• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boundary Value and Initial Value Problems with Impulsive Terms for Nonlinear Conformable Fractional Differential Equations

    2021-01-07 01:23:30ZHOUBibo周碧波ZHANGLingling張玲玲BAISang白桑
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:碧波

    ZHOU Bibo(周碧波),ZHANG Lingling(張玲玲),BAI Sang(白桑)

    (1.College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,China; 2.Department of Mathematics,Lvliang University,Lvliang 033000,China; 3.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)

    Abstract: In this paper,we are concerned with the existence and uniqueness of positive solutions for two kinds of nonlinear conformable fractional differential systems.By means of the fixed point theorems of sum-type operators and mixed monotone operators based on the cone theory,our results can not only guarantee the existence of a unique positive solution,but also be applied to construct an iterative scheme for approximating it.Finally,some examples are given to illustrate the main results.

    Key words: Existence and uniqueness; Sum-type operator; Mixed monotone operator;Cone theory; Impulsive

    1.Introduction

    In the past decades,fractional c alculus and its potential applications have gained considerable popularity and importance,mainly because fractional calculus has become a powerful tool for the description of memory and heredity properties of various materials and processes.As fractional differential equation models are more realistic and practical than the classical integer order models,there are a large number of papers and monographs that deal with various phenomena of science and engineering in fractional calculus.For details,see[1-4]and the references therein.

    Two types of fractional derivatives,namely Riemann-Liouville and Caputo,are very famous,many scholars have done a lot of researches on various problems of fractional differential equations based on these two definitions.Mathematicians prefer the Riemann-Liouville fractional derivative because it is amenable to many mathematical manipulations.In contrast,physicists and engineers prefer Caputo fractional derivative.Fractional differential equations is gradual to develop into an important subject in the mathematical analysis area.For more history and development,we refer to the monographs [8-9,13,18].

    Recently,in [10],Khalil defined a new fractional derivative called ”the conformable fractional derivative”.Compared with Riemann-Liouville and Caputo fractional derivative,this new definition is well-behaved and it just depends on the basic limit definition.Namely,for a function f :(0,∞)→R the conformable fraction derivative of order 0 <α <1 of f at t >0 was defined byand the fraction derivative at 0 is defined asThe new definition seems to be a natural extension of the usual integer derivative,and it satisfies the major properties of the integer derivative.In [12],by using the definition of the new fractional derivative,the authors investigated the existence of solution for a class of initial value problems of conformable differential equation as follows:

    where f : [a,b] × R →R is a continuous function,and Tαx(t) denotes the conformable fractional derivative of x at t of order α.For the fist time in the literature of conformable fractional calculus,the authors introduce the notion of tube solution.

    Batarfi et al.[16]investigated the three-point boundary value problems for a class of conformable fractional differential equations

    where Tαis the conformable fractional derivative operator of order α ∈(1,2],D is the ordinary derivative operator,f : [0,1]×R →R is a known continuous function,λ and β are all real numbers.By means of the fixed-point theorem in cone,some existence results of linear system and nonlinear system are obtained.

    In [17],the authors studied the following boundary value problem of nonlinear fractional differential equation with p-Laplacian operator:

    where 1 <α <2 is a real number,φpis p-Laplacian operator and φp(s) = |s|p-2s,Tαis the conformable fractional derivative operator.By the use of an approximation method and fixed point theorems on cone,some existence and multiplicity results of positive solutions were acquired.

    Motivated and inspired by the above research work,we are concerned with conformable fractional differential equations as follows:

    and

    For the system(1.1),by using sum-type operator methods,we examine the existence-uniqueness and the monotone iterative sequence of positive solutions.For the system (1.2) with impulsive terms,by using mixed monotone fixed point theorem,we investigate the existence and uniqueness of positive solution.Our result can not only guarantee the existence of unique positive solution,but also be applied to construct an iterative scheme for approximating it.

    2.Preliminaries

    In this section,we list some basic notations,definitions in ordered Banach spaces.For the convenience of the reader,we refer to [5-6,19] for details.

    A nonempty closed convex set P ?E is a cone if it satisfies:

    (I1) x ∈P,λ ≥0 ?λx ∈P;

    (I2) x ∈P,-x ∈P ?x=θ.

    Suppose that(E,‖·‖)is a real Banach space which is partially ordered by a cone P ?E,that is x ≤y if and only if y-x ∈P.If x ≤y and xy,then we denote x <y or y >x.By θ we denote the zero element of E.

    For all the x,y ∈E,the notation x ~y meas that there exists λ >0 and μ >0 such that λx ≥y ≥μx.Clearly ~is a equivalence relation.Giving h >θ,we denote by Phthe set Ph={x ∈E |x ~h}.It is easy to see that Ph?P is convex and λPh=Phfor all λ >0.Ifθ and h ∈,it is clear that Ph=P.

    Definition 2.1[11]The conformable fractional derivative staring from a of a function f :[a,∞)→R of order 0 <α <1 is defined by

    When a=0 we write Tα,if the α order conformable fractional derivative exists,then we say f is α-differentiable.

    Definition 2.2[11]The conformable fractional integral staring from a of a function f :[a,∞)→R is defined by

    when integral is the usual Riemann improper integral,and α ∈(0,1).

    Definition 2.3[15]Let D = P,or D =and γ be a real number with 0 ≤γ <1.An operator A:P →P is said to be γ-concave if it satisfies

    Definition 2.4[17]An operator A:P →P is said to be sub-homogeneous if it satisfies

    Definition 2.5[14]A : P ×P →P is said to be a mixed monotone operator if A(x,y)is increasing in x and decreasing in y,that is,u1,v1,u2,v2∈P and u1<u2,v1>v2,implies that A(u1,v1)≤A(u2,v2).Element x ∈P is called a fixed point of A if A(x,x)=x.

    Lemma 2.1[15]Let P be a normal cone,A : P →P be an increasing operator and B :P →P be a decreasing operator.Assume that

    (I) For any x ∈P and t ∈(0,1),there exist φi(t)∈(t,1)(i=1,2) such that

    (II) There exists h0∈Phsuch that Ah0+Bh0∈Ph.

    Then,

    1) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤Au0+Bv0≤Av0+Bu0≤v0;

    2) The operator equation Ax+Bx=x has a unique solution x*in Ph;

    3) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=Axn-1+Bnn-1,yn=Ayn-1+Bxn-1,n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    Lemma 2.2[9]A : P ×P →P is a mixed monotone operator,for ?γ ∈(0,1),there exist a function φ(γ)∈(γ,1) such that

    A(tx,t-1y)≥φ(γ)A(x,y),t ∈(0,1),x,y ∈P.

    Assume that there exist h ∈P such that A(h,h)∈Ph.Then,

    1) A:Ph×Ph→Ph;

    2) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤A(u0,v0)≤A(v0,u0)≤v0;

    3) The operator equation A(x,x)=x has a unique solution x*in Ph;

    4) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    3.Bound Value Problems

    Lemma 3.1Let f,g ∈C[(0,1)×R+,R+].Then u ∈C[0,1] is a solution to (1.1) if and only if u is the solution to the following integral equation:

    where

    ProofLet P = {u | u(t) ≥0,?t ∈[0,1]} and u(t) is a solution of conformable fractional differential equation (1.1).We integrate the both sides of equation (1.1),so we have the following results

    Letting t=1,by (1.1) and (3.3) we can know

    We can get the following equation by combining (3.3) and (3.4).

    The proof is complete.

    Theorem 3.1Assume that f(t,u(t))+g(t,u(t))0 and

    (H1) f,g : [0,1]×[0,+∞) →[0,+∞) is continuous,f(t,u) is increasing and g(t,u) is decreasing in u ∈[0,+∞) for fixed t ∈[0,1];

    (H2) For any x ∈P and t*∈(0,1),there exist φi(t*)∈(t*,1)(i=1,2) such that

    Then the equation(1.1)has a unique positive solution u*.Moreover,for any initial value u0,v0∈Ph,constructing successively the following sequences,

    we have un(t)→x*(t) and vn(t)→x*(t) as n →+∞.

    ProofLet

    and

    It is easy to know that A : P →P is an increasing operator and B : P →P is a decreasing operator by the condition(H1),(3.5)and(3.6).We know that the equation(1.1)is equivalence to sum operator equation Au+Bu=u by Lemma 3.1.

    Step 1 We prove A(t*u)≥φ1(t*)Au andBu.

    By the condition (H2) of Theorem 3.1,we can know

    Step 2 We prove there exist h0∈Phsuch that Ah0+Bh0∈Ph.

    and

    From the above conclusion we can get

    It means that(γ3+γ5)h ≤A(h0)+B(h0)≤(γ4+γ6)h,that is,(A+B)(h0)∈Ph.According to Lemma 2.1,we know that the operator equation Au+Bu=u has a unique positive solution x*in Ph,and there exist u0,v0∈Phand γ ∈(0,1) such that

    And for any initial value u0,v0∈Ph,constructing successively the sequences

    we have un→u*,vn→u*as n →∞.

    Corollary 3.1Assume that

    (H1)′f : [a,b]×[0,+∞] →[0,+∞] is continuous and increasing with respect to the second argument,f(t,0)0;

    (H2)′for any x ∈P and t ∈(0,1),there exist φ3(t) ∈(t,1) such that f(x,tu) ≥φ3(t)f(x,u).

    Then the problem

    has a unique positive solution u*.Moreover,for any initial value u0∈Ph,constructing successively the sequence

    we have un(t)→u*(t) as n →+∞.

    4.Initial Value Problems with Impulsive Terms

    Throughout this subsection,we use the following notation.

    Let J =[0,1],R+=(0,∞),f ∈[J ×R+×R+,R+],0 <t1<t2<...<tm<1.△u|t=tkdenotes the jump of u(t) at t = tk,and Δu|t=tk= u()-u(),where u() and u()represent the right and left limits of u(t) at t = tk,respectively.Also,Ikis a given function in C[R+×R+,R+].

    Let PC[J,R] := {x | x : J →R,x(t) is continuous at ttk,and left continuous at t = tk,x() exists,k = 1,2,...m}.Then,we can easily find that PC[J,R] is a Banach s pace with norm

    Lemma 4.1Let f ∈C[J ×R+×R+,R-],then u ∈PC[J,R]∩C1[J′,R] is a solution to (1.2) on J if and only if u ∈PC[J,R] is the solution to the following integral equation:

    ProofIf t ∈J0,we take α time integral for the first equation on both of (1.2),the following contents can be obtained,

    If t ∈J1,we take α time integral for the first equation on both of(1.2),then the following contents can be obtained,

    If t ∈Jk,the following conclusions can be obtained,

    So we get,

    Then,we can know the integral form solution (1.2) is (4.1).

    Now let’s go on to prove (4.1) to meet the various equations of (1.2).

    If t ∈J0,let t=0,by (4.1) we can know that u(0)=u0.

    If t ∈J1,we take a α time conformable derivative on both sides of (4.1):

    By subtracting the two equations in (4.3) and (4.4) ,then we can obtain

    So it is to know,when t ∈J1,(4.1) meets all kinds of (1.2).In the same way,when t ∈Jk,we can prove that (4.1) meet all kinds of (1.2) too.That is (4.1) and (1.2) is completely equivalent,the proof is completed.

    Theorem 4.1Assume that

    (H3)f :J×R+×R+→(-∞,0]for all t ∈J and x,y ∈R+,also f(t,x,y)is nonincreasing in x for each t ∈J and y ∈R+and is nondecreasing in y for each t ∈J and x ∈R+.Moreover,<0 for all t ∈J.

    (H4) For each k =1,2,...,m,Ik:R+×R+→R+.Ik(x,y) is nondecreasing in x for each y ∈R+and is nonincreasing in y for each x ∈R+.

    (H5) For all γ ∈(0,1),there exist φ1(γ),φ2(γ)∈(γ,1) such that

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J.Moreover for any initial x0,y0∈Ph,constructing successively the following sequences,

    we have xn→x*and yn→x*as n →+∞.

    ProofIn order to show the existence-uniqueness of the solution to (1.2),we define an operator A:PC[J,R]×PC[J,R]→PC[J,R] by

    Then,we infer from (H3),(H4) and (4.6) that

    Step 1 We show there exist φ(γ) ∈(γ,1] such that A(γu,γ-1v) ≥φ(γ)A(u,v) for any u,v ∈P and γ ∈(0,1).

    Put φ(γ) = min{φ1(γ),φ2(γ)},γ ∈(0,1).Then we see from (H5) that φ(γ) ∈(γ,1).Therefor for any γ ∈(0,1) and x,y ∈,from (H3),(H4) and (H5),we have

    which implies that A(γx,γ-1y)(t)≥φ(γ)A(x,y)(t),?x,y ∈,γ ∈(0,1).

    Step 2 We prove there exist h ∈P with hθ such that A(h,h)∈Ph.

    Set a function h by

    Then,we can easily obtain that?t ∈J.Let

    then,0 ≤r1≤r2.From (H3),(H4) and (4.8),it follows that

    Also,we have

    Thus,we observe that

    which implies that A(h,h)∈Ph.

    By argument as above,we see that the operator A:×→defined by (4.6) satisfies all conditions of Lemma 2.2.Therefore,we conclude that the operator A has a unique fixed point in,hence there exist a unique positive solution to(1.2)on J.Moreover for any initial x0,y0∈,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    Corollary 4.1Assume that (H3),(H4) hold and

    (H5)′Let α1,α2∈(0,1),for all γ ∈(0,1).There exist γα1,γα2∈(γ,1) such that

    f(t,γx,γ-1y)≤γα1f(t,x,y),Ik(γx,γ-1y)≥γα2Ik(x,y),

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J,Moreover for any initial x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    ProofLet φ1(γ)=γα1and φ2(γ)=γα2.We can get the above conclusion by Theorem 3.2.

    5.Applications

    As applications,two examples are presented to illustrate our main results.

    Example 5.1

    Conclusion 5.1The boundary value problem (5.1) has a unique positive solution in Ph,where

    ProofIn this example,we haveLet

    Obviously,f,g :[0,1]×[0,+∞)→[0,+∞) are continuous,f(t,x) is increasing and g(t,x) is decreasing in x ∈[0,+∞) for fixed t ∈[0,1].Beside,for λ ∈(0,1),t ∈(0,1),x ∈[0,+∞),letting φ1(λ)=φ2(λ)=λ,we have

    Hence all the conditions of Theorem 3.1 are satisfied.An application of Theorem 3.1 implies that the problem (5.1) has a unique positive solution in Ph.

    Example 5.2

    Conclusion 5.2The initial value problem for conformable fraction differential equations systems (5.2) with impulsive terms admits a unique positive solution in Ph,where h(t) =and the unique positive is continuously differentiable on

    ProofLet J = [0,1],f(x,y) = -2(1 + x(t))- 2(1 + y(t))Clearly,f(t,x,y) is decreasing in x for y ≥0 and increasing in y for x ≥0.Also,let I1(x,y) =(1+x(t))+(1+y(t))-and we know I1(x,y) is increasing in x for y >0 and is decreasing in y for x ≥0.

    f(t,γx,γ-1y)=-2(1+γx(t))-2(1+γy(t))-≤φ(γ)f(t,x(t),y(t)),?x(t)>0,y(t)>0,

    I1(γx,γ-1y)=(1+γx(t))+(1+γy(t))-≥φ(γ)I1(x(t),y(t)),?x(t)>0,y(t)>0.

    Therefore,we see that condition (H3),(H4) and (H5) hold.Hence,applying Theorem 4.1 to (5.2),we can get a unique positive solution to (5.2) on [0,1].

    猜你喜歡
    碧波
    聽松榭步韻杜工部《宿江邊閣》
    碧波一樹
    唐 風(fēng)
    秋 景
    浩浩碧波潤(rùn)江淮——洪澤湖
    虹橋碧波太平湖
    江淮法治(2020年4期)2020-06-05 12:52:56
    點(diǎn)絳唇·蓮
    碧波蕩漾珊瑚海
    10 Digestive Tract
    黄色毛片三级朝国网站| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| av视频免费观看在线观看| 日韩中文字幕欧美一区二区| 九色国产91popny在线| 国产欧美日韩综合在线一区二区| 两个人视频免费观看高清| 久久精品国产亚洲av香蕉五月| 色播在线永久视频| 久久久久国内视频| avwww免费| 久久久久国产精品人妻aⅴ院| 欧美丝袜亚洲另类 | 免费观看人在逋| 中文字幕人成人乱码亚洲影| 国产免费男女视频| 免费观看精品视频网站| 久久九九热精品免费| 精品乱码久久久久久99久播| 亚洲人成网站在线播放欧美日韩| av天堂久久9| 69av精品久久久久久| 欧美激情 高清一区二区三区| www.自偷自拍.com| 丝袜美足系列| 免费观看精品视频网站| 国产成人一区二区三区免费视频网站| 久久久国产精品麻豆| 免费看a级黄色片| 最新美女视频免费是黄的| 一级片免费观看大全| 国产av一区二区精品久久| 12—13女人毛片做爰片一| 欧美精品啪啪一区二区三区| 午夜成年电影在线免费观看| 波多野结衣一区麻豆| 变态另类丝袜制服| 女人被躁到高潮嗷嗷叫费观| 欧美乱色亚洲激情| 九色国产91popny在线| 午夜福利视频1000在线观看 | 国产成人一区二区三区免费视频网站| 亚洲黑人精品在线| 亚洲精品粉嫩美女一区| 国产男靠女视频免费网站| 亚洲精品国产色婷婷电影| 成人手机av| 俄罗斯特黄特色一大片| АⅤ资源中文在线天堂| 亚洲中文av在线| 99国产精品一区二区蜜桃av| 男女下面插进去视频免费观看| 午夜亚洲福利在线播放| 亚洲国产精品成人综合色| 久久久久久久午夜电影| 久久香蕉国产精品| 一区福利在线观看| 韩国精品一区二区三区| 亚洲中文字幕日韩| 精品国产超薄肉色丝袜足j| 亚洲一区中文字幕在线| 精品卡一卡二卡四卡免费| 亚洲av片天天在线观看| 久久久国产成人免费| 麻豆国产av国片精品| 日韩精品青青久久久久久| 国产1区2区3区精品| 日本一区二区免费在线视频| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美在线一区二区| 黄片小视频在线播放| av视频免费观看在线观看| 欧美乱色亚洲激情| 色综合婷婷激情| 精品久久久久久久久久免费视频| 成人18禁在线播放| 亚洲免费av在线视频| 国产国语露脸激情在线看| 日本一区二区免费在线视频| 久久性视频一级片| 电影成人av| 一个人免费在线观看的高清视频| 亚洲国产看品久久| av中文乱码字幕在线| 国产精品亚洲一级av第二区| 国产成人免费无遮挡视频| 午夜久久久久精精品| 亚洲天堂国产精品一区在线| 亚洲国产中文字幕在线视频| 国产亚洲欧美98| 国产精品 国内视频| 少妇被粗大的猛进出69影院| 亚洲电影在线观看av| 欧美乱码精品一区二区三区| 国产亚洲精品综合一区在线观看 | 波多野结衣巨乳人妻| 午夜成年电影在线免费观看| 91麻豆av在线| 极品教师在线免费播放| 波多野结衣av一区二区av| 在线观看www视频免费| 91在线观看av| 欧美不卡视频在线免费观看 | 午夜两性在线视频| 亚洲午夜理论影院| 日本在线视频免费播放| 亚洲精品国产一区二区精华液| 禁无遮挡网站| 国产伦人伦偷精品视频| 天堂√8在线中文| 国产真人三级小视频在线观看| 韩国精品一区二区三区| ponron亚洲| 妹子高潮喷水视频| 久久国产精品影院| 国产99久久九九免费精品| 亚洲在线自拍视频| 亚洲精品国产一区二区精华液| 久久精品成人免费网站| 久久精品人人爽人人爽视色| 日韩精品免费视频一区二区三区| 村上凉子中文字幕在线| 精品国产亚洲在线| 少妇 在线观看| 黄色成人免费大全| 一级a爱视频在线免费观看| 国产亚洲精品av在线| 色播在线永久视频| 精品国内亚洲2022精品成人| 精品久久蜜臀av无| 丝袜人妻中文字幕| 久久九九热精品免费| 久久亚洲真实| 久久久久久久午夜电影| 99国产精品免费福利视频| 中文字幕人妻丝袜一区二区| 丁香欧美五月| 黄色女人牲交| 亚洲成av片中文字幕在线观看| 亚洲av美国av| 国产又色又爽无遮挡免费看| 久久婷婷成人综合色麻豆| 欧美一区二区精品小视频在线| 亚洲欧美日韩另类电影网站| 欧美国产精品va在线观看不卡| 在线观看舔阴道视频| 午夜福利影视在线免费观看| 日日夜夜操网爽| 久久青草综合色| 怎么达到女性高潮| 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 亚洲人成伊人成综合网2020| 十分钟在线观看高清视频www| 午夜精品久久久久久毛片777| 禁无遮挡网站| 99在线视频只有这里精品首页| 国内精品久久久久久久电影| 久久这里只有精品19| 亚洲在线自拍视频| 欧美日韩精品网址| 成人av一区二区三区在线看| 国产亚洲精品第一综合不卡| 国产午夜精品久久久久久| 欧美在线一区亚洲| 国产精品美女特级片免费视频播放器 | 不卡av一区二区三区| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 精品国产美女av久久久久小说| 亚洲av第一区精品v没综合| 午夜精品在线福利| 久久久精品国产亚洲av高清涩受| 婷婷丁香在线五月| 9色porny在线观看| 成人国产综合亚洲| 纯流量卡能插随身wifi吗| 国产免费av片在线观看野外av| 90打野战视频偷拍视频| 大型av网站在线播放| 后天国语完整版免费观看| 久久精品国产99精品国产亚洲性色 | 日韩大码丰满熟妇| 操美女的视频在线观看| www.熟女人妻精品国产| 99精品在免费线老司机午夜| 欧美绝顶高潮抽搐喷水| 九色亚洲精品在线播放| 热re99久久国产66热| 国产亚洲精品一区二区www| 侵犯人妻中文字幕一二三四区| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久精品电影 | 女生性感内裤真人,穿戴方法视频| 色综合站精品国产| 禁无遮挡网站| 久久伊人香网站| 日日摸夜夜添夜夜添小说| 老司机深夜福利视频在线观看| 亚洲自偷自拍图片 自拍| 欧美激情久久久久久爽电影 | 久久精品国产亚洲av香蕉五月| 美女午夜性视频免费| 黄色女人牲交| 国产精品av久久久久免费| 99riav亚洲国产免费| 首页视频小说图片口味搜索| 日本三级黄在线观看| 国产精品一区二区免费欧美| 国产免费男女视频| 少妇粗大呻吟视频| 国产亚洲精品第一综合不卡| 亚洲熟妇熟女久久| 成人亚洲精品一区在线观看| 美女高潮喷水抽搐中文字幕| 淫秽高清视频在线观看| 香蕉丝袜av| 国产av在哪里看| 欧美激情久久久久久爽电影 | 中文字幕人成人乱码亚洲影| 淫秽高清视频在线观看| 黄频高清免费视频| 国产成人影院久久av| 三级毛片av免费| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费鲁丝| 欧美精品亚洲一区二区| 人人妻,人人澡人人爽秒播| 一区二区日韩欧美中文字幕| 1024香蕉在线观看| 久久精品人人爽人人爽视色| 亚洲九九香蕉| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频1000在线观看 | 国产精品乱码一区二三区的特点 | av视频免费观看在线观看| 久久天堂一区二区三区四区| 久久久久久国产a免费观看| 亚洲黑人精品在线| 国产欧美日韩综合在线一区二区| bbb黄色大片| 99精品久久久久人妻精品| 夜夜夜夜夜久久久久| 欧美另类亚洲清纯唯美| 午夜福利成人在线免费观看| 黄色a级毛片大全视频| 国产在线精品亚洲第一网站| 人人澡人人妻人| 久久国产精品人妻蜜桃| 91精品国产国语对白视频| 激情视频va一区二区三区| 精品人妻在线不人妻| 久久中文字幕人妻熟女| 亚洲av电影在线进入| 国产亚洲精品久久久久5区| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 亚洲精品av麻豆狂野| 九色亚洲精品在线播放| 大型黄色视频在线免费观看| 精品国产美女av久久久久小说| 可以在线观看毛片的网站| 成年女人毛片免费观看观看9| 久久久久久久久免费视频了| 搞女人的毛片| 日韩国内少妇激情av| 午夜福利18| 久久中文字幕一级| 精品无人区乱码1区二区| 9191精品国产免费久久| 午夜福利高清视频| 亚洲成人国产一区在线观看| 满18在线观看网站| 国产成人av教育| 久久影院123| 欧美精品啪啪一区二区三区| 国产精品久久久人人做人人爽| 天堂√8在线中文| 午夜免费激情av| 首页视频小说图片口味搜索| 国产成人精品久久二区二区免费| 精品国产亚洲在线| 99精品欧美一区二区三区四区| 久久精品91无色码中文字幕| 国产麻豆69| 成人亚洲精品av一区二区| 婷婷丁香在线五月| 男女下面进入的视频免费午夜 | 真人做人爱边吃奶动态| 久久精品91蜜桃| 中文字幕人成人乱码亚洲影| 午夜亚洲福利在线播放| 黄色片一级片一级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 高潮久久久久久久久久久不卡| 日韩中文字幕欧美一区二区| 丁香欧美五月| 高清黄色对白视频在线免费看| 性欧美人与动物交配| 91在线观看av| 婷婷精品国产亚洲av在线| 精品乱码久久久久久99久播| 久久久国产精品麻豆| 国产精品久久久久久人妻精品电影| 国产国语露脸激情在线看| 啦啦啦观看免费观看视频高清 | 亚洲av美国av| 一个人免费在线观看的高清视频| 青草久久国产| 高清在线国产一区| 97人妻天天添夜夜摸| 91字幕亚洲| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 亚洲免费av在线视频| 啦啦啦观看免费观看视频高清 | 精品人妻1区二区| 久久精品国产清高在天天线| 母亲3免费完整高清在线观看| 美女 人体艺术 gogo| 最近最新中文字幕大全电影3 | 日日干狠狠操夜夜爽| 性欧美人与动物交配| 韩国av一区二区三区四区| 亚洲精品中文字幕在线视频| 黄色女人牲交| 亚洲精品美女久久av网站| 男女之事视频高清在线观看| 母亲3免费完整高清在线观看| 女警被强在线播放| 精品一区二区三区av网在线观看| 欧美精品啪啪一区二区三区| 色在线成人网| 99国产综合亚洲精品| 后天国语完整版免费观看| 国产精品一区二区在线不卡| 国产免费男女视频| 少妇被粗大的猛进出69影院| 色播亚洲综合网| 熟女少妇亚洲综合色aaa.| av电影中文网址| 此物有八面人人有两片| 国产一区二区激情短视频| 青草久久国产| 成熟少妇高潮喷水视频| 成人国产综合亚洲| 啦啦啦免费观看视频1| 电影成人av| 很黄的视频免费| 最近最新中文字幕大全电影3 | 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 波多野结衣av一区二区av| 国产麻豆成人av免费视频| 久久婷婷成人综合色麻豆| 久久亚洲真实| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 久久香蕉激情| 久久香蕉精品热| 黑丝袜美女国产一区| 午夜久久久在线观看| 日韩精品青青久久久久久| 国产av又大| 在线十欧美十亚洲十日本专区| 久久久国产精品麻豆| 午夜久久久在线观看| 午夜福利高清视频| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av | 国产欧美日韩综合在线一区二区| 亚洲中文字幕日韩| 午夜福利在线观看吧| 三级毛片av免费| 午夜视频精品福利| 又大又爽又粗| 不卡av一区二区三区| 黄色视频,在线免费观看| 国产精品电影一区二区三区| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲三区欧美一区| 亚洲五月天丁香| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 一区在线观看完整版| 亚洲va日本ⅴa欧美va伊人久久| 变态另类丝袜制服| www.熟女人妻精品国产| 自线自在国产av| 一本久久中文字幕| 激情在线观看视频在线高清| 国产av精品麻豆| 黄色毛片三级朝国网站| 免费av毛片视频| 美女扒开内裤让男人捅视频| 亚洲伊人色综图| bbb黄色大片| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 免费看a级黄色片| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 国产单亲对白刺激| 午夜精品国产一区二区电影| 黄频高清免费视频| 亚洲第一电影网av| 日韩精品中文字幕看吧| 欧美午夜高清在线| 精品无人区乱码1区二区| 亚洲电影在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 男人舔女人下体高潮全视频| 又大又爽又粗| 一本大道久久a久久精品| 精品久久久久久,| 亚洲五月天丁香| 看片在线看免费视频| 人人妻人人澡欧美一区二区 | 亚洲avbb在线观看| 国产精品乱码一区二三区的特点 | 69精品国产乱码久久久| 日韩大尺度精品在线看网址 | 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 大香蕉久久成人网| 日韩国内少妇激情av| 免费看a级黄色片| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 91av网站免费观看| 国产一区二区三区综合在线观看| 又大又爽又粗| 手机成人av网站| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 国产精品免费视频内射| 国产一卡二卡三卡精品| 大码成人一级视频| 成人国产一区最新在线观看| 夜夜爽天天搞| 熟妇人妻久久中文字幕3abv| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 欧美黑人精品巨大| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 少妇 在线观看| 国产精品综合久久久久久久免费 | 亚洲色图综合在线观看| 国产一区在线观看成人免费| 香蕉丝袜av| 亚洲情色 制服丝袜| 欧美+亚洲+日韩+国产| 嫩草影院精品99| 色av中文字幕| 国产野战对白在线观看| 欧美色视频一区免费| 亚洲五月色婷婷综合| 男女之事视频高清在线观看| 脱女人内裤的视频| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 757午夜福利合集在线观看| 久久久国产精品麻豆| 啦啦啦观看免费观看视频高清 | 欧美在线一区亚洲| 成人永久免费在线观看视频| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 欧美黑人欧美精品刺激| 免费久久久久久久精品成人欧美视频| 欧美日韩黄片免| 亚洲精华国产精华精| 色婷婷久久久亚洲欧美| 91av网站免费观看| 9191精品国产免费久久| 日韩欧美三级三区| 亚洲avbb在线观看| 精品久久久久久,| 国产极品粉嫩免费观看在线| 亚洲国产高清在线一区二区三 | 午夜成年电影在线免费观看| 91字幕亚洲| www.www免费av| xxx96com| 亚洲全国av大片| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久精品成人免费网站| 在线国产一区二区在线| 99热只有精品国产| 国产单亲对白刺激| 好男人电影高清在线观看| 久久性视频一级片| 欧美日韩精品网址| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 亚洲成人国产一区在线观看| 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲精华国产精华精| 精品久久久精品久久久| 国产欧美日韩精品亚洲av| 99在线视频只有这里精品首页| 手机成人av网站| 国产成人精品无人区| 一区二区三区国产精品乱码| 欧美黄色片欧美黄色片| www.精华液| 久久久国产欧美日韩av| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 国产单亲对白刺激| 午夜两性在线视频| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看 | 日日爽夜夜爽网站| 免费av毛片视频| 国产激情久久老熟女| 精品人妻1区二区| 香蕉国产在线看| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av| 亚洲中文日韩欧美视频| 国产一卡二卡三卡精品| 日韩欧美国产在线观看| 少妇被粗大的猛进出69影院| 久久久国产成人精品二区| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 国产精品1区2区在线观看.| 久久人妻熟女aⅴ| 国产精品亚洲美女久久久| videosex国产| 日韩大尺度精品在线看网址 | 99精品久久久久人妻精品| 妹子高潮喷水视频| 91av网站免费观看| 亚洲国产欧美网| 国产精品日韩av在线免费观看 | 亚洲少妇的诱惑av| 国内精品久久久久久久电影| 午夜精品国产一区二区电影| 亚洲五月婷婷丁香| 欧美成人午夜精品| 久久亚洲真实| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 熟妇人妻久久中文字幕3abv| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 一区福利在线观看| 欧美成人免费av一区二区三区| 999久久久国产精品视频| www.www免费av| 97人妻天天添夜夜摸| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| 最近最新中文字幕大全免费视频| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频 | 女人被躁到高潮嗷嗷叫费观| 后天国语完整版免费观看| 亚洲精品国产区一区二| a在线观看视频网站| 一级a爱视频在线免费观看| 亚洲一码二码三码区别大吗| 女性被躁到高潮视频| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 老鸭窝网址在线观看| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 侵犯人妻中文字幕一二三四区| 免费看十八禁软件| 久久香蕉精品热| 欧美成狂野欧美在线观看| 在线观看www视频免费| tocl精华| ponron亚洲| e午夜精品久久久久久久| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 91老司机精品| АⅤ资源中文在线天堂| 看片在线看免费视频| 国产精品爽爽va在线观看网站 |