheaper. Moreover,one found that for patterned substrates, the V-groove has its unique advantages in the geometry of kinds of trenches.[16]First,for 60?threading dislocations generated in the course of growth,they tend to glide along the{111}planes.These dislocations will be annihilated on the SiO2mask wall and confined in the trench. The GaAs nucleation on Si(111)generates less defects than the on Si(001).[17]Second,a GaAs lattice in the V-shape of Si with {111} facets is along the [110] direction.The crystallography analysis indicates[18]that GaAs grown on the Si(111)surface cannot result in the formation of APBs in the GaAs layer. Moreover, Li et al. have grown high-quality GaAs films with low dislocation densities through V-groove nanopatterned Si substrates.[19]High-quality GaAs films are conducive to our realizing the fabrication of subsequent devices.

    Generally speaking,during the growth of GaAs/Si materials, the lattice stress caused by lattice mismatch is released through dislocations. Subsequently, after epitaxial growth of GaAs on Si substrate is completed,in the cooling process from the growth temperature to room temperature, thermal stress arises due to the difference in TEC between GaAs and Si.When the stress(tensile in GaAs)is sufficiently large, cracks are formed on the GaAs film.[20]The presence of cracks in GaAs thin film is not desirable for device fabrication because they can deteriorate the performance and lifetime of devices fabricated on the epilayers. Therefore, the thermal mismatch effects must be addressed during GaAs epitaxial growth.Thermal stress caused by TEC mismatch has attracted the attention of researchers. Many experiments have confirmed that the thermal stress is existent and harmful.[21,22]Moreover,Li et al. have proved through the photoluminescence spectroscopy that the method of selective area growth of GaAs in V-grooved Si can efficiently relax the strain induced by the TEC mismatch.[23]However, the thermal stress distributed at each point of the structure cannot be measured experimentally.To date, the thermal stress distribution on the GaAs epitaxial layer of V-grooved patterned Si substrates has not been studied in detail. Therefore, in order to fabricate optoelectronic devices with better performance, it is necessary to explore the thermal stress distribution in nanoscale V-groove patterned structures for the growth of GaAs/Si.

    In this paper, we aim to systematically study the thermal stress in the coalesced GaAs layer grown on V-groove nanopatterned Si substrate by the finite-element method.First,we describe two models of two-dimensional (2D) structures with GaAs epitaxial growth on planar Si substrate and Vgroove patterned Si substrate, respectively. Subsequently, we compare the thermal stresses of the GaAs layers grown on two kinds of Si substrates. Comparing with the planar Si substrate,the thermal stress is significantly reduced for the GaAs layer on the V-groove patterned Si substrate. Finally,the influences of the width of the V-groove,the thickness and the width of the SiO2mask of the structure on thermal stress of the GaAs epitaxial layer are discussed.The results demonstrate that the role of the SiO2mask and the V-groove are outstanding,reducing the thermal stress on the GaAs layer.

    2. Material structures and simulation model

    The finite element method is used to calculate the thermal stress distributions of the two structures. The fixed constraint is applied to point O as shown in Fig.1,and the prescribed displacement in the[001]direction is applied to the point O1. All other points in the two structures can move freely according to the law of thermal expansion without any external mechanical constraint. The material parameters are listed in Table 1. The triangular mesh is used to divide the two structures based on geometric dimensions. The extremely fine mesh with a maximum element size of 5 nm and minimum element size of 1 nm is introduced into the model for the GaAs window area and the SiO2mask. For other parts of the mesh,the fine mesh with a maximum element size of 2 μm and minimum element size of 10 nm is used. Experiments have shown that a GaAs epitaxial layer grown at a higher temperature (>650?C) can form a single-crystal layer with better crystal quality.[6]Therefore,for the two GaAs/Si models,it is assumed that they are cooled from the growth temperature of 685?C to room temperature 20?C, and the stability of GaAs thermal stress is analyzed.The effects of the width of the V-groove,the thickness and the width of the SiO2mask on the thermal stress of the structures are investigated.

    Fig.1. Structure of GaAs epitaxially grown on(a)planar Si substrate and[(b)and(c)]V-groove patterned Si substrate.

    Table 1. Material parameters used in simulations.

    3. Results and discussion

    The thermal stress distributions of the two 2D models in Fig.1 are shown in Fig.2.Figure 2(a)shows the thermal stress distribution of the structure on the planar Si substrate. It can be seen that the Si substrate is subjected to compressive stress(negative) and the GaAs layer is subjected to tensile stress(positive). At the GaAs/Si interface, the stress has a sharp change. The stress is laterally uniform but it varies with the position of the structure along the z-axis direction. Figure 2(b)shows the thermal stress distribution of the structure on the Vgroove patterned Si substrate. In the structure, the width of the V-groove,the thickness and width of the SiO2mask are all set to be 100 nm. The thermal stress of the structure changes periodically in the lateral direction,and the stress distribution is not uniform at different positions along the z-axis direction,especially near the GaAs/Si interface. Since the TEC of GaAs is much larger than that of Si, the GaAs layer is mostly subjected to tensile stress and the Si substrate is mostly subjected to compressive stress. Near the GaAs/Si interface, the stress may appear in the opposite state of stress. Introducing the SiO2mask,the thermal stress of GaAs layers between masks is significantly reduced. This is because the TEC of SiO2is very small(about 1/11 of GaAs),which hinders the pattern region of GaAs from shrinking in the cooling process. The Si substrate is much thicker than the SiO2mask,so the stress of the GaAs layer away from SiO2masks is mainly determined by the Si substrate. The area influenced by the SiO2mask is only in the window area as shown in Fig.2(b). The maximum stress can reach 339 MPa,which appears in the upper area of the SiO2mask, suggesting that cracks and defects are most likely to occur in the region during the experiment. However,for the small region above the SiO2mask, the cracks and defects can be easy to be avoided by experimental methods,such as forming a gap in the small region.[25]The stress at the bottom of the V-groove(point A)is 209 MPa. Figure 2(c)shows the thermal stress distribution of the structure on the V-groove patterned Si substrate without SiO2mask.Comparing with the planar Si substrate,the thermal stress is reduced for the GaAs layer in the groove. After adding the SiO2mask, the stress reduction is more obvious.

    Fig.2. Thermal stress distribution of GaAs epitaxially grown on(a)planar Si substrate and[(b)and(c)]V-groove patterned Si substrate.

    Figure 3 shows the thermal stress value along lines I, II,III, and IV in Fig. 2. Line I reveals the thermal stress distribution of the structure on the planar Si substrate. As the distance from the GaAs/Si interface increases, the stress decreases linearly for the Si substrate and the GaAs layer. It is worth noting that the stress changes extremely small within the Si layer and the GaAs layer, separately. The results show that when the distance from the interface is within 71 nm,the compressive stress in the Si substrate is about 32 MPa,and the tensile stress in the entire GaAs layer is about 245 MPa. Line II reveals the thermal stress distribution of the structure on the V-groove patterned Si substrate. As can be seen from line II,near the Si/GaAs interface, the stress of the curve fluctuates greatly in the Si layer and GaAs layer, separately. The GaAs layer is subjected to compressive stress within 5 nm from point A. Then,the GaAs layer is subjected to tensile stress at a distance of more than 5 nm from point A. In addition,the farther away from point A, the smaller the change in stress is, and the final stress is about 244 MPa. Comparing with the planar Si substrate, the thermal stress significantly decreases for the GaAs layer, of which the thickness is within 300 nm on the V-groove patterned Si substrate, and particularly, the average stress of line BD is 100 MPa,which is reduced by 59%. Line III reveals the thermal stress distribution in and around a SiO2mask layer on the patterned Si substrate. The stress of line KJ represents the stress in the SiO2mask layer. A small part of the center in the SiO2mask layer presents the tensile stress,and the rest the compressive stress. And at the edge of the SiO2mask there appears the largest compressive stress. The stresses of line HK and above point J represent the stresses in the Si substrate and the GaAs layer. It can be seen that the closer to the SiO2mask,the greater the tensile stress they are subjected to. Line IV reveals the thermal stress distribution of the GaAs layer on the V-groove patterned Si substrate without SiO2mask. The farther from the bottom of the V-groove,the higher the stress. Obviously, the stress of the structure with SiO2mask is less than that without SiO2mask. In addition,the final stress of the GaAs layer is about 244 MPa. Therefore,the SiO2mask affects the quality of the GaAs in the relevant regions. Finally,it is important to point out that the final stresses of the three lines are close to each other Our results support the experimental results[23]that epitaxial growth on a nanopatterned substrate can effectively release stress due to thermal mismatch.

    Fig.3. Thermal stress value varying with distance along four lines(lines I,II,III,and IV)in Fig.2.

    From the above analysis,we find that the stress in the window area is lower than in other areas, which is more suitable for fabricating optoelectronic devices. Therefore, in the following,we will study the thermal stress values in the window area for different widths of the V-groove,thickness values,and widths of the SiO2mask.

    Fig.4. Calculated thermal stress values along(a)line AB,(b)line BD,and(c)line EF for different widths of V-groove,with SiO2 mask being 100 nm both in thickness and in width.

    Figure 4 shows the effect of the width of V-groove on the thermal stress. The thermal stresses along lines AB, BD,and EF are shown in Figs. 4(a)–4(c), respectively. We can observe from Fig. 4(a) that the beginning of each curve located at the bottom of the V-groove presents the compressive stress. The compressive stress decreases as the distance increases from point A. This is because the region at the bottom of the V-groove is extremely narrow,and the narrower the GaAs window region,the greater the thermal stress of GaAs in the pattern region is affected by the SiO2mask. We can notice that there is a critical point where the stress is zero. Then the stress is converted into tensile stress on line AB. And the tensile stress on each curve first increases and then decreases as the distance increases from point A. In addition,as the width of the V-groove increases, the maximum of tensile stress increases. It can be seen from Fig.4(b)that the tensile stress on line BD is large at both ends and small in the middle. While the tensile stress on line EF is small at the ends and large in the middle as shown in Fig. 4(c). Due to the symmetry and repeatability of the structure,the stress value of lines EC and FC are the same. Furthermore, the tensile stress of lines BD and EF increase with the width of V-groove increasing. And the wider the V-groove,the more uniform the stress of line BD is.In particular,the stress state at point C is compressive when the width of the V-groove width is 50 nm.

    We calculate the average stress in the growth window area of the GaAs layer by the data on lines BD and EF. The result shows that when the width of V-groove is 50 nm,75 nm,100 nm,150 nm,the average stress of the GaAs epitaxial layer in the growth window region is 24 MPa, 53 MPa, 80 MPa,117 MPa,separately

    Figure 5 shows the average thermal stress values along line BD and line EF with different thickness values and widths of the SiO2mask, when the width of the V-groove is fixed at 50 nm. As shown in Fig. 5, the size of the SiO2mask has a certain effect on the stress of the GaAs layer. And within a certain range, as the thickness or width of the SiO2mask increases, the average thermal stress first decreases and then increases. When the thickness and width of the SiO2mask are both 100 nm,the average stress is minimum,which is 24 MPa.In Fig.5,the minimum value is clearly marked in gray. In this optimal structure,the aspect ratio of the window area is 2.

    Fig.5. Average thermal stress values along line BD and line EF with different thickness values and widths of SiO2 mask,with width of V-groove being 50 nm.

    Table 2 shows the influences of the thickness and width of the SiO2mask in a range of between 0 nm and 50 nm on the average thermal stress of GaAs in the patterned area. Without SiO2mask, the stress is 210 MPa. It can be clearly seen that the introduction of the SiO2mask reduces the thermal stress of GaAs in the patterned area.

    So, the three structure parameters that are the width of the V-groove, the thickness and the width of the SiO2mask,significantly affect the thermal stress of the GaAs layer. When the width of V-groove is 50 nm and the width and the thickness of the SiO2mask are both 100 nm, the GaAs layer exhibits a minimum stress. Comparing with the planar Si substrate,the average stress of the GaAs epitaxial layer in the growth window region of the V-grooved Si substrate is reduced by 90%. Finally,Guo et al. demonstrated that high quality GaAs can be obtained in sub-50-nm wide V-groove according to the experiment,[15]so the 50-nm V-groove of our optimal structure is achievable. Li et al.[23]and Freundlich et al.[27]also proved that the method of selective area growth of GaAs on V-grooved pattered Si substrate with SiO2mask can efficiently relax the strain induced by the thermal mismatch,which is consistent with our results. Therefore, our optimal structure can achieve high-quality GaAs growth.

    Table 2. Average thermal stress with width of V-groove being 50 nm.

    4. Conclusions

    In this work we perform the thermal stress analysis of a GaAs layer grown on the V-groove patterned Si substrate by the finite-element method. First, structures of the GaAs layers respectively grown on the V-groove patterned Si substrate and the planar Si substrate are modeled to calculate their stress distributions The results show that the thermal stress distribution near the interface in the patterned substrate is nonuniform,which is different from the planar structure. Comparing with the planar substrate,the thermal stress of the GaAs layer on the patterned substrate is significantly reduced, especially when the thickness of the GaAs layer is within 300 nm. Second,the three factors that are the width of the V-groove,the thickness and the width of the SiO2mask are also studied,which significantly affect the thermal stress distribution of the GaAs layer.The results indicate that when the width of V-groove is 50 nm and the width and the thickness of the SiO2mask are both 100 nm,the GaAs layer is subjected to the minimum stress. In addition, comparing with the planar Si substrate, the average stress of the GaAs epitaxial layer in the growth window region of the V-grooved Si substrate is reduced by 90%. These findings are important for growing the high-quality GaAs films and provide an important step towards the optoelectronic device integration on GaAs substrates.

    猜你喜歡
    王俊永清
    春茶
    Improving dynamic characteristics for IGBTs by using interleaved trench gate
    走近父老鄉(xiāng)親
    嶺南音樂(2022年6期)2022-02-04 13:50:24
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    下廚
    羌家人的夢
    黃河之聲(2019年17期)2019-10-21 01:40:38
    導(dǎo)數(shù)應(yīng)用點(diǎn)睛
    Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China
    王俊看醫(yī)改政府盡快解決三個(gè)問題
    High-resolution boosted reconstruction of γ-ray spectra?
    日本-黄色视频高清免费观看| 中文天堂在线官网| 国产伦理片在线播放av一区| 亚洲精华国产精华液的使用体验| 在线观看免费视频网站a站| 在线观看免费视频网站a站| 国产伦精品一区二区三区四那| 免费人成在线观看视频色| 男人添女人高潮全过程视频| 国产又色又爽无遮挡免| 国产伦在线观看视频一区| 亚洲国产日韩一区二区| 久久亚洲国产成人精品v| 久久女婷五月综合色啪小说| 91久久精品电影网| 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 51国产日韩欧美| 亚洲人成网站高清观看| 最近中文字幕2019免费版| 少妇被粗大猛烈的视频| 国产综合精华液| 人妻系列 视频| 美女中出高潮动态图| 日本免费在线观看一区| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 亚洲国产成人一精品久久久| 日韩国内少妇激情av| 久久99精品国语久久久| 噜噜噜噜噜久久久久久91| 国产精品99久久99久久久不卡 | 最后的刺客免费高清国语| 亚洲人成网站在线播| 国产一区二区三区综合在线观看 | 直男gayav资源| 亚洲欧美日韩东京热| 在线观看免费日韩欧美大片 | 国产男人的电影天堂91| 婷婷色综合www| 中文在线观看免费www的网站| av福利片在线观看| 少妇人妻久久综合中文| 六月丁香七月| 久久精品国产亚洲av天美| 国产av一区二区精品久久 | 18禁裸乳无遮挡免费网站照片| 老熟女久久久| 国产黄片美女视频| 国产精品av视频在线免费观看| 久久久久久久精品精品| 欧美3d第一页| 亚洲性久久影院| 欧美亚洲 丝袜 人妻 在线| 国产国拍精品亚洲av在线观看| 男人和女人高潮做爰伦理| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 熟妇人妻不卡中文字幕| 三级经典国产精品| 一区二区av电影网| 亚洲欧美日韩卡通动漫| 国产精品蜜桃在线观看| 欧美激情极品国产一区二区三区 | 一级爰片在线观看| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 亚洲三级黄色毛片| 日韩欧美 国产精品| 免费播放大片免费观看视频在线观看| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| av天堂中文字幕网| 99热网站在线观看| 我要看黄色一级片免费的| 亚洲av成人精品一区久久| 日本黄大片高清| 一边亲一边摸免费视频| 下体分泌物呈黄色| 久久这里有精品视频免费| 国产乱人视频| 搡老乐熟女国产| 男人舔奶头视频| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| kizo精华| 国产精品成人在线| 我要看日韩黄色一级片| 亚洲精品成人av观看孕妇| 熟女av电影| 黄片无遮挡物在线观看| 搡老乐熟女国产| 亚洲成人一二三区av| 久久鲁丝午夜福利片| 观看av在线不卡| 亚洲,一卡二卡三卡| 亚洲人成网站在线播| av天堂中文字幕网| 精品午夜福利在线看| 国产精品久久久久久精品电影小说 | 国产午夜精品一二区理论片| 国产黄色免费在线视频| 搡老乐熟女国产| 美女视频免费永久观看网站| 性高湖久久久久久久久免费观看| 99久久精品热视频| 99久国产av精品国产电影| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品电影小说 | 七月丁香在线播放| 国产淫片久久久久久久久| 人妻 亚洲 视频| 亚洲精品视频女| 成人漫画全彩无遮挡| 如何舔出高潮| av天堂中文字幕网| 在线观看三级黄色| 97精品久久久久久久久久精品| 日韩成人伦理影院| 深夜a级毛片| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| av在线蜜桃| 91久久精品国产一区二区三区| 国产69精品久久久久777片| 亚洲在久久综合| 99久久精品热视频| 国产淫片久久久久久久久| 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 成人无遮挡网站| 在线观看一区二区三区激情| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人爽人人片va| a级毛色黄片| 伦理电影大哥的女人| 七月丁香在线播放| 国产精品99久久99久久久不卡 | 日韩欧美一区视频在线观看 | 一区二区三区四区激情视频| 精品亚洲成a人片在线观看 | 中文字幕制服av| 最近中文字幕2019免费版| 国产精品免费大片| 美女高潮的动态| 色综合色国产| 亚洲自偷自拍三级| 日韩一区二区三区影片| 成人亚洲精品一区在线观看 | 亚洲精品乱码久久久v下载方式| 永久网站在线| 噜噜噜噜噜久久久久久91| 国产欧美日韩一区二区三区在线 | 亚洲中文av在线| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 中文资源天堂在线| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 又大又黄又爽视频免费| 日韩亚洲欧美综合| 另类亚洲欧美激情| 亚洲美女视频黄频| 在线免费十八禁| 日日摸夜夜添夜夜添av毛片| 精品国产三级普通话版| 精品一区二区三区视频在线| 人人妻人人爽人人添夜夜欢视频 | 男女边吃奶边做爰视频| 成人二区视频| 天堂中文最新版在线下载| 中国国产av一级| 国产91av在线免费观看| 亚洲av日韩在线播放| 偷拍熟女少妇极品色| 欧美成人午夜免费资源| av网站免费在线观看视频| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看 | 亚洲精品一区蜜桃| 中文字幕av成人在线电影| av在线播放精品| 精品久久久噜噜| 在线观看免费日韩欧美大片 | 国产av国产精品国产| 国产 一区 欧美 日韩| 国产高潮美女av| 国产视频首页在线观看| 国产在线一区二区三区精| 国产永久视频网站| 久久6这里有精品| 欧美一级a爱片免费观看看| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| kizo精华| 成人国产av品久久久| 在线观看免费高清a一片| 欧美一级a爱片免费观看看| 中文欧美无线码| 好男人视频免费观看在线| 秋霞伦理黄片| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 一边亲一边摸免费视频| 欧美激情极品国产一区二区三区 | 尾随美女入室| 最近最新中文字幕免费大全7| 午夜激情福利司机影院| 亚洲av二区三区四区| 黑人猛操日本美女一级片| 高清毛片免费看| 午夜福利高清视频| 毛片一级片免费看久久久久| 人妻 亚洲 视频| 精品国产三级普通话版| 免费黄色在线免费观看| 熟女电影av网| 精品少妇久久久久久888优播| av在线老鸭窝| 黄片wwwwww| 五月天丁香电影| 日本黄色日本黄色录像| 有码 亚洲区| 午夜精品国产一区二区电影| 亚洲电影在线观看av| 激情 狠狠 欧美| 99热这里只有精品一区| 亚洲av二区三区四区| 精品久久久久久电影网| 好男人视频免费观看在线| 一级爰片在线观看| 2022亚洲国产成人精品| 国产精品久久久久成人av| 十八禁网站网址无遮挡 | 国产老妇伦熟女老妇高清| 久久久久国产网址| 一级毛片电影观看| 精品亚洲成国产av| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 看免费成人av毛片| 丰满乱子伦码专区| 老女人水多毛片| 哪个播放器可以免费观看大片| 久久久久精品性色| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图 | 在线 av 中文字幕| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 看非洲黑人一级黄片| 精品人妻熟女av久视频| 全区人妻精品视频| 91精品国产国语对白视频| 国产av一区二区精品久久 | 国产爽快片一区二区三区| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 国产黄片美女视频| 国产综合精华液| 日韩一区二区视频免费看| 日韩制服骚丝袜av| 香蕉精品网在线| 日韩av不卡免费在线播放| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 五月玫瑰六月丁香| 高清在线视频一区二区三区| av免费观看日本| 乱系列少妇在线播放| 九九在线视频观看精品| 国产高清有码在线观看视频| 97超碰精品成人国产| 黑人高潮一二区| 久久久久久人妻| 亚洲精品,欧美精品| 丝袜脚勾引网站| 国产精品久久久久久久电影| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 久久久久性生活片| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 久久久久国产网址| 青青草视频在线视频观看| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 欧美bdsm另类| 免费看av在线观看网站| 国产黄色免费在线视频| a 毛片基地| 熟女电影av网| 久久午夜福利片| 岛国毛片在线播放| 精品少妇久久久久久888优播| 人人妻人人看人人澡| 高清av免费在线| 97在线人人人人妻| 最新中文字幕久久久久| 久热久热在线精品观看| 亚洲精品,欧美精品| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版| 最近手机中文字幕大全| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三 | 成人亚洲精品一区在线观看 | 蜜桃在线观看..| 又粗又硬又长又爽又黄的视频| 新久久久久国产一级毛片| 26uuu在线亚洲综合色| 亚洲精品中文字幕在线视频 | 精品久久久久久电影网| 国产爽快片一区二区三区| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 日韩欧美 国产精品| 日本欧美国产在线视频| 亚洲国产高清在线一区二区三| 男男h啪啪无遮挡| 国产探花极品一区二区| 久久久精品94久久精品| 99久久精品一区二区三区| av又黄又爽大尺度在线免费看| av黄色大香蕉| 久久99热这里只有精品18| 在线亚洲精品国产二区图片欧美 | 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区国产| 国产乱人视频| 51国产日韩欧美| 久久久久久九九精品二区国产| 在线 av 中文字幕| 1000部很黄的大片| 在线免费十八禁| 成人毛片60女人毛片免费| 国内精品宾馆在线| 亚洲欧美精品自产自拍| 国产精品熟女久久久久浪| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 黑丝袜美女国产一区| 18禁在线无遮挡免费观看视频| 国产白丝娇喘喷水9色精品| 久久6这里有精品| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 亚洲中文av在线| 久久 成人 亚洲| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 成人高潮视频无遮挡免费网站| 久久青草综合色| 十八禁网站网址无遮挡 | 狠狠精品人妻久久久久久综合| 精品久久久久久久久亚洲| 男人狂女人下面高潮的视频| 日本午夜av视频| 超碰97精品在线观看| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 一区二区三区精品91| 大又大粗又爽又黄少妇毛片口| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 777米奇影视久久| 美女中出高潮动态图| 亚洲内射少妇av| a级一级毛片免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 男的添女的下面高潮视频| 熟女人妻精品中文字幕| 男人舔奶头视频| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 乱系列少妇在线播放| 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看| 久久精品人妻少妇| 99热全是精品| 久久国产乱子免费精品| 国产爽快片一区二区三区| 精品久久久久久电影网| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| 蜜桃在线观看..| 久久人人爽av亚洲精品天堂 | 我要看黄色一级片免费的| 男女免费视频国产| 日韩 亚洲 欧美在线| 国产极品天堂在线| 成人二区视频| 亚洲欧美成人综合另类久久久| 国产乱人偷精品视频| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 丰满乱子伦码专区| 在线精品无人区一区二区三 | 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 免费看日本二区| 免费播放大片免费观看视频在线观看| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 国产精品人妻久久久久久| 色视频在线一区二区三区| 女人久久www免费人成看片| 王馨瑶露胸无遮挡在线观看| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 看免费成人av毛片| 99九九线精品视频在线观看视频| av专区在线播放| 日韩av免费高清视频| 亚洲人成网站高清观看| 色婷婷av一区二区三区视频| 久久久久久久国产电影| 深夜a级毛片| 建设人人有责人人尽责人人享有的 | 久久热精品热| 高清欧美精品videossex| 成人亚洲精品一区在线观看 | 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 久久久久久久大尺度免费视频| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 国产亚洲最大av| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 纯流量卡能插随身wifi吗| 少妇人妻一区二区三区视频| 中文字幕久久专区| 啦啦啦在线观看免费高清www| 国产又色又爽无遮挡免| 啦啦啦中文免费视频观看日本| 亚洲成色77777| 国产精品熟女久久久久浪| 亚洲av中文av极速乱| 久热久热在线精品观看| 十分钟在线观看高清视频www | 一级毛片aaaaaa免费看小| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产亚洲av天美| 精品午夜福利在线看| 18+在线观看网站| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 狂野欧美激情性bbbbbb| 美女主播在线视频| 亚洲av成人精品一区久久| 伦理电影免费视频| 五月开心婷婷网| 亚洲精品国产av成人精品| 午夜福利高清视频| 欧美日韩亚洲高清精品| 大码成人一级视频| 18+在线观看网站| 亚洲欧美日韩卡通动漫| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| 美女主播在线视频| 欧美一级a爱片免费观看看| 国产精品精品国产色婷婷| 国产白丝娇喘喷水9色精品| 女性被躁到高潮视频| 国产亚洲5aaaaa淫片| 内地一区二区视频在线| 欧美精品国产亚洲| 尾随美女入室| 精品久久久精品久久久| 亚洲av中文av极速乱| 国产爽快片一区二区三区| 亚洲av福利一区| 国产伦理片在线播放av一区| 最后的刺客免费高清国语| 久久热精品热| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 色5月婷婷丁香| 一区二区三区免费毛片| 午夜日本视频在线| 免费黄网站久久成人精品| 一级片'在线观看视频| 亚洲在久久综合| 免费观看的影片在线观看| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 一级毛片我不卡| 大陆偷拍与自拍| 久久国内精品自在自线图片| 欧美精品一区二区大全| 99热全是精品| 亚洲美女黄色视频免费看| 超碰97精品在线观看| 美女主播在线视频| 高清毛片免费看| 少妇人妻久久综合中文| av线在线观看网站| 亚洲av男天堂| 青春草视频在线免费观看| 亚洲自偷自拍三级| 精品一品国产午夜福利视频| 一级a做视频免费观看| av视频免费观看在线观看| av一本久久久久| 91精品一卡2卡3卡4卡| 国产高清有码在线观看视频| .国产精品久久| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 免费在线观看成人毛片| 欧美精品一区二区免费开放| 亚洲成人一二三区av| 26uuu在线亚洲综合色| 欧美极品一区二区三区四区| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 又大又黄又爽视频免费| av黄色大香蕉| 亚洲国产欧美在线一区| 久热这里只有精品99| 激情 狠狠 欧美| 高清视频免费观看一区二区| 嫩草影院新地址| 黄色一级大片看看| av国产久精品久网站免费入址| 国产av精品麻豆| 亚洲av免费高清在线观看| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 老师上课跳d突然被开到最大视频| 国产男人的电影天堂91| 国产在线男女| 青青草视频在线视频观看| 国产成人精品福利久久| 91精品国产九色| 草草在线视频免费看| 亚洲av成人精品一区久久| 亚洲欧洲日产国产| 亚洲精华国产精华液的使用体验| 天堂8中文在线网| 国产在线免费精品| 99久久综合免费| 午夜福利在线观看免费完整高清在| 国内精品宾馆在线| 久久精品人妻少妇| 国产一级毛片在线| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 久久久欧美国产精品| 黄色怎么调成土黄色| 女人久久www免费人成看片| 国产在视频线精品| av网站免费在线观看视频| 国产亚洲一区二区精品| 精华霜和精华液先用哪个| 极品少妇高潮喷水抽搐| 精品久久久久久久久av| 人妻一区二区av| 美女福利国产在线 | 精品国产三级普通话版| 夜夜爽夜夜爽视频| 丰满迷人的少妇在线观看| 三级经典国产精品| av不卡在线播放| 男女边摸边吃奶| 嘟嘟电影网在线观看| 色婷婷av一区二区三区视频| 成人综合一区亚洲| 久久人人爽av亚洲精品天堂 | 一区二区三区免费毛片| 永久免费av网站大全| 美女高潮的动态| 一区二区av电影网| 青春草视频在线免费观看| 在线观看美女被高潮喷水网站| .国产精品久久| 人妻少妇偷人精品九色| 国产 一区精品| 观看免费一级毛片| 成人影院久久| 夫妻性生交免费视频一级片| 精品一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区| 91久久精品国产一区二区三区|