• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature*

    2021-01-21 02:09:04JiaWang王佳XiaJiLiu劉夏姬andHuiHu胡輝
    Chinese Physics B 2021年1期
    關鍵詞:王佳

    Jia Wang(王佳), Xia-Ji Liu(劉夏姬), and Hui Hu(胡輝)

    Centre for Quantum Technology Theory,Swinburne University of Technology,Melbourne,Victoria 3122,Australia

    Keywords: Bose–Einstein condensation,quantum droplet

    1. Introduction

    The recent observation of an ultradilute self-bound droplet-like state[1]in single-component dipolar Bose–Einstein condensates (BECs)[2–5]and binary Bose–Bose mixtures[6–11]opens an entirely new direction to better understand the fascinating concept of quantum droplets – autonomously isolated quantum systems equilibrated under zero pressure in free space.Quantum droplets such as helium nanodroplets have already been intensively investigated in condensed matter community over the past few decades.[12–14]However, an in-depth understanding of helium nano-droplets is still lacking,due to the strong inter-particle interactions and the limited techniques to control and characterize the nanodroplets. These limitations could be overcome for ultradilute Bose droplets, owing to the unprecedented controllability in cold-atom experiments.[15]For example, the inter-particle interactions in Bose droplets can be tuned at will by using Feshbach resonances[16]and their structure and collective excitations can be accurately measured through in-situ or time-offlight absorption imaging.[15]In particular, the realization of a weakly interacting Bose droplet now allows us to develop quantitative descriptions and makes it possible to have testable theoretical predictions.[17–36]

    In this respect, it is worth noting the seminal work by Petrov,[17]where the existence of a Bose droplet is proposed in binary Bose mixtures with attractive inter-species attractions.The mean-field collapse is surprisingly shown to be arrested by an effective repulsive force arising from Lee–Huang–Yang(LHY) quantum fluctuations.[38]This ground-breaking proposal is now successfully confirmed in several experimental setups, including the homonuclear39K–39K mixtures[6–9]and heteronuclear41K–87Rb[10]or23Na–87Rb mixtures.[11]Following Petrov’s pioneering idea,[17]numerous theoretical investigations have been recently carried out,[17–27,29–37]addressing various zero-temperature properties of Bose droplets.

    The finite-temperature properties of Bose droplets in both dipolar BECs and binary Bose mixtures, however, do not receive too much attention. Ultradilute droplets of dipolar bosons at finite temperature have recently been considered in the presence of an external harmonic trap.[28]For Bose droplets in binary mixtures, only the bulk properties (of an infinitely large droplet) at nonzero temperature are addressed most recently.[39,40]As the effective repulsive force provided by the LHY fluctuation term can be easily neutralized by thermal fluctuations,it is not a surprise to find that a Bose droplet in binary mixtures can be completely destabilized above a threshold temperature Tth.[39]

    The less interest in the finite temperature effect is probably due to the peculiar self-evaporation feature of quantum droplets. As a self-bound entity, the energy of elementary excitations of quantum droplets – either single-particle excitations or collective excitations – has to be bounded from above by the so-called particle-emission threshold,making the droplet essentially a low-temperature object. This is fairly evident in helium nano-droplets: once the nano-droplet is created, its temperature rapidly decreases to about 0.4 K in several milliseconds.[13]Afterward,however,the self-evaporation becomes not so efficient.[13]A Bose droplet in a binary mixture is similarly anticipated to be a low-temperature object.In particular, as predicted by Petrov from zero-temperature calculations,[17]for the number of particles in a certain range,there are no collective excitations below the particle-emission threshold. In other words, an excitation-forbidden region in the particle number exists. The Bose droplet then may automatically lose its thermal energy upon releasing the most energetic particles and reach exactly zero temperature.

    In this work, we would like to argue that the selfevaporation efficiency of Bose droplets at low temperature could be much reduced, as in helium nano-droplets.[13]As a result, the experimentally observed Bose droplets might have a small but nonzero temperature in the realistic timescale of experiments.[6–9]We theoretically determine the finite-temperature structure and collective excitations of selfbound spherical Bose droplets with a finite number of particles, based on time-independent and time-dependent extended Gross–Pitaevskii equations (GPEs),[17]respectively.We find a rich phase diagram at finite temperature. In particular,the excitation-forbidden,self-evaporation region of the Bose droplet,found earlier by Petrov using a zero-temperature theory,[17]turns out to shrink with increasing temperature and disappears eventually. We also predict that the surface modes and compressional sound modes of the Bose droplet become softened at the droplet-to-gas transition upon increasing temperature. Our results could be experimentally examined in binary Bose mixtures if efficient thermometry can be established at low temperatures.

    2. Extended Gross–Pitaevskii equation at finite temperature

    To address the finite-temperature properties of a finitesize Bose droplet, we consider the finite-temperature version of the extended GPE

    where Φ(x,t)can be treated as the wave-function of the Bose droplet with atomic mass m, μ is the chemical potential to be determined by the total number of particles N,and ?(n)is the local free energy functional(per unit volume V)depending on the local density n(x,t)=|Φ(x,t)|2.

    The extended GPE in the form of Eq.(1)was first used by Petrov in his seminal work as an effective phenomenological theory to describe the low-energy dynamics of an LHY droplet at zero temperature.[17]In the studies of helium nano-droplets,such a density-functional description is widely adopted.[12]For an overview,we refer to the review paper.[13]The microscopic derivation of the extended GPE Eq.(1)is difficult,due to an intrinsic in-consistency in Petrov’s theory of the LHY droplet: one needs to artificially remove a small imaginary part in the LHY energy functional, which is related to the instability of mean-field collapse.[17]This difficulty was recently overcome by the present authors,with the consideration of the inter-species pairing of two bosons in different hyperfine states.[33,34]As a result of the correct description for the ground state, the extended GPE can be microscopically derived. This was demonstrated in our recent work for the zerotemperature case under the local density approximation.[35]The generalization of the derivation to the nonzero temperature T /=0 case is straightforward. We can simply replace the ground-state energy functional ?(n)at zero temperature used in our previous work[35]with a finite-temperature energy function ?(n)for free energy.

    From the previous work for the finite-temperature bulk properties of the LHY droplet,[39]it is easy to show that the free energy functional per unit volume takes the form

    At zero temperature,where the last term in Eq.(13)is absent,Eq. (12) recovers the dimensionless extended GPE used earlier by Petrov.[17]The two temperature-dependent constants CTand BTare the functions of the ratio T/Tthonly and do not depend explicitly on the scattering lengths a and a12. Near the threshold temperature T ~Tth,both constants become significant, and we find that the LHY quantum-fluctuation term(∝|φ|5) in the free energy functional is largely compensated by the last thermal-fluctuation term. This eventually destabilizes a large Bose droplet at the threshold temperature Tth.[39]Let us now analyze how does this thermal destabilization occur for a Bose droplet with a finite(reduced)number of particles.

    2.1. Time-independent GPE for the density distribution φ0

    In this work, we solve the static GPE numerically via a gradient method, which improves the accuracy and efficiency from our previous work.[15,41,42]The details of our numerical method are described in Appendix A.

    2.2. Bogoliubov equations for collective excitations

    To study the collective excitations of the Bose droplet,we consider small fluctuation modes around the condensate wavefunction φ0(r)[15,32,42]

    It should be noted that the wave-functions u(x)=+φ0(r)and v(x)=-φ0(r)are the zero-energy solution(i.e.,ωj=0)of the Bogoliubov equations. This is precisely the condensate mode of the Bose droplet and therefore should be discarded. To numerically solve the Bogoliubov equations,we follow the technique by Hutchinson,Zaremba,and Griffin.[43]The details of the numerical implementation can be found in Ref. [42] and Appendix A.

    3. Results and discussion

    3.1. Collective excitations at a given temperature

    To start, let us briefly review the essential zerotemperature properties of a self-bound Bose droplet.[17]First,the chemical potential μ of the droplet has to be negative(μ <0), less than that of the surrounding vacuum (i.e., μvac=0).Otherwise, it is not energetically favorable for particles to be added into the droplet. For an infinitely large droplet, where the edge effect can be safely neglected,it is clear from the stationary GPE Eq.(16)that the condensate wave-function in the bulk is φ0=1 in the re-scale units and the chemical potential μ =-1/2. As we decrease the number of particles in the droplet,the wave-function φ0(r)will be smaller than unity and the chemical potential increases towards μ →0-. The droplet will eventually become unstable and experience a droplet-togas transition,when the zero-pressure condition for the droplet state is strongly violated at low density. The droplet-to-gas transition at the critical number of particles Nc?18.65 has been analyzed in detail by Petrov,[17]by considering the balance between the kinetic energy (i.e., from the Laplace operator -?2/2) and the interaction energy (i.e., ?(φ0)). The transition is clearly signaled by the softening of the breathing mode frequency ωl=0,n=0,which vanishes precisely at Nc.This is shown by blue circles in Fig.2(a),where we reproduce the lower panel of Fig. 1 in Ref. [17]. Petrov also predicted the existence of a metastable droplet state when the number of particles is slightly larger than the critical number, i.e.,Nc<N <Nm?22.55.[17]This metastable state has a positive total energy, i.e., -? <0 as shown in Fig. 2(a), so the particles in the droplet will eventually escape to the vacuum via tunneling through an energy barrier(created by the competing kinetic and interaction energies).

    Another interesting zero-temperature feature of the Bose droplet is the existence of an excitation-forbidden window in the number of particles,[17]as we mentioned earlier. In Fig.2(a),there is no collective excitation in the stable droplet state below a threshold number of particles, N <Nth?94.2.All collective excitations are accumulated right above the particle-emission threshold |μ|, forming an unbounded collective excitation continuum.[42]The bounded collective excitations are only possible at N >Nth, where the quadruple mode frequency ωl=2,n=0first becomes smaller than|μ|,[17]as shown by the red empty squares. At sufficiently large number of particles(i.e.,N ~104),the Bose droplet is able to acquire a series of the surface modes and compressional sound modes with well-defined dispersion relations,[17,42]as we shall see later.

    Fig. 2. The chemical potential -μ, free energy per particle -?/N,breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at zero temperature(a)and at temperature T =0.6Tth (b). At zero temperature in (a), a metastable Bose droplet occurs when the number of particles decreases down to Nm ?22.55,when the free energy ? becomes positive(or-? becomes negative).

    At finite temperature, the collective excitation spectrum can dramatically change. In Fig.2(b),we report the excitation spectrum at T = 0.6Tth. It is readily seen that the dropletto-gas transition now occurs at a much larger critical number of particles, Nc(T =0.6Tth)?30.9, where the breathing mode frequency drops to zero. At the same time, the free energy ? is always negative, indicating that the metastable droplet state found at zero temperature does not exist anymore. The threshold number of particle for the excitationforbidden window also significantly decreases and we find that Nth(T =0.6Tth)?66.2. For N >66.2, the quadruple mode frequency ω20decreases with increasing number of particles,while the breathing mode frequency ω00continuously follows the particle-emission threshold |μ| at the number of particles considered in the figure.

    In Fig. 3, we show the excitation spectrum at an even higher temperature T = 0.8Tth. At this temperature, the excitation-forbidden window in the number of particles completely disappears. Both the breathing mode frequency and quadruple mode frequency appear to be bounded below the particle-emission threshold|μ|.

    Fig. 3. The chemical potential -μ, breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at temperature T =0.8Tth.

    3.2. A finite-temperature phase diagram

    We have calculated the excitation spectrum at different reduced temperatures and consequently have obtained a finitetemperature phase diagram,as reported in Fig.4.This presents the main result of our work. Here,the critical number of particle Nc(black solid curve)is determined by extrapolating the breathing mode frequency ω00to zero, and the critical number Nm(red dashed curve) is obtained by tracing the position where the free energy becomes positive. The two curves crosses with each other at about 0.24Tth,above which the window for a metastable droplet state closes. It is interesting to note that the critical number of particles Ncshows a sensitive temperature dependence. It increases very rapidly once the temperature is above about 0.4Tth. Approaching the bulk threshold temperature Tth,a Bose droplet with any number of particles becomes thermally unstable, as we already show in the previous work.[39]

    On the other hand, the threshold number of particle Nth(blue dash-dotted curve) can be determined from the crossing point between the quadruple mode frequency ω20and the particle-emission threshold |μ|. It separates the phase space for a stable Bose droplet into two regimes: an excitationforbidden droplet regime without any bounded collective excitations below the particle-emission threshold and a standard droplet regime with at least one discrete collective excitation.With increasing temperature, we find that the Nth-curve terminates at about 0.73Tth(see, i.e., the solid circle symbol in the figure). Above this temperature, we always find standard Bose droplets, in which a small but nonzero temperature or entropy could be accommodated by the discrete bounded collective excitations. Therefore, the intriguing self-evaporation phenomenon predicted by Petrov, i.e., the emission of particles upon arbitrary excitations,[17]ceases to exist. The Bose droplets then fail to automatically reach zero temperature.

    Fig. 4. The phase diagram of a finite-size Bose droplet as functions of the reduced number of particles N (horizontal axis) and of the reduced temperature T/Tth (vertical axis). At high temperature and small number of particles, the system is in the gas-like phase, while at low temperature and large number of particles, it is in the droplet state. A metastable droplet state also occurs at low temperature and relatively small number of particle.

    3.3. The temperature-dependences of the density distribution and collective excitations

    Let us now consider an idealized experimental situation.Initially, a Bose droplet is nearly in thermal equilibrium at a nonzero temperature.It then gradually reduces its temperature by emitting a very small portion of the most energetic particles. This slow self-evaporation might be treated as an adiabatic process.By taking the in-situ or time-of-flight absorption imaging of the Bose droplet,we may then experimentally extract the temperature-dependences of the density distribution and collective excitations of the Bose droplet at a nearly constant number of particles.

    3.3.1. Large Bose droplets

    Fig. 6. Excitation frequencies ωln (l ≤9 and n ≤2) of a large self-bound Bose droplet (N =3000), as a function of the reduced temperature T/Tth.The red dashed curves show the surface modes ωl≥2,n=0 and the blue dashdotted curves show the compressional bulk modes.The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode (breathing mode) are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ.

    3.3.2. Small Bose droplets

    Let us now consider a Bose droplet with small reduced number of particles,which is more amenable to be created in the current experimental setups.[6,8]In Fig. 7, we show the density distribution of a N=100 Bose droplet at two temperatures: T =0 (solid curve) and T =0.7Tth(dashed curve).Compared with a large Bose droplet in Fig.5,the density distribution of a small droplet shows a more appreciable temperature dependence. In particular,the center density can change up to several tens of percent(see the inset),as we increase the temperature towards the threshold. This pronounced temperature dependence could be related to the loss of the flat-top structure in the density distribution due to the reduced number of particles. A small Bose droplet appears to be more easier to be altered than a large droplet.

    Fig.7. The density distribution n(r)of a small self-bound Bose droplet(N =100) at zero temperature (blue solid curve) and at the temperature T =0.7Tth (red dashed curve). The inset shows the temperature dependence of the center density at r=0.

    In Fig.8,we report the temperature evolution of the collective excitation spectrum at N=100. At this number of particles and at zero temperature, only the lowest surface mode(i.e.,the quadruple mode ω20)is bounded below the particleemission threshold |μ|.[17]When we increase the temperature, the quadruple mode frequency decreases notably, presumably due to the increase of the droplet radius, since the droplet at this size acquires a more sensitive temperature dependence as we mentioned earlier. Interestingly, at about 0.7Tththe frequency of the lowest compression bulk mode,the breathing mode frequency, starts to fall off the particleemission threshold. It becomes increasingly softened towards the threshold temperature Tth. At an even higher temperature(i.e., T ~0.87Tth), more and more higher-order bulk modes fall off the the particle-emission threshold and become softened. This fall-off feature turns out to be very general,occurring also at smaller number of particles,as can be seen in the inset for the selected case of N=50.

    Fig. 8. Excitation frequencies ωln (l ≤9 and n ≤2) of a small selfbound Bose droplet(N=100),as a function of the reduced temperature T/Tth. The red dashed curves show the surface modes ωl≥2,n=0 and the blue dash-dotted curves show the compressional bulk modes. The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode(breathing mode)are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ. At this number of particles,most of the excitation modes enter the collective excitation continuum with a frequency ωln ?-μ. The inset shows the excitation spectrum at an even smaller number of particles,N=50.

    The mode frequency softening, for both surface modes and compressional bulk modes in large and small Bose droplets,is therefore a characteristic feature of the thermallyinduced droplet-to-gas transition at finite temperature. The mode softening effectively removes the excitation-forbidden interval in the number of particles predicted by Petrov at zero temperature,[17]and opens the possibility to observe a small Bose droplet with non-zero temperature.

    4. Conclusions

    In summary,we have theoretically investigated the finitetemperature effects on the structure and collective excitations of an ultradilute quantum droplet in free space, formed in a binary Bose–Bose mixture with inter-species attractions near the mean-field collapse. Our calculations are based on the extended (time-dependent) Gross–Pitaevskii equation generalized to the finite-temperature case. The density distribution is determined by solving the static Gross–Pitaevskii equation,while the collective excitation spectrum is obtained by solving the coupled Bogoliubov equations.

    We have found a rich finite-temperature phase diagram as a function of the number of particles in the droplet. In particular,the critical number of particles at the droplet-to-gas transition is found to depend sensitively on the temperature. The excitation-forbidden interval predicted by Petrov is shown to shrink with increasing temperature and disappears completely at about 0.73Tth, where Tthis the threshold temperature for thermally destabilizing an infinitely large Bose droplet.Above the temperature 0.73Tth,there is at least one discrete collective mode below the particle-emission threshold,which may block the self-evaporation of the Bose droplet and allow a small but nonzero temperature.

    Our results could be experimentally examined, if we are able to overcome the difficulty of finding a useful thermometry to measure the temperature. Qualitatively, at the number of particles slightly below Nth(T =0)?94.2,the experimental observation of discrete quadrupole mode frequency or breathing mode frequency below the particle-emission threshold, i.e., ω20<|μ|or ω00<|μ|, would be a very strong evidence for the finite-temperature effect.

    Appendix A:Numerical method

    The B-spline basis has been extensively used in solving Schr¨oinger equations in two- and three-body problems with high accuracy.[45,46]The B-spline basis allows us to use an uneven grid, which might better represent the solution wavefunction.The B-spline basis also allows a higher order approximation of the derivative operator that appears in the kinetic energy term. The energy density functional ?/N then can be regarded as a non-linear function of coefficients cn,which can be minimized using the standard conjugate-gradient method via software package such as“minFunc”in Matlab.[47]

    猜你喜歡
    王佳
    王佳
    當代作家(2023年4期)2023-06-07 13:57:24
    “反詐警花”用愛勸阻200萬群眾受騙
    Phenomenon of Fossilization in English Learning, underling reasons and corresponding Strategies
    王佳、駱太均空間設計作品
    藝術評論(2018年8期)2018-12-28 09:10:54
    苔花也學牡丹開
    戲劇之家(2018年32期)2018-01-02 10:40:14
    幫助您我快樂
    “全職太太”被離婚面臨凈身出戶怎么辦?
    婦女生活(2017年10期)2017-10-10 03:58:33
    女兒得怪病“不食人間煙火”之后
    掉入“抑郁癥”陷阱的婚姻
    “防火防盜防閨蜜”,兩套房子離奇被抵押
    国产无遮挡羞羞视频在线观看| 一个人免费看片子| 男女床上黄色一级片免费看| 亚洲av欧美aⅴ国产| 最新在线观看一区二区三区 | 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀 | 另类精品久久| 80岁老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| netflix在线观看网站| 在线亚洲精品国产二区图片欧美| 国产精品九九99| 久久99精品国语久久久| 夫妻午夜视频| 黄网站色视频无遮挡免费观看| 日韩 欧美 亚洲 中文字幕| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 91精品国产国语对白视频| 精品国产超薄肉色丝袜足j| 欧美变态另类bdsm刘玥| 只有这里有精品99| 欧美国产精品一级二级三级| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 午夜av观看不卡| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 精品视频人人做人人爽| 永久免费av网站大全| 国产成人欧美在线观看 | 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 18禁国产床啪视频网站| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 久久久久久久国产电影| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看 | 伦理电影免费视频| 午夜免费鲁丝| xxxhd国产人妻xxx| 别揉我奶头~嗯~啊~动态视频 | 精品国产乱码久久久久久小说| 久久这里只有精品19| 亚洲国产av影院在线观看| 亚洲免费av在线视频| 老汉色av国产亚洲站长工具| 老熟女久久久| 黄色a级毛片大全视频| 99热国产这里只有精品6| 国产成人一区二区三区免费视频网站 | 两个人看的免费小视频| 视频在线观看一区二区三区| 国产有黄有色有爽视频| 成年美女黄网站色视频大全免费| av网站免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美黄色淫秽网站| 亚洲欧美日韩高清在线视频 | 国产精品久久久久久人妻精品电影 | 日本av免费视频播放| 操出白浆在线播放| 一区二区av电影网| 女人精品久久久久毛片| av一本久久久久| 校园人妻丝袜中文字幕| 亚洲中文日韩欧美视频| 欧美 亚洲 国产 日韩一| 五月天丁香电影| 人人妻人人添人人爽欧美一区卜| 免费日韩欧美在线观看| 亚洲精品中文字幕在线视频| 午夜精品国产一区二区电影| h视频一区二区三区| 十八禁高潮呻吟视频| 精品亚洲成a人片在线观看| 黄网站色视频无遮挡免费观看| 午夜视频精品福利| 精品亚洲乱码少妇综合久久| 欧美人与善性xxx| 日韩,欧美,国产一区二区三区| 亚洲午夜精品一区,二区,三区| 久久 成人 亚洲| 国产日韩一区二区三区精品不卡| 巨乳人妻的诱惑在线观看| 中文字幕制服av| 亚洲国产看品久久| 日韩 欧美 亚洲 中文字幕| 久久狼人影院| 国产在线观看jvid| av线在线观看网站| 亚洲精品成人av观看孕妇| 青青草视频在线视频观看| 亚洲精品日本国产第一区| 99久久99久久久精品蜜桃| 高潮久久久久久久久久久不卡| 欧美大码av| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 国产成人a∨麻豆精品| 国精品久久久久久国模美| av国产精品久久久久影院| 国产精品一区二区免费欧美 | 亚洲人成77777在线视频| av国产久精品久网站免费入址| 国产成人免费无遮挡视频| 中文字幕精品免费在线观看视频| 777久久人妻少妇嫩草av网站| 美国免费a级毛片| 人人澡人人妻人| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠躁躁| av在线老鸭窝| av在线app专区| 欧美日韩黄片免| 国产在线观看jvid| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 在线天堂中文资源库| 大香蕉久久网| 久久亚洲精品不卡| 一区福利在线观看| 日本欧美视频一区| 欧美激情高清一区二区三区| 黑人猛操日本美女一级片| 欧美激情高清一区二区三区| 亚洲,欧美精品.| 蜜桃在线观看..| 国产高清视频在线播放一区 | videosex国产| 精品人妻1区二区| 婷婷成人精品国产| 丝袜脚勾引网站| 美女福利国产在线| 大片电影免费在线观看免费| 最新的欧美精品一区二区| a级片在线免费高清观看视频| 青春草视频在线免费观看| 国产高清视频在线播放一区 | 中文字幕人妻丝袜制服| 新久久久久国产一级毛片| 丝瓜视频免费看黄片| 老司机在亚洲福利影院| 国产97色在线日韩免费| 亚洲精品自拍成人| av在线app专区| 精品少妇一区二区三区视频日本电影| 色播在线永久视频| 欧美久久黑人一区二区| 热re99久久国产66热| 亚洲精品国产av成人精品| 中文字幕av电影在线播放| 亚洲欧美一区二区三区久久| 2021少妇久久久久久久久久久| 久久国产精品影院| 午夜免费成人在线视频| 亚洲专区中文字幕在线| 久久午夜综合久久蜜桃| 黄片播放在线免费| netflix在线观看网站| 男人爽女人下面视频在线观看| 亚洲精品成人av观看孕妇| 嫩草影视91久久| 成年动漫av网址| 亚洲男人天堂网一区| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 中文精品一卡2卡3卡4更新| 50天的宝宝边吃奶边哭怎么回事| 高清欧美精品videossex| 一级黄片播放器| 十分钟在线观看高清视频www| 久热爱精品视频在线9| 欧美人与性动交α欧美软件| 美女福利国产在线| 天堂8中文在线网| 丰满少妇做爰视频| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 黄色视频不卡| 午夜av观看不卡| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频| 亚洲成人手机| 9热在线视频观看99| 欧美日韩亚洲高清精品| www.自偷自拍.com| 热99久久久久精品小说推荐| 看免费成人av毛片| 久久女婷五月综合色啪小说| 嫁个100分男人电影在线观看 | 中文精品一卡2卡3卡4更新| 国产片内射在线| 国产在视频线精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频不卡| 大型av网站在线播放| 婷婷色麻豆天堂久久| 亚洲美女黄色视频免费看| 69精品国产乱码久久久| 国产日韩欧美在线精品| 国产xxxxx性猛交| 久久亚洲精品不卡| 九草在线视频观看| 女人久久www免费人成看片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 欧美 日韩 精品 国产| 尾随美女入室| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲av一区麻豆| 曰老女人黄片| 国产又爽黄色视频| 午夜福利免费观看在线| 最新的欧美精品一区二区| 爱豆传媒免费全集在线观看| 日日夜夜操网爽| www日本在线高清视频| 中文字幕制服av| 韩国精品一区二区三区| 老司机影院毛片| 女警被强在线播放| 精品少妇内射三级| 成年av动漫网址| 午夜免费男女啪啪视频观看| 国产伦理片在线播放av一区| 亚洲精品一二三| 熟女av电影| 亚洲五月色婷婷综合| 欧美少妇被猛烈插入视频| 久久影院123| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 国产又色又爽无遮挡免| 只有这里有精品99| 成年女人毛片免费观看观看9 | 91九色精品人成在线观看| 日韩中文字幕欧美一区二区 | 深夜精品福利| 少妇人妻 视频| 国产成人精品久久二区二区免费| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| a级片在线免费高清观看视频| 少妇被粗大的猛进出69影院| 国产精品二区激情视频| 99国产综合亚洲精品| 欧美精品高潮呻吟av久久| 亚洲av综合色区一区| 国产精品久久久人人做人人爽| 99国产综合亚洲精品| bbb黄色大片| 日韩av免费高清视频| 欧美日韩国产mv在线观看视频| 日本五十路高清| 满18在线观看网站| 七月丁香在线播放| 国产在视频线精品| 亚洲精品久久成人aⅴ小说| 成人亚洲欧美一区二区av| av福利片在线| 少妇猛男粗大的猛烈进出视频| 老汉色∧v一级毛片| 久久久国产精品麻豆| 18禁黄网站禁片午夜丰满| 在线观看免费高清a一片| 亚洲欧美激情在线| 日韩精品免费视频一区二区三区| 久久国产精品大桥未久av| 国产熟女午夜一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲国产最新在线播放| 在线av久久热| 国产一区亚洲一区在线观看| 黄色毛片三级朝国网站| 女人爽到高潮嗷嗷叫在线视频| 午夜精品国产一区二区电影| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 老司机午夜十八禁免费视频| 我要看黄色一级片免费的| 日本91视频免费播放| 国产三级黄色录像| 久久性视频一级片| 国产精品亚洲av一区麻豆| 在线观看国产h片| 咕卡用的链子| 狠狠精品人妻久久久久久综合| 90打野战视频偷拍视频| 久久精品亚洲av国产电影网| 亚洲成人手机| 日本欧美视频一区| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 亚洲国产精品成人久久小说| 午夜福利乱码中文字幕| 欧美日韩成人在线一区二区| 久久午夜综合久久蜜桃| 亚洲三区欧美一区| 欧美黑人精品巨大| 老鸭窝网址在线观看| 麻豆av在线久日| 黑人巨大精品欧美一区二区蜜桃| 精品人妻在线不人妻| 久久99精品国语久久久| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 欧美黑人精品巨大| 最黄视频免费看| 91精品国产国语对白视频| 亚洲熟女毛片儿| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 欧美精品啪啪一区二区三区 | 日韩欧美一区视频在线观看| 亚洲九九香蕉| 亚洲av成人精品一二三区| 精品高清国产在线一区| 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 91精品三级在线观看| 交换朋友夫妻互换小说| 亚洲av男天堂| 一区二区三区四区激情视频| 久久精品国产综合久久久| 999精品在线视频| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 国产日韩欧美在线精品| 欧美日韩综合久久久久久| 国产黄色免费在线视频| videos熟女内射| 赤兔流量卡办理| 亚洲国产欧美一区二区综合| 亚洲伊人色综图| videosex国产| 一本—道久久a久久精品蜜桃钙片| 97人妻天天添夜夜摸| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o | 欧美日韩综合久久久久久| 黄频高清免费视频| 成年人免费黄色播放视频| 久久久欧美国产精品| 国产精品偷伦视频观看了| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 亚洲中文字幕日韩| 国产主播在线观看一区二区 | 久9热在线精品视频| 真人做人爱边吃奶动态| 黄色 视频免费看| 岛国毛片在线播放| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区四区第35| 国产成人精品无人区| 亚洲精品国产一区二区精华液| 我的亚洲天堂| 亚洲一区二区三区欧美精品| 欧美另类一区| 日韩 亚洲 欧美在线| 赤兔流量卡办理| 色精品久久人妻99蜜桃| 免费av中文字幕在线| 亚洲精品在线美女| 亚洲成色77777| svipshipincom国产片| 丝袜在线中文字幕| 久久人妻福利社区极品人妻图片 | 免费一级毛片在线播放高清视频 | 成年人黄色毛片网站| 国产高清videossex| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 又紧又爽又黄一区二区| 亚洲av电影在线观看一区二区三区| 91九色精品人成在线观看| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 欧美日韩综合久久久久久| 最新的欧美精品一区二区| 两个人看的免费小视频| 91字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 只有这里有精品99| xxxhd国产人妻xxx| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 国产野战对白在线观看| 男女之事视频高清在线观看 | 国产成人精品久久二区二区91| av片东京热男人的天堂| 亚洲欧美一区二区三区国产| 人人妻人人爽人人添夜夜欢视频| 丝袜美腿诱惑在线| 在线观看一区二区三区激情| 午夜福利在线免费观看网站| 七月丁香在线播放| 99久久综合免费| 亚洲第一av免费看| 麻豆av在线久日| 免费在线观看日本一区| 国产亚洲av片在线观看秒播厂| 日韩熟女老妇一区二区性免费视频| 日本欧美国产在线视频| 欧美乱码精品一区二区三区| 伊人久久大香线蕉亚洲五| 99国产精品一区二区蜜桃av | 一边摸一边抽搐一进一出视频| 十八禁高潮呻吟视频| www.999成人在线观看| 日韩人妻精品一区2区三区| 亚洲七黄色美女视频| 国产成人91sexporn| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 七月丁香在线播放| 亚洲国产精品成人久久小说| 黄片小视频在线播放| 深夜精品福利| 人人妻人人澡人人爽人人夜夜| 大码成人一级视频| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 亚洲色图 男人天堂 中文字幕| 丁香六月欧美| 国产真人三级小视频在线观看| 在线观看免费日韩欧美大片| 老司机亚洲免费影院| 中文字幕人妻丝袜一区二区| 精品国产乱码久久久久久男人| 久久天躁狠狠躁夜夜2o2o | 女人高潮潮喷娇喘18禁视频| 亚洲激情五月婷婷啪啪| 亚洲欧美一区二区三区久久| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡| 中文字幕人妻丝袜制服| 欧美激情极品国产一区二区三区| 肉色欧美久久久久久久蜜桃| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 一区二区三区激情视频| videosex国产| 国产精品三级大全| 久久久久久人人人人人| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲一区二区精品| 香蕉丝袜av| 国产精品香港三级国产av潘金莲 | 精品少妇黑人巨大在线播放| 久久亚洲精品不卡| 国产国语露脸激情在线看| 一级黄片播放器| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 我的亚洲天堂| 一本一本久久a久久精品综合妖精| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 精品亚洲成国产av| 青草久久国产| 国产精品一区二区精品视频观看| 精品福利永久在线观看| 日韩 亚洲 欧美在线| 国产男女超爽视频在线观看| 午夜福利视频精品| 一本久久精品| 亚洲精品一二三| 午夜老司机福利片| 一二三四在线观看免费中文在| 国产精品一区二区在线观看99| √禁漫天堂资源中文www| 另类精品久久| 久久国产精品大桥未久av| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| 熟女av电影| 女警被强在线播放| 国产精品久久久久成人av| 亚洲视频免费观看视频| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 国产成人精品久久久久久| 久久 成人 亚洲| 在线观看免费视频网站a站| 亚洲av男天堂| 亚洲成人手机| 9191精品国产免费久久| 成人午夜精彩视频在线观看| 亚洲人成电影观看| 99热网站在线观看| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 成在线人永久免费视频| 午夜免费鲁丝| 国产高清视频在线播放一区 | 久热这里只有精品99| 色综合欧美亚洲国产小说| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 国产色视频综合| av国产精品久久久久影院| 国产又色又爽无遮挡免| 日韩大片免费观看网站| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性xxxx| videos熟女内射| 国产麻豆69| 久久久久久久国产电影| 国产熟女午夜一区二区三区| 性色av一级| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 日本91视频免费播放| 嫁个100分男人电影在线观看 | 婷婷丁香在线五月| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 一级片'在线观看视频| 欧美成人精品欧美一级黄| cao死你这个sao货| 咕卡用的链子| 女人久久www免费人成看片| 久久久久久久久免费视频了| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人免费电影在线观看 | 久久精品亚洲熟妇少妇任你| 午夜影院在线不卡| 欧美国产精品一级二级三级| 久久毛片免费看一区二区三区| 亚洲国产精品一区三区| 中文字幕人妻丝袜一区二区| 久久青草综合色| 一级毛片我不卡| 久久毛片免费看一区二区三区| 成人国语在线视频| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 又大又爽又粗| 97精品久久久久久久久久精品| 男女下面插进去视频免费观看| 9色porny在线观看| 午夜免费男女啪啪视频观看| www.精华液| 搡老岳熟女国产| 国产成人91sexporn| 18禁观看日本| 成人手机av| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 久久青草综合色| 91麻豆精品激情在线观看国产 | 成人国语在线视频| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| tube8黄色片| 亚洲欧洲国产日韩| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 午夜91福利影院| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看 | 涩涩av久久男人的天堂| 国产麻豆69| 999久久久国产精品视频| 精品国产乱码久久久久久小说| av不卡在线播放| 狠狠婷婷综合久久久久久88av| 咕卡用的链子| 看十八女毛片水多多多| 久久综合国产亚洲精品| 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 午夜av观看不卡| 国产精品国产三级国产专区5o| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| 久久鲁丝午夜福利片| 欧美精品人与动牲交sv欧美| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| 1024香蕉在线观看| 日韩av免费高清视频| 97精品久久久久久久久久精品| 免费看十八禁软件| 建设人人有责人人尽责人人享有的| 国产成人影院久久av| 一二三四在线观看免费中文在| 久久久久久久久久久久大奶| 曰老女人黄片| 只有这里有精品99| 国产男人的电影天堂91|