• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence of the Solution for Stochastic Generalized Coupled Differential Riccati Equation

    2021-01-07 01:23:44MAHeping馬和平HUChaozhu胡超竹
    應用數(shù)學 2021年1期
    關鍵詞:和平

    MA Heping(馬和平),HU Chaozhu(胡超竹)

    (School of Science,Hubei University of Technology,Wuhan 430068,China)

    Abstract: By means of the singular value decomposition,the existence of solution are obtained for the stochastic generalized coupled differential Riccati equation.As an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    Key words: Existence; Stochastic generalized coupled differential Riccati equation;Optimal control; Stochastic singular system

    1.Introduction

    In many control problem,both in deterministic and in stochastic framework,a crucial role is played by a class of nonlinear matrix differential equations.One of the most intensely studied nonlinear matrix equations arising in mathematics and engineering is the Riccati equation.This equation,in one form or another,has an important role in optimal control problems,multi-variable and large scale systems,scattering theory,estimation,detection,transportation,and radiative transfer.[16]It is known that the boundedness of the solution of the matrix Riccati differential equation (MRDE) with a terminal boundary condition is equivalent to the no-conjugate point to the final time.The solution of this equation is difficult to obtain from two points of view.One is that it is nonlinear,and the other is that it is in matrix form.Readers may refer to [3,5,6,8,10,11,15] for more details.

    In realities,the uncertainties are unavoidable.So over the past decades stochastic modeling has played an important role in many branches of science and engineering.The study of systems with stochastic disturbance has gained growing interest over the past few decades,and many research topics on stochastic systems have been investigated(for example,[1,13,17,18] and references therein).For the nonsingular stochastic system without Markovian jump parameter,SUN,LI and YONG[12]have studied the open-loop and closed-loop solvabilities for a general class of stochastic linear quadratic(LQ)problems with deterministic coefficients.Their results bring new insights into the internal structure of the LQ problem and explain the fundamental reason why the weighting matrices in the cost functional could be indefinite.Rami,CHEN and Moore[16]give a equation called generalized differential Riccati equation(GDRE),via general necessary and sufficient conditions for the solvability of GDRE.Rami,Moore and ZHOU[17]solve an outstanding open problem,which identifies an appropriate Riccati-type equation,also called generalized differential Riccati equation,whose solvability is equivalent to the solvability of the indefinite stochastic LQ problem.By introducing a notion of subsolution for the SRE,DU[4]derives several novel sufficient conditions for the existence and uniqueness of the solution to the SRE.On the other hand,LI and ZHOU[7]successfully extend the state space system to the system with Markov parameter.A system of coupled generalized differential Riccati equations (CGDREs) is introduced to cope with the indefinite stochastic LQ control problem with Markov parameter.Specifically,they proved that the solvability condition of the CGDREs is sufficient for the well-posedness of the stochastic LQ problem.

    The singular system contains the state-space form as a special case and thus can represent a much wider class of systems than its state-space counterpart.Singular system is an important class of systems in terms of theoretical and practical significance,and it has received great attention during the past few decades.WANG and LIU[14]consider the linear quadratic optimal control of stochastic singular systems without Markovian jump parameter.They established the existence and uniqueness of the impulse-free solution of nonregular stochastic singular system,and then gave the sufficient conditions for the optimal control problem.ZHANG and XING[19]studied the problems of stability and optimal control for a class of stochastic singular systems.They obtained some new results about mean-square admissibility and investigated finite-time horizon and infinite-time horizon LQ control problems for the stochastic singular system.ZHANG,LIN and XUE[20]concerned with the finite horizon linear quadratic Pareto optimal control problem of stochastic singular systems.By means of the square completion technique,they established a new kind of generalized differential Riccati equations(GDREs)and presented the existence condition of the solution of the GDREs.

    For the stochastic singular system with Markov parameter,a problem is how to guarantee existence of the impulse-free solution to the stochastic singular systems with Markovian jumps,and how to establish the existence of a finite set of stochastic generalized coupled differential Riccati equations (SGCDREs).If those problems are solved,naturally,we will ask that can we study well-posed of a finite set of generalized coupled differential Riccati equations? Being directly inspired by those reasons,the purpose of this work is to study the existence of the stochastic generalized coupled differential Riccati equation and application to LQ optimal control for Markov jump linear stochastic singular systems.

    The paper is organized as follows.In Section 2,we summarize some basic assumptions,definitions and some useful Lemmas.In Section 3,we establish the existence of the solution for stochastic generalized coupled differential Riccati equation (SGCDRE).In Section 4,as an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    NotationRndenotes the n-dimensional Euclidean space ,Rm×nis the set of all m×n real matrices and R+:=(0,∞).For symmetric matrices P,the notation P ?0(respectively,P?0) means that matrix P is positive definite(respectively,positive semi-definite).I is an identity matrix of appropriate dimensions.The superscripts ATand A-1stand for the transpose and the inverse of a matrix A,‖x‖ is the Euclidean norm of the vector x.

    2.Preliminaries

    In this section,consider the following linear stochastic singular systems with Markovian jumps,modeled by

    where x(t) ∈Rnis the system state vector,u(t) ∈Rmis the control input,and ω(t) is a one-dimensional standard Brownian motion that is defined on the given complete probability space (Ω,F(xiàn),(Ft)0≤t≤T,P).Define the set of all admissible controls Uad=(0,T;Rm).The coefficient matrices A(t,rt),C(t,rt)∈L∞(0,T;Rn×n)and B(t,rt),D(t,rt)∈L∞(0,T;Rn×m),and E ∈Rn×nis a singular constant matrix and we assume that rank(E) = r <n.x0∈Rnis the compatible initial condition which is deterministic.This form process r(t) is a continuous-time discrete-state Markov process taking values in a finite set S = {1,2,...,N}with transition probability matrix P :={pij} given by

    where Δ >0.Here λij≥0 is the form transition rate from i to j (ij),and

    Let the initial values x0and r0be independent random variables; x0is also independent of the σ-algebra generated by {r(t),t ∈(0,T]}.When the system operates in the ith mode(r(t) = i),for simplicity,let

    Subject to (2.1)-(2.3),we consider the minimization of

    where Ξ denotes expectation,L(r(T))∈L∞(0,T;Rn×n),Qi(t)∈L∞(0,T;Rn×n),and Ri(t)∈L∞(0,T;Rm×m),i ∈S,are symmetric matrices,and Li(t)∈L∞(0,T;Rn×m).For simplicity,we denotes Θ as follows,

    in order to meet the demands of subsequent proof,we assume L(r(T)) ?0 and Θ ?0.For the existence of the impulse-free solution to the stochastic singular systems with Markovian jumps (2.1),we impose the following assumptions:

    Definition 2.2[9]Let a matrix K ∈Rm×nbe given.Then the matrix K?is called the Moore-Penrose pseudoinverse of K if there exists a unique matrix K?∈Rn×msuch that

    Lemma 2.1[18](Variation of constants formula) For any ζ ∈(Ω;Rn),the equation

    admits a unique solution X(·),which is represented by the following:

    where Φ(·) is the unique solution of the following matrix-valued stochastic differential equation:

    where A(·),C(·)∈L∞(0,T;Rn×n),b(·),σ(·)∈L2(0,T;Rn).

    Theorem 2.1If the assumptions H(2.1) and H(2.2) hold,then the system (2.1) has a solution on [0,T],?i ∈S,in which there is no impulse.

    ProofDue to the constant-rank condition of matrix E,we can consider the singular value decomposition.Under the assumption H(2.2),there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Σris a nonsingular diagonal constant matrix and Ci1(t) ∈Rr×r,Ci2(t) ∈Rr×(n-r),Di1(t)∈Rr×m.Accordingly,define

    where Ai1(t) ∈Rr×r,Ai2(t) ∈Rr×(n-r),Ai3(t) ∈R(n-r)×r,Ai4(t) ∈R(n-r)×(n-r),Bi1(t) ∈Rr×m,Bi2(t)∈R(n-r)×mand let

    where ζ1(t) ∈Rr,ζ2(t) ∈Rn-r.By above transformations,the system (2.1) can be transformed into

    On the other hand,under the assumption H(2.1),the rank relation

    holds.In general,the matrix rank(Ai4(t) Bi2(t)) does not have the full row rank,so there exists a nonsingular matrix Ui(t),?i ∈S,such that

    Obviously,the system (2.12) is equivalent to the system (2.11).Sincehas full-row rank,then there exists a nonsingular matrix Vi(t),?i ∈S such that

    Without loss of generality,we assume thathas full-row rank.Otherwise,we can exchange some columns offor some columns ofand then make the same exchanges betweenandLet=uT(t)),wherethen the system (2.12) is equivalently transformed into

    The first equation of (2.13) is an ordinary stochastic differential equation,in which ζ1(t)is the state vector andis the control vector.According to Lemma 2.1,the first equation of (2.13) has a solution ζ1(t) on [0,T] under the initial condition ζ1(0) = (0)Mx0.Accordingly,=-exists.Thus,the system (2.13) has a impulse-free solution on [0,T],which implies that the system (2.1) has a impulse-free solution on [0,T].This completes the proof.

    Remark 2.2When Di(t)≡0,S={1},the result is the same as that of [20].

    Remark 2.3When the diffusion term has finite state variables and control inputs,the discussion is similar.

    3.Existence of the Solution for SGCDRE

    In this section,we establish the existence of the solution for a set of stochastic generalized coupled differential Riccati equations.And we impose the following assumptions:

    H(3.1) Ai3(t)≡0 and the matrix Bi(t),?t ∈[0,T] is full of column rank.

    H(3.2) τi+τj0,where τiand τjare arbitrary eigenvalues of Ai4(t),?t ∈[0,T].

    Theorem 3.1Assume that H(3.1) and H(3.2) hold,consider L(r(T))?0,Θ ?0,and Ri(t)?0,there exists a solution Pi(t)∈Rn×n,?i ∈S,satisfying

    for each i ∈S,t ∈[0,T].

    For notational simplicity,we define

    As in (3.1),for finite T ∈R+arbitrarily fixed,the set of SGCDRE is defined as

    ProofWe follows the matrix decomposition method of theorem 2.1,then there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Pi1(t),Pi2(t),Pi3(t),Pi4(t),Qi1(t),Qi2(t),Qi3(t),Li1(t),Li2(t),L(r(T))11,L(r(T))12,L(r(T))22are all matrices with appropriate dimensions.By means of the relation (2.5),it is easy to obtain that the Moore-Penrose pseudo inverse of E is

    We directly use the transformations (2.5)-(2.9) and (3.6)-(3.10) to SGCDRE (3.1).Then the first eqation of (3.1) can be partitioned into

    By the equation(3.1),we get ΣrPi1(t)=(ΣrPi1(t))Tand Pi2(t)=0.Then,from the equation(3.11),we obtain three equations as follows:

    By the assumption H(3.1) to be seen,Ai3(t) ≡0 and the matrix Bi(t) is full of column rank,without loss of generality,we can assume that Bi2(t)≡0,?t ∈[0,T].Then the equation(3.12) can be rewritten as

    By the conditions of the theorem 3.1,using the transformations (3.7) and (3.8),we can get that

    where Ni=(Ni1Ni2),Ni1is full-column rank with appropriate dimension.Having a careful observation to the system(3.13),we can know that the equation(3.13a)has a solution ΣrPi1(t)on [0,T] with ΣrPi1(t) ?0,?t ∈[0,T],guaranteed by [6],then substituting it into (3.13b),we could get the solution Pi3(t).By the assumption H(3.2),we can use the similar method in[30] to deal with the equation (3.13c),so we can get a solution Pi4(t) to the equation (3.13c).

    From what has been discussed above,the theorem is proved.

    Remark 3.1In particular,when Di(t) ≡0,Li(t) ≡0,and S = {1} in Theorem 3.1,we can see that the result can not be reduced to the result in [20].So (3.1) can be regarded as an extension of the GDRE in [20].

    4.Application to Optimal Control

    In Section 2,we know the system (2.1) has a no-impulse solution on [0,T],?i ∈S.In this section,we apply the above existence results to study the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.First of all,We now give basic definitions and Lemmas before continuing our discussion,which will be used in the derivations of the main theorem.

    The objective of the optimal control in this paper is to find the optimal control u*(·)∈Uadthat minimizes the performance index J(0,x0,r(0),u,T).The optimal valued function is defined as

    Definition 4.1The optimization problem is called well-posed if

    -∞<V(0,x0)<+∞,?x0∈Rn.

    A well-posed problem is called attainable (with respect to x0) if there is a control u*(·) that achieves V(0,x0).In this case,the control u*(·) is called optimal (with respect to x0).

    Lemma 4.1[16](Generalized It?o’s formula) Let x(t) satisfy

    dx(t)=b(t,x(t),r(t))dt+σ(t,x(t),r(t))dω(t),

    and φ(·,·,i)∈C2([0,∞)×Rn),?i ∈S,be given.Then

    where

    Lemma 4.2Let f be a differentiable function such that f(t,x,i)=xT(t)ETPi(t)x(t),where Pi(t) ∈Rn×nsatisfies the SGCDRE given by (3.1).Then,for the system (2.1) with u ∈Uad,the generalized It?o’s formula (4.1) can be written as

    ProofBy the condition that ETPi(t)=(t)E,we can apply generalized It?o’s formula to xT(t)ETPi(t)x(t),

    where [···] does not affect the calculation result and can be omitted.Applying (3.1) to the above equation,we get (4.2).This complete the proof.

    Lemma 4.3For arbitrary u ∈Uad,the cost functional defined in (2.4) is given by

    where Γi(t)=:=(Mi(t)x(t)+Ri(t)u(t))TΓi(t)(Mi(t)x(t)+Ri(t)u(t)),with Pi(t) satisfying (3.1).

    ProofFrom (2.4) we have that

    Now,from Lemma 4.2,setting s=0 and t=T in (4.2),we get that

    where y =Mi(t)x(t) and ω =Ri(t)u(t),which completes the proof.

    Theorem 4.1Assume the SGCDRE admits a solution Pi(t)∈Rn×non t ∈[0,T],and the finite horizon LQ optimal control problem (2.1),(2.4) is well-posed.Then,the optimal control in the admissible class Uadis given by

    where Ki(t)=(t)Mi(t),i ∈S.Furthermore the minimum cost is given by

    ProofThe proof is immediate from Lemma 4.3.

    Remark 4.1Compared with[2]and[20],although the method adopted here,to prove the sufficiency of solvability of SDCDRE for the well posedness of LQ problem,is the same,under the condition that Ri(t) ?0,we get a different result in the case of linear stochastic singular systems with Markovian jumps.Unlike the standard stochastic system,the optimal control of stochastic singular systems with Markovian jumps is not unique.

    猜你喜歡
    和平
    和平之路
    和平萬歲
    青年歌聲(2020年9期)2020-09-27 07:57:12
    和平分手
    意林(2017年24期)2018-01-02 23:55:39
    Toward a History of Cross-Cultural Written Symbols
    和平之花綻放
    黃河之聲(2016年12期)2016-11-07 01:02:19
    博弈·和平
    特別文摘(2016年18期)2016-09-26 16:42:36
    和平的宣示
    太空探索(2015年10期)2015-07-18 10:59:20
    期盼和平
    珍惜脆弱的和平
    太空探索(2014年9期)2014-07-10 13:06:26
    和平
    小說月刊(2014年2期)2014-04-18 14:06:40
    国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 国产私拍福利视频在线观看| 国产探花在线观看一区二区| 级片在线观看| 日韩亚洲欧美综合| 国产精品av视频在线免费观看| 欧美绝顶高潮抽搐喷水| 国产成人欧美在线观看| 色精品久久人妻99蜜桃| 男人舔奶头视频| 久久久久国产精品人妻aⅴ院| 亚洲久久久久久中文字幕| 真人一进一出gif抽搐免费| 亚洲精品影视一区二区三区av| 嫩草影院精品99| 丰满人妻一区二区三区视频av| 国内少妇人妻偷人精品xxx网站| 九九在线视频观看精品| 亚洲va日本ⅴa欧美va伊人久久| 免费观看精品视频网站| 国产又黄又爽又无遮挡在线| 97超级碰碰碰精品色视频在线观看| 一本一本综合久久| 久久天躁狠狠躁夜夜2o2o| 黄色女人牲交| 亚洲精品成人久久久久久| 91字幕亚洲| 少妇高潮的动态图| 免费看光身美女| 亚洲一区二区三区不卡视频| 少妇的逼水好多| 757午夜福利合集在线观看| 久久香蕉精品热| 在线观看66精品国产| 网址你懂的国产日韩在线| 伦理电影大哥的女人| 看十八女毛片水多多多| 激情在线观看视频在线高清| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av涩爱 | 在线十欧美十亚洲十日本专区| 美女被艹到高潮喷水动态| 精品人妻熟女av久视频| 99热只有精品国产| 欧美性猛交黑人性爽| 老鸭窝网址在线观看| 久久性视频一级片| 国内精品久久久久久久电影| 别揉我奶头 嗯啊视频| 天堂网av新在线| 免费av观看视频| 国产精品一区二区三区四区免费观看 | 99久久久亚洲精品蜜臀av| 欧美日本亚洲视频在线播放| 丰满的人妻完整版| 成人特级av手机在线观看| 色精品久久人妻99蜜桃| 很黄的视频免费| av在线老鸭窝| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 亚洲自拍偷在线| 黄片小视频在线播放| 国产一区二区激情短视频| 有码 亚洲区| 亚洲一区二区三区不卡视频| 日韩精品中文字幕看吧| 神马国产精品三级电影在线观看| www日本黄色视频网| 人人妻人人澡欧美一区二区| 美女免费视频网站| 欧美性猛交╳xxx乱大交人| 美女xxoo啪啪120秒动态图 | 极品教师在线视频| 久久久久久久久中文| 国产高清三级在线| 欧美高清成人免费视频www| 国产乱人伦免费视频| av专区在线播放| 伦理电影大哥的女人| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 美女免费视频网站| 亚洲片人在线观看| 国产国拍精品亚洲av在线观看| 久久6这里有精品| 国产美女午夜福利| 亚洲久久久久久中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人美女网站在线观看视频| 日韩欧美免费精品| 欧美黄色片欧美黄色片| 九九热线精品视视频播放| 欧美zozozo另类| 国产美女午夜福利| 欧美国产日韩亚洲一区| 成人一区二区视频在线观看| 在线播放无遮挡| 天堂影院成人在线观看| 欧美潮喷喷水| 天堂av国产一区二区熟女人妻| 欧美极品一区二区三区四区| 在现免费观看毛片| 亚洲人成电影免费在线| 国产高清有码在线观看视频| 久久久久久久精品吃奶| 亚洲国产精品成人综合色| 欧美一区二区国产精品久久精品| 一个人免费在线观看的高清视频| 老鸭窝网址在线观看| 国产麻豆成人av免费视频| 成熟少妇高潮喷水视频| 别揉我奶头 嗯啊视频| a级一级毛片免费在线观看| 99久久九九国产精品国产免费| 一级黄色大片毛片| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看| 丁香欧美五月| 波多野结衣高清作品| 久久亚洲真实| 又爽又黄无遮挡网站| 精品久久久久久久人妻蜜臀av| 小说图片视频综合网站| 午夜福利在线在线| 亚洲av成人av| 久久亚洲真实| 亚洲久久久久久中文字幕| 欧美激情国产日韩精品一区| 全区人妻精品视频| 91麻豆精品激情在线观看国产| 亚洲国产精品成人综合色| 精品久久久久久成人av| 伊人久久精品亚洲午夜| 97碰自拍视频| 成人欧美大片| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡欧美一区二区| 哪里可以看免费的av片| 99在线视频只有这里精品首页| 久久久久精品国产欧美久久久| 国产午夜精品论理片| 亚洲精品在线美女| 少妇被粗大猛烈的视频| 嫩草影院精品99| 国产美女午夜福利| 精品久久久久久久久久久久久| 欧美+日韩+精品| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 一区二区三区四区激情视频 | 日韩欧美国产在线观看| 亚洲欧美日韩东京热| 久久精品人妻少妇| 一二三四社区在线视频社区8| 国模一区二区三区四区视频| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区四那| 日韩中文字幕欧美一区二区| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 人妻制服诱惑在线中文字幕| 色吧在线观看| 国产精品亚洲av一区麻豆| 精品福利观看| 成人特级av手机在线观看| 亚洲欧美精品综合久久99| 伦理电影大哥的女人| 欧美黑人欧美精品刺激| 国产日本99.免费观看| 成年版毛片免费区| a级毛片a级免费在线| 亚洲精品456在线播放app | 国产精品久久久久久精品电影| 久9热在线精品视频| 亚洲无线观看免费| 国产蜜桃级精品一区二区三区| 国产亚洲av嫩草精品影院| 国产精品人妻久久久久久| 91av网一区二区| 中国美女看黄片| 国产伦精品一区二区三区四那| 91av网一区二区| 午夜免费激情av| 免费一级毛片在线播放高清视频| 少妇被粗大猛烈的视频| 亚洲最大成人手机在线| 亚洲在线观看片| 成人国产一区最新在线观看| 色播亚洲综合网| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| 自拍偷自拍亚洲精品老妇| 久久亚洲真实| 在线播放无遮挡| 久久精品国产亚洲av香蕉五月| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 男人舔女人下体高潮全视频| 无人区码免费观看不卡| 日本黄色视频三级网站网址| 嫩草影院新地址| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 麻豆久久精品国产亚洲av| 97超视频在线观看视频| 三级毛片av免费| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 丝袜美腿在线中文| 国产 一区 欧美 日韩| 91久久精品电影网| 我要看日韩黄色一级片| 亚洲欧美精品综合久久99| 激情在线观看视频在线高清| 免费电影在线观看免费观看| 久久久色成人| 日韩大尺度精品在线看网址| 1000部很黄的大片| 最近视频中文字幕2019在线8| 在线看三级毛片| 亚洲国产精品合色在线| 他把我摸到了高潮在线观看| 午夜精品在线福利| 韩国av一区二区三区四区| eeuss影院久久| 中国美女看黄片| 精品久久久久久久久久免费视频| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| aaaaa片日本免费| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 狂野欧美白嫩少妇大欣赏| 亚洲中文日韩欧美视频| 午夜福利在线在线| 免费大片18禁| 99久国产av精品| 日韩欧美在线乱码| 看十八女毛片水多多多| av欧美777| 亚洲av成人av| 亚洲国产色片| 亚洲午夜理论影院| 免费看a级黄色片| 欧美zozozo另类| 99热这里只有是精品50| 亚洲专区中文字幕在线| 一个人免费在线观看电影| 国产精品伦人一区二区| 亚洲一区二区三区不卡视频| 国产视频内射| 久久久国产成人免费| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 88av欧美| 精品人妻熟女av久视频| 91在线观看av| 国产一区二区在线观看日韩| 嫁个100分男人电影在线观看| 日韩欧美在线乱码| 黄色女人牲交| 在线看三级毛片| 日韩精品中文字幕看吧| 国产欧美日韩一区二区三| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 亚洲美女黄片视频| 99国产精品一区二区蜜桃av| 99久久成人亚洲精品观看| 日本成人三级电影网站| 欧美精品国产亚洲| 亚洲人与动物交配视频| 亚洲人成电影免费在线| 人妻丰满熟妇av一区二区三区| 97人妻精品一区二区三区麻豆| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 国产一区二区在线av高清观看| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 一本精品99久久精品77| 一区福利在线观看| 免费在线观看成人毛片| 国产精品影院久久| 国产黄a三级三级三级人| 直男gayav资源| 91字幕亚洲| 精品欧美国产一区二区三| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久婷婷人人爽人人干人人爱| 能在线免费观看的黄片| 亚洲电影在线观看av| 免费大片18禁| 欧美乱色亚洲激情| 九色成人免费人妻av| 九色国产91popny在线| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 12—13女人毛片做爰片一| 岛国在线免费视频观看| 欧美乱色亚洲激情| 成年女人永久免费观看视频| 可以在线观看毛片的网站| 午夜a级毛片| 国产69精品久久久久777片| 国产视频一区二区在线看| 国产精品女同一区二区软件 | 精品熟女少妇八av免费久了| 国产高潮美女av| 性色avwww在线观看| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 男人舔奶头视频| 性色avwww在线观看| h日本视频在线播放| 综合色av麻豆| 9191精品国产免费久久| 波多野结衣高清作品| 观看免费一级毛片| 国产高清激情床上av| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 精品久久久久久久末码| 757午夜福利合集在线观看| 免费观看人在逋| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 国产三级中文精品| 国产麻豆成人av免费视频| 午夜两性在线视频| 亚洲精华国产精华精| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 国产成人啪精品午夜网站| 色噜噜av男人的天堂激情| 桃红色精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 国产爱豆传媒在线观看| 欧美性猛交黑人性爽| 国产精品美女特级片免费视频播放器| 日韩大尺度精品在线看网址| 日本熟妇午夜| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| www.熟女人妻精品国产| 亚洲av二区三区四区| avwww免费| 午夜免费激情av| 真人做人爱边吃奶动态| 日韩欧美国产一区二区入口| 亚洲av电影在线进入| 成人鲁丝片一二三区免费| 欧美精品啪啪一区二区三区| 亚洲片人在线观看| 亚洲五月婷婷丁香| 级片在线观看| 久久欧美精品欧美久久欧美| 免费大片18禁| 色尼玛亚洲综合影院| 国内精品美女久久久久久| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 欧美日韩综合久久久久久 | 九九在线视频观看精品| 天堂动漫精品| 91麻豆av在线| av在线蜜桃| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 夜夜爽天天搞| 亚洲在线观看片| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| 中文字幕精品亚洲无线码一区| 亚洲无线观看免费| 在线观看一区二区三区| 亚洲五月天丁香| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 伊人久久精品亚洲午夜| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 少妇熟女aⅴ在线视频| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 久久精品国产99精品国产亚洲性色| 成年版毛片免费区| 日韩欧美三级三区| 熟女人妻精品中文字幕| 国产熟女xx| 91av网一区二区| 日本 欧美在线| 99久国产av精品| 黄色日韩在线| 99在线人妻在线中文字幕| 熟女人妻精品中文字幕| 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 欧美色视频一区免费| 午夜免费男女啪啪视频观看 | 最近在线观看免费完整版| 日韩欧美在线乱码| av欧美777| 午夜福利在线观看吧| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| av女优亚洲男人天堂| 久久精品国产亚洲av涩爱 | 欧美在线黄色| 午夜免费激情av| 91九色精品人成在线观看| 国产精品av视频在线免费观看| 精品熟女少妇八av免费久了| 激情在线观看视频在线高清| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 免费看日本二区| 国产乱人视频| 欧美性猛交╳xxx乱大交人| 成人鲁丝片一二三区免费| 国产视频一区二区在线看| a级毛片a级免费在线| 色综合欧美亚洲国产小说| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 老女人水多毛片| 2021天堂中文幕一二区在线观| 日韩欧美精品免费久久 | 中文字幕人成人乱码亚洲影| 国产欧美日韩一区二区精品| 伦理电影大哥的女人| 变态另类丝袜制服| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 日本 欧美在线| 国语自产精品视频在线第100页| 露出奶头的视频| 成人永久免费在线观看视频| 国产视频内射| 神马国产精品三级电影在线观看| 精品熟女少妇八av免费久了| 自拍偷自拍亚洲精品老妇| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 欧美日韩福利视频一区二区| 自拍偷自拍亚洲精品老妇| xxxwww97欧美| 婷婷精品国产亚洲av在线| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 少妇人妻精品综合一区二区 | 国产91精品成人一区二区三区| www.熟女人妻精品国产| 3wmmmm亚洲av在线观看| av黄色大香蕉| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| 男女下面进入的视频免费午夜| 久久精品国产99精品国产亚洲性色| 日本 av在线| 99久久精品国产亚洲精品| 精品人妻1区二区| xxxwww97欧美| 1000部很黄的大片| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 免费av毛片视频| 国产综合懂色| 90打野战视频偷拍视频| 亚洲无线观看免费| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 国产成人影院久久av| 一区二区三区激情视频| 无人区码免费观看不卡| 人人妻,人人澡人人爽秒播| 欧美xxxx性猛交bbbb| 日韩精品青青久久久久久| 久久久久性生活片| avwww免费| 亚洲av电影不卡..在线观看| 久久婷婷人人爽人人干人人爱| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 亚洲午夜理论影院| 国产精品久久视频播放| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 亚洲精品一区av在线观看| 男人狂女人下面高潮的视频| 黄片小视频在线播放| 亚洲欧美日韩高清在线视频| 精品一区二区免费观看| 麻豆一二三区av精品| 深爱激情五月婷婷| av天堂中文字幕网| 国产亚洲av嫩草精品影院| 1000部很黄的大片| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 午夜久久久久精精品| 天堂√8在线中文| 成人精品一区二区免费| 毛片一级片免费看久久久久 | 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 黄片小视频在线播放| 中文字幕久久专区| 狠狠狠狠99中文字幕| 伦理电影大哥的女人| 午夜免费激情av| 欧美日本亚洲视频在线播放| 夜夜夜夜夜久久久久| 婷婷色综合大香蕉| 看免费av毛片| 久久久精品欧美日韩精品| 国产老妇女一区| 在现免费观看毛片| 深夜a级毛片| 亚洲美女搞黄在线观看 | 两个人的视频大全免费| 亚洲人与动物交配视频| 九九久久精品国产亚洲av麻豆| 一本精品99久久精品77| 长腿黑丝高跟| 黄色配什么色好看| 午夜老司机福利剧场| 日韩欧美国产一区二区入口| 国产单亲对白刺激| 一区福利在线观看| 赤兔流量卡办理| 亚洲七黄色美女视频| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 国产亚洲精品久久久com| 搡老岳熟女国产| 99久久成人亚洲精品观看| 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 亚洲精品在线观看二区| 国产单亲对白刺激| 搡女人真爽免费视频火全软件 | 成年女人看的毛片在线观看| 免费看日本二区| 国产蜜桃级精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| 亚洲电影在线观看av| 亚洲成a人片在线一区二区| 久久精品久久久久久噜噜老黄 | 波多野结衣巨乳人妻| 亚洲av第一区精品v没综合| ponron亚洲| 美女高潮的动态| 精品久久久久久久久亚洲 | 日韩国内少妇激情av| 夜夜爽天天搞| av中文乱码字幕在线| 国产久久久一区二区三区| 午夜福利免费观看在线| 99久久九九国产精品国产免费| 禁无遮挡网站| 色噜噜av男人的天堂激情| 国产精品一区二区免费欧美| 欧美zozozo另类| 国产毛片a区久久久久| 免费观看的影片在线观看| 在线观看av片永久免费下载| 极品教师在线视频| 欧美性猛交黑人性爽| 免费无遮挡裸体视频| 99热6这里只有精品| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 天堂动漫精品| 婷婷精品国产亚洲av| 18禁黄网站禁片午夜丰满| 久久中文看片网| 国产精品不卡视频一区二区 | 欧美一级a爱片免费观看看| 国产黄色小视频在线观看| 老司机深夜福利视频在线观看| 高清毛片免费观看视频网站| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 中文字幕人成人乱码亚洲影|