• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boundary Value and Initial Value Problems with Impulsive Terms for Nonlinear Conformable Fractional Differential Equations

    2021-01-07 01:23:30ZHOUBibo周碧波ZHANGLingling張玲玲BAISang白桑
    應(yīng)用數(shù)學(xué) 2021年1期
    關(guān)鍵詞:碧波

    ZHOU Bibo(周碧波),ZHANG Lingling(張玲玲),BAI Sang(白桑)

    (1.College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,China; 2.Department of Mathematics,Lvliang University,Lvliang 033000,China; 3.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)

    Abstract: In this paper,we are concerned with the existence and uniqueness of positive solutions for two kinds of nonlinear conformable fractional differential systems.By means of the fixed point theorems of sum-type operators and mixed monotone operators based on the cone theory,our results can not only guarantee the existence of a unique positive solution,but also be applied to construct an iterative scheme for approximating it.Finally,some examples are given to illustrate the main results.

    Key words: Existence and uniqueness; Sum-type operator; Mixed monotone operator;Cone theory; Impulsive

    1.Introduction

    In the past decades,fractional c alculus and its potential applications have gained considerable popularity and importance,mainly because fractional calculus has become a powerful tool for the description of memory and heredity properties of various materials and processes.As fractional differential equation models are more realistic and practical than the classical integer order models,there are a large number of papers and monographs that deal with various phenomena of science and engineering in fractional calculus.For details,see[1-4]and the references therein.

    Two types of fractional derivatives,namely Riemann-Liouville and Caputo,are very famous,many scholars have done a lot of researches on various problems of fractional differential equations based on these two definitions.Mathematicians prefer the Riemann-Liouville fractional derivative because it is amenable to many mathematical manipulations.In contrast,physicists and engineers prefer Caputo fractional derivative.Fractional differential equations is gradual to develop into an important subject in the mathematical analysis area.For more history and development,we refer to the monographs [8-9,13,18].

    Recently,in [10],Khalil defined a new fractional derivative called ”the conformable fractional derivative”.Compared with Riemann-Liouville and Caputo fractional derivative,this new definition is well-behaved and it just depends on the basic limit definition.Namely,for a function f :(0,∞)→R the conformable fraction derivative of order 0 <α <1 of f at t >0 was defined byand the fraction derivative at 0 is defined asThe new definition seems to be a natural extension of the usual integer derivative,and it satisfies the major properties of the integer derivative.In [12],by using the definition of the new fractional derivative,the authors investigated the existence of solution for a class of initial value problems of conformable differential equation as follows:

    where f : [a,b] × R →R is a continuous function,and Tαx(t) denotes the conformable fractional derivative of x at t of order α.For the fist time in the literature of conformable fractional calculus,the authors introduce the notion of tube solution.

    Batarfi et al.[16]investigated the three-point boundary value problems for a class of conformable fractional differential equations

    where Tαis the conformable fractional derivative operator of order α ∈(1,2],D is the ordinary derivative operator,f : [0,1]×R →R is a known continuous function,λ and β are all real numbers.By means of the fixed-point theorem in cone,some existence results of linear system and nonlinear system are obtained.

    In [17],the authors studied the following boundary value problem of nonlinear fractional differential equation with p-Laplacian operator:

    where 1 <α <2 is a real number,φpis p-Laplacian operator and φp(s) = |s|p-2s,Tαis the conformable fractional derivative operator.By the use of an approximation method and fixed point theorems on cone,some existence and multiplicity results of positive solutions were acquired.

    Motivated and inspired by the above research work,we are concerned with conformable fractional differential equations as follows:

    and

    For the system(1.1),by using sum-type operator methods,we examine the existence-uniqueness and the monotone iterative sequence of positive solutions.For the system (1.2) with impulsive terms,by using mixed monotone fixed point theorem,we investigate the existence and uniqueness of positive solution.Our result can not only guarantee the existence of unique positive solution,but also be applied to construct an iterative scheme for approximating it.

    2.Preliminaries

    In this section,we list some basic notations,definitions in ordered Banach spaces.For the convenience of the reader,we refer to [5-6,19] for details.

    A nonempty closed convex set P ?E is a cone if it satisfies:

    (I1) x ∈P,λ ≥0 ?λx ∈P;

    (I2) x ∈P,-x ∈P ?x=θ.

    Suppose that(E,‖·‖)is a real Banach space which is partially ordered by a cone P ?E,that is x ≤y if and only if y-x ∈P.If x ≤y and xy,then we denote x <y or y >x.By θ we denote the zero element of E.

    For all the x,y ∈E,the notation x ~y meas that there exists λ >0 and μ >0 such that λx ≥y ≥μx.Clearly ~is a equivalence relation.Giving h >θ,we denote by Phthe set Ph={x ∈E |x ~h}.It is easy to see that Ph?P is convex and λPh=Phfor all λ >0.Ifθ and h ∈,it is clear that Ph=P.

    Definition 2.1[11]The conformable fractional derivative staring from a of a function f :[a,∞)→R of order 0 <α <1 is defined by

    When a=0 we write Tα,if the α order conformable fractional derivative exists,then we say f is α-differentiable.

    Definition 2.2[11]The conformable fractional integral staring from a of a function f :[a,∞)→R is defined by

    when integral is the usual Riemann improper integral,and α ∈(0,1).

    Definition 2.3[15]Let D = P,or D =and γ be a real number with 0 ≤γ <1.An operator A:P →P is said to be γ-concave if it satisfies

    Definition 2.4[17]An operator A:P →P is said to be sub-homogeneous if it satisfies

    Definition 2.5[14]A : P ×P →P is said to be a mixed monotone operator if A(x,y)is increasing in x and decreasing in y,that is,u1,v1,u2,v2∈P and u1<u2,v1>v2,implies that A(u1,v1)≤A(u2,v2).Element x ∈P is called a fixed point of A if A(x,x)=x.

    Lemma 2.1[15]Let P be a normal cone,A : P →P be an increasing operator and B :P →P be a decreasing operator.Assume that

    (I) For any x ∈P and t ∈(0,1),there exist φi(t)∈(t,1)(i=1,2) such that

    (II) There exists h0∈Phsuch that Ah0+Bh0∈Ph.

    Then,

    1) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤Au0+Bv0≤Av0+Bu0≤v0;

    2) The operator equation Ax+Bx=x has a unique solution x*in Ph;

    3) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=Axn-1+Bnn-1,yn=Ayn-1+Bxn-1,n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    Lemma 2.2[9]A : P ×P →P is a mixed monotone operator,for ?γ ∈(0,1),there exist a function φ(γ)∈(γ,1) such that

    A(tx,t-1y)≥φ(γ)A(x,y),t ∈(0,1),x,y ∈P.

    Assume that there exist h ∈P such that A(h,h)∈Ph.Then,

    1) A:Ph×Ph→Ph;

    2) There exist u0,v0∈Phand r ∈(0,1) such that

    rv0≤u0<v0,u0≤A(u0,v0)≤A(v0,u0)≤v0;

    3) The operator equation A(x,x)=x has a unique solution x*in Ph;

    4) For any initial values x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,···,

    we have xn→x*and yn→x*as n →∞.

    3.Bound Value Problems

    Lemma 3.1Let f,g ∈C[(0,1)×R+,R+].Then u ∈C[0,1] is a solution to (1.1) if and only if u is the solution to the following integral equation:

    where

    ProofLet P = {u | u(t) ≥0,?t ∈[0,1]} and u(t) is a solution of conformable fractional differential equation (1.1).We integrate the both sides of equation (1.1),so we have the following results

    Letting t=1,by (1.1) and (3.3) we can know

    We can get the following equation by combining (3.3) and (3.4).

    The proof is complete.

    Theorem 3.1Assume that f(t,u(t))+g(t,u(t))0 and

    (H1) f,g : [0,1]×[0,+∞) →[0,+∞) is continuous,f(t,u) is increasing and g(t,u) is decreasing in u ∈[0,+∞) for fixed t ∈[0,1];

    (H2) For any x ∈P and t*∈(0,1),there exist φi(t*)∈(t*,1)(i=1,2) such that

    Then the equation(1.1)has a unique positive solution u*.Moreover,for any initial value u0,v0∈Ph,constructing successively the following sequences,

    we have un(t)→x*(t) and vn(t)→x*(t) as n →+∞.

    ProofLet

    and

    It is easy to know that A : P →P is an increasing operator and B : P →P is a decreasing operator by the condition(H1),(3.5)and(3.6).We know that the equation(1.1)is equivalence to sum operator equation Au+Bu=u by Lemma 3.1.

    Step 1 We prove A(t*u)≥φ1(t*)Au andBu.

    By the condition (H2) of Theorem 3.1,we can know

    Step 2 We prove there exist h0∈Phsuch that Ah0+Bh0∈Ph.

    and

    From the above conclusion we can get

    It means that(γ3+γ5)h ≤A(h0)+B(h0)≤(γ4+γ6)h,that is,(A+B)(h0)∈Ph.According to Lemma 2.1,we know that the operator equation Au+Bu=u has a unique positive solution x*in Ph,and there exist u0,v0∈Phand γ ∈(0,1) such that

    And for any initial value u0,v0∈Ph,constructing successively the sequences

    we have un→u*,vn→u*as n →∞.

    Corollary 3.1Assume that

    (H1)′f : [a,b]×[0,+∞] →[0,+∞] is continuous and increasing with respect to the second argument,f(t,0)0;

    (H2)′for any x ∈P and t ∈(0,1),there exist φ3(t) ∈(t,1) such that f(x,tu) ≥φ3(t)f(x,u).

    Then the problem

    has a unique positive solution u*.Moreover,for any initial value u0∈Ph,constructing successively the sequence

    we have un(t)→u*(t) as n →+∞.

    4.Initial Value Problems with Impulsive Terms

    Throughout this subsection,we use the following notation.

    Let J =[0,1],R+=(0,∞),f ∈[J ×R+×R+,R+],0 <t1<t2<...<tm<1.△u|t=tkdenotes the jump of u(t) at t = tk,and Δu|t=tk= u()-u(),where u() and u()represent the right and left limits of u(t) at t = tk,respectively.Also,Ikis a given function in C[R+×R+,R+].

    Let PC[J,R] := {x | x : J →R,x(t) is continuous at ttk,and left continuous at t = tk,x() exists,k = 1,2,...m}.Then,we can easily find that PC[J,R] is a Banach s pace with norm

    Lemma 4.1Let f ∈C[J ×R+×R+,R-],then u ∈PC[J,R]∩C1[J′,R] is a solution to (1.2) on J if and only if u ∈PC[J,R] is the solution to the following integral equation:

    ProofIf t ∈J0,we take α time integral for the first equation on both of (1.2),the following contents can be obtained,

    If t ∈J1,we take α time integral for the first equation on both of(1.2),then the following contents can be obtained,

    If t ∈Jk,the following conclusions can be obtained,

    So we get,

    Then,we can know the integral form solution (1.2) is (4.1).

    Now let’s go on to prove (4.1) to meet the various equations of (1.2).

    If t ∈J0,let t=0,by (4.1) we can know that u(0)=u0.

    If t ∈J1,we take a α time conformable derivative on both sides of (4.1):

    By subtracting the two equations in (4.3) and (4.4) ,then we can obtain

    So it is to know,when t ∈J1,(4.1) meets all kinds of (1.2).In the same way,when t ∈Jk,we can prove that (4.1) meet all kinds of (1.2) too.That is (4.1) and (1.2) is completely equivalent,the proof is completed.

    Theorem 4.1Assume that

    (H3)f :J×R+×R+→(-∞,0]for all t ∈J and x,y ∈R+,also f(t,x,y)is nonincreasing in x for each t ∈J and y ∈R+and is nondecreasing in y for each t ∈J and x ∈R+.Moreover,<0 for all t ∈J.

    (H4) For each k =1,2,...,m,Ik:R+×R+→R+.Ik(x,y) is nondecreasing in x for each y ∈R+and is nonincreasing in y for each x ∈R+.

    (H5) For all γ ∈(0,1),there exist φ1(γ),φ2(γ)∈(γ,1) such that

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J.Moreover for any initial x0,y0∈Ph,constructing successively the following sequences,

    we have xn→x*and yn→x*as n →+∞.

    ProofIn order to show the existence-uniqueness of the solution to (1.2),we define an operator A:PC[J,R]×PC[J,R]→PC[J,R] by

    Then,we infer from (H3),(H4) and (4.6) that

    Step 1 We show there exist φ(γ) ∈(γ,1] such that A(γu,γ-1v) ≥φ(γ)A(u,v) for any u,v ∈P and γ ∈(0,1).

    Put φ(γ) = min{φ1(γ),φ2(γ)},γ ∈(0,1).Then we see from (H5) that φ(γ) ∈(γ,1).Therefor for any γ ∈(0,1) and x,y ∈,from (H3),(H4) and (H5),we have

    which implies that A(γx,γ-1y)(t)≥φ(γ)A(x,y)(t),?x,y ∈,γ ∈(0,1).

    Step 2 We prove there exist h ∈P with hθ such that A(h,h)∈Ph.

    Set a function h by

    Then,we can easily obtain that?t ∈J.Let

    then,0 ≤r1≤r2.From (H3),(H4) and (4.8),it follows that

    Also,we have

    Thus,we observe that

    which implies that A(h,h)∈Ph.

    By argument as above,we see that the operator A:×→defined by (4.6) satisfies all conditions of Lemma 2.2.Therefore,we conclude that the operator A has a unique fixed point in,hence there exist a unique positive solution to(1.2)on J.Moreover for any initial x0,y0∈,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    Corollary 4.1Assume that (H3),(H4) hold and

    (H5)′Let α1,α2∈(0,1),for all γ ∈(0,1).There exist γα1,γα2∈(γ,1) such that

    f(t,γx,γ-1y)≤γα1f(t,x,y),Ik(γx,γ-1y)≥γα2Ik(x,y),

    for any x,y ∈R+,and any k =1,2,...,m.

    Then,there exists a unique positive solution x*to (1.2) on J,Moreover for any initial x0,y0∈Ph,constructing successively the sequences

    xn=A(xn-1,yn-1),yn=A(yn-1,xn-1),n=1,2,...,

    one has ‖xn-x*‖→0 and ‖yn-x*‖→0 as n →∞.

    ProofLet φ1(γ)=γα1and φ2(γ)=γα2.We can get the above conclusion by Theorem 3.2.

    5.Applications

    As applications,two examples are presented to illustrate our main results.

    Example 5.1

    Conclusion 5.1The boundary value problem (5.1) has a unique positive solution in Ph,where

    ProofIn this example,we haveLet

    Obviously,f,g :[0,1]×[0,+∞)→[0,+∞) are continuous,f(t,x) is increasing and g(t,x) is decreasing in x ∈[0,+∞) for fixed t ∈[0,1].Beside,for λ ∈(0,1),t ∈(0,1),x ∈[0,+∞),letting φ1(λ)=φ2(λ)=λ,we have

    Hence all the conditions of Theorem 3.1 are satisfied.An application of Theorem 3.1 implies that the problem (5.1) has a unique positive solution in Ph.

    Example 5.2

    Conclusion 5.2The initial value problem for conformable fraction differential equations systems (5.2) with impulsive terms admits a unique positive solution in Ph,where h(t) =and the unique positive is continuously differentiable on

    ProofLet J = [0,1],f(x,y) = -2(1 + x(t))- 2(1 + y(t))Clearly,f(t,x,y) is decreasing in x for y ≥0 and increasing in y for x ≥0.Also,let I1(x,y) =(1+x(t))+(1+y(t))-and we know I1(x,y) is increasing in x for y >0 and is decreasing in y for x ≥0.

    f(t,γx,γ-1y)=-2(1+γx(t))-2(1+γy(t))-≤φ(γ)f(t,x(t),y(t)),?x(t)>0,y(t)>0,

    I1(γx,γ-1y)=(1+γx(t))+(1+γy(t))-≥φ(γ)I1(x(t),y(t)),?x(t)>0,y(t)>0.

    Therefore,we see that condition (H3),(H4) and (H5) hold.Hence,applying Theorem 4.1 to (5.2),we can get a unique positive solution to (5.2) on [0,1].

    猜你喜歡
    碧波
    聽松榭步韻杜工部《宿江邊閣》
    碧波一樹
    唐 風(fēng)
    秋 景
    浩浩碧波潤(rùn)江淮——洪澤湖
    虹橋碧波太平湖
    江淮法治(2020年4期)2020-06-05 12:52:56
    點(diǎn)絳唇·蓮
    碧波蕩漾珊瑚海
    10 Digestive Tract
    国产精品综合久久久久久久免费| 日日爽夜夜爽网站| 国模一区二区三区四区视频 | 欧美乱妇无乱码| 动漫黄色视频在线观看| 毛片女人毛片| 国产精品亚洲一级av第二区| 麻豆av在线久日| 国产精品1区2区在线观看.| 欧美日韩精品网址| 男女那种视频在线观看| 禁无遮挡网站| 琪琪午夜伦伦电影理论片6080| 午夜福利在线在线| 精品不卡国产一区二区三区| 成人永久免费在线观看视频| 人成视频在线观看免费观看| 国产精品免费视频内射| 欧美乱妇无乱码| 日韩免费av在线播放| 国内精品久久久久久久电影| 美女大奶头视频| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 一本精品99久久精品77| 亚洲av成人av| 午夜a级毛片| 欧美成狂野欧美在线观看| 久久久久久免费高清国产稀缺| 久久精品影院6| 老司机午夜十八禁免费视频| 午夜影院日韩av| 午夜福利成人在线免费观看| 99久久精品热视频| 免费观看精品视频网站| 久久久国产精品麻豆| 国产精品亚洲美女久久久| 岛国在线免费视频观看| 麻豆成人av在线观看| 一本一本综合久久| 国产av在哪里看| 成人三级做爰电影| 黄色视频,在线免费观看| 69av精品久久久久久| 成年人黄色毛片网站| 丁香欧美五月| 亚洲天堂国产精品一区在线| 亚洲精品粉嫩美女一区| 好看av亚洲va欧美ⅴa在| 成人午夜高清在线视频| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| av中文乱码字幕在线| 亚洲avbb在线观看| 在线免费观看的www视频| 国产av麻豆久久久久久久| 丝袜美腿诱惑在线| 国产精品乱码一区二三区的特点| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 最新美女视频免费是黄的| 久久精品综合一区二区三区| 又黄又爽又免费观看的视频| 日本一二三区视频观看| 欧美又色又爽又黄视频| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| 国产伦一二天堂av在线观看| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 亚洲国产中文字幕在线视频| 88av欧美| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲国产一区二区在线观看| 亚洲18禁久久av| 日本熟妇午夜| av福利片在线| 99re在线观看精品视频| 黄色毛片三级朝国网站| 一个人免费在线观看电影 | 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 国产精品98久久久久久宅男小说| 国产麻豆成人av免费视频| 午夜a级毛片| 亚洲午夜理论影院| 一边摸一边抽搐一进一小说| 久久久久亚洲av毛片大全| 国产片内射在线| 叶爱在线成人免费视频播放| 男女之事视频高清在线观看| 欧美zozozo另类| 中文字幕熟女人妻在线| 日本精品一区二区三区蜜桃| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站 | 久久人妻av系列| 色播亚洲综合网| 无遮挡黄片免费观看| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看 | 国产精品亚洲一级av第二区| 精品久久蜜臀av无| 91成年电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 一级a爱片免费观看的视频| 此物有八面人人有两片| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区免费观看 | 午夜激情av网站| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产精品久久久不卡| 麻豆成人av在线观看| 色av中文字幕| 极品教师在线免费播放| www.自偷自拍.com| 淫妇啪啪啪对白视频| 国模一区二区三区四区视频 | 午夜两性在线视频| 亚洲av电影不卡..在线观看| 亚洲人成77777在线视频| 日韩欧美 国产精品| 不卡av一区二区三区| av天堂在线播放| 久久精品影院6| 91国产中文字幕| 黄色片一级片一级黄色片| 亚洲18禁久久av| 亚洲人成网站在线播放欧美日韩| 精品欧美一区二区三区在线| 亚洲av电影在线进入| 亚洲电影在线观看av| 人妻久久中文字幕网| 亚洲国产欧美人成| 又紧又爽又黄一区二区| 特大巨黑吊av在线直播| 免费看美女性在线毛片视频| 久久欧美精品欧美久久欧美| 一级毛片精品| 嫩草影院精品99| 伊人久久大香线蕉亚洲五| 一级毛片女人18水好多| tocl精华| 哪里可以看免费的av片| 亚洲精品在线美女| 欧美久久黑人一区二区| 桃红色精品国产亚洲av| 久久精品国产清高在天天线| 777久久人妻少妇嫩草av网站| 老司机福利观看| 精品国产乱码久久久久久男人| 久久久久亚洲av毛片大全| 看黄色毛片网站| 国产成人一区二区三区免费视频网站| 久久久久久久久久黄片| 午夜两性在线视频| xxx96com| 欧美色视频一区免费| 长腿黑丝高跟| 国产爱豆传媒在线观看 | 村上凉子中文字幕在线| 特级一级黄色大片| 国产单亲对白刺激| cao死你这个sao货| 草草在线视频免费看| 亚洲专区国产一区二区| 欧美大码av| 好男人在线观看高清免费视频| 国内精品久久久久久久电影| 黄片小视频在线播放| 变态另类成人亚洲欧美熟女| 久久午夜综合久久蜜桃| 欧美成狂野欧美在线观看| 亚洲精品美女久久av网站| 我的老师免费观看完整版| 脱女人内裤的视频| 精品一区二区三区四区五区乱码| 听说在线观看完整版免费高清| 日韩欧美精品v在线| 天天一区二区日本电影三级| 国产成人啪精品午夜网站| 精品久久久久久久末码| 美女高潮喷水抽搐中文字幕| 人妻夜夜爽99麻豆av| 中文字幕av在线有码专区| 久久久国产成人精品二区| 狠狠狠狠99中文字幕| 两个人免费观看高清视频| 动漫黄色视频在线观看| 日日夜夜操网爽| 欧美黄色淫秽网站| 国产成人精品无人区| 国产精品一及| 大型黄色视频在线免费观看| 亚洲一区中文字幕在线| 我的老师免费观看完整版| 人人妻,人人澡人人爽秒播| 无遮挡黄片免费观看| av在线播放免费不卡| 精品国产美女av久久久久小说| 亚洲av电影在线进入| 国产免费av片在线观看野外av| 国产爱豆传媒在线观看 | 免费高清视频大片| 亚洲精品一区av在线观看| 欧美精品亚洲一区二区| 啦啦啦观看免费观看视频高清| 99热6这里只有精品| 国产成人精品无人区| 99精品欧美一区二区三区四区| 日韩欧美国产一区二区入口| 国产激情久久老熟女| 国产激情欧美一区二区| 麻豆久久精品国产亚洲av| 在线永久观看黄色视频| 亚洲五月天丁香| www国产在线视频色| 可以在线观看毛片的网站| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜福利久久久久久| 国产精品影院久久| 亚洲成人中文字幕在线播放| 国产精品一及| 亚洲av日韩精品久久久久久密| 午夜福利在线观看吧| 成年免费大片在线观看| 久久精品亚洲精品国产色婷小说| 午夜精品一区二区三区免费看| 色综合欧美亚洲国产小说| 好男人在线观看高清免费视频| 国产高清有码在线观看视频 | 久久久久久久午夜电影| 日本 av在线| 波多野结衣高清无吗| 久久国产精品影院| 女人爽到高潮嗷嗷叫在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲免费av在线视频| 久久九九热精品免费| 亚洲精品中文字幕一二三四区| 深夜精品福利| 国产一区二区在线观看日韩 | 天天躁夜夜躁狠狠躁躁| 国产精品99久久99久久久不卡| 人人妻人人看人人澡| 最近最新中文字幕大全电影3| 国产亚洲欧美98| 一级作爱视频免费观看| 老鸭窝网址在线观看| 最近视频中文字幕2019在线8| 久久九九热精品免费| 欧美zozozo另类| 一个人免费在线观看的高清视频| 国产91精品成人一区二区三区| 亚洲欧美日韩无卡精品| 婷婷六月久久综合丁香| 一个人免费在线观看电影 | 无遮挡黄片免费观看| 老司机靠b影院| 久热爱精品视频在线9| 成人永久免费在线观看视频| 脱女人内裤的视频| 日韩欧美国产在线观看| 久久草成人影院| 三级毛片av免费| 精品欧美国产一区二区三| 亚洲一码二码三码区别大吗| 午夜福利免费观看在线| 99精品欧美一区二区三区四区| 一区福利在线观看| 午夜影院日韩av| 亚洲专区中文字幕在线| 全区人妻精品视频| 激情在线观看视频在线高清| 中文资源天堂在线| 免费一级毛片在线播放高清视频| 国产又黄又爽又无遮挡在线| 亚洲av电影不卡..在线观看| 国产区一区二久久| 国产麻豆成人av免费视频| 精品欧美国产一区二区三| 免费看十八禁软件| 免费人成视频x8x8入口观看| 黄色视频,在线免费观看| 亚洲精品国产精品久久久不卡| 欧美午夜高清在线| 久久精品aⅴ一区二区三区四区| 在线视频色国产色| 麻豆国产av国片精品| 桃红色精品国产亚洲av| 最近最新免费中文字幕在线| 两个人视频免费观看高清| 丝袜美腿诱惑在线| 嫩草影院精品99| 露出奶头的视频| 久久久久久久午夜电影| 九色成人免费人妻av| 99热只有精品国产| 亚洲激情在线av| 免费av毛片视频| 99久久精品热视频| 久久精品国产亚洲av香蕉五月| av在线播放免费不卡| 男人舔女人下体高潮全视频| 丁香欧美五月| 亚洲成人中文字幕在线播放| 亚洲成人精品中文字幕电影| 国产野战对白在线观看| 午夜影院日韩av| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品第一综合不卡| 免费看a级黄色片| 人人妻人人澡欧美一区二区| 日本五十路高清| 99国产极品粉嫩在线观看| 亚洲 国产 在线| 人人妻,人人澡人人爽秒播| 国产爱豆传媒在线观看 | 国产不卡一卡二| 女同久久另类99精品国产91| 亚洲最大成人中文| 白带黄色成豆腐渣| 国产精品1区2区在线观看.| 亚洲欧美精品综合一区二区三区| 在线观看免费视频日本深夜| 日韩三级视频一区二区三区| 久久久久性生活片| 久久 成人 亚洲| 两个人的视频大全免费| 久久中文看片网| 亚洲五月天丁香| 老司机午夜福利在线观看视频| 亚洲专区字幕在线| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕日韩| 日韩免费av在线播放| 久久人人精品亚洲av| 五月伊人婷婷丁香| 久久精品国产亚洲av香蕉五月| 久久中文看片网| 国产一区二区在线av高清观看| a级毛片a级免费在线| av在线天堂中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美在线乱码| 国产免费男女视频| 他把我摸到了高潮在线观看| 国产成人aa在线观看| 在线国产一区二区在线| 久久婷婷成人综合色麻豆| 88av欧美| 两性夫妻黄色片| 男女那种视频在线观看| 亚洲中文字幕日韩| 美女黄网站色视频| www.999成人在线观看| 婷婷丁香在线五月| 国产乱人伦免费视频| 一进一出抽搐gif免费好疼| 亚洲专区中文字幕在线| 亚洲成人中文字幕在线播放| 日韩欧美三级三区| 成在线人永久免费视频| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看| av在线天堂中文字幕| av超薄肉色丝袜交足视频| 久久香蕉激情| 欧美3d第一页| 国产aⅴ精品一区二区三区波| 久久 成人 亚洲| 亚洲一区中文字幕在线| 老汉色∧v一级毛片| 在线视频色国产色| 国产精品,欧美在线| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| tocl精华| 色综合欧美亚洲国产小说| 日韩大尺度精品在线看网址| 国产免费男女视频| 深夜精品福利| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 日本一二三区视频观看| 亚洲免费av在线视频| 久久国产精品人妻蜜桃| 又黄又粗又硬又大视频| 精品一区二区三区视频在线观看免费| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 19禁男女啪啪无遮挡网站| 亚洲国产精品成人综合色| 日本一区二区免费在线视频| 欧洲精品卡2卡3卡4卡5卡区| 麻豆一二三区av精品| 亚洲欧美精品综合一区二区三区| 国内少妇人妻偷人精品xxx网站 | 一边摸一边做爽爽视频免费| 亚洲美女黄片视频| 亚洲av成人av| 99久久无色码亚洲精品果冻| 无人区码免费观看不卡| 久久午夜综合久久蜜桃| 免费在线观看视频国产中文字幕亚洲| 亚洲电影在线观看av| 国产一区二区在线观看日韩 | videosex国产| 嫁个100分男人电影在线观看| 欧美中文日本在线观看视频| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 精品电影一区二区在线| 免费av毛片视频| 久久精品国产亚洲av高清一级| 最近在线观看免费完整版| 午夜成年电影在线免费观看| 久久久久免费精品人妻一区二区| 999精品在线视频| 99久久精品热视频| 男女之事视频高清在线观看| 成人av在线播放网站| 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清视频在线播放一区| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯| 三级毛片av免费| 欧美一级a爱片免费观看看 | 琪琪午夜伦伦电影理论片6080| 国产成人影院久久av| 99热这里只有精品一区 | 69av精品久久久久久| 亚洲免费av在线视频| 一区二区三区国产精品乱码| 欧美日韩黄片免| 国产私拍福利视频在线观看| 亚洲黑人精品在线| 狂野欧美激情性xxxx| 亚洲国产日韩欧美精品在线观看 | 亚洲人成网站高清观看| 精品电影一区二区在线| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 国产在线精品亚洲第一网站| 久热爱精品视频在线9| 一本综合久久免费| 日韩欧美国产一区二区入口| 国产一区二区在线av高清观看| 给我免费播放毛片高清在线观看| 精品久久久久久久久久久久久| 色老头精品视频在线观看| 国产成人系列免费观看| av在线天堂中文字幕| 国产日本99.免费观看| 欧美高清成人免费视频www| 亚洲全国av大片| 宅男免费午夜| av有码第一页| 午夜免费激情av| 成人av在线播放网站| 人妻丰满熟妇av一区二区三区| 久久久久久免费高清国产稀缺| 国产私拍福利视频在线观看| 又大又爽又粗| 亚洲天堂国产精品一区在线| 黑人巨大精品欧美一区二区mp4| 俄罗斯特黄特色一大片| 精品久久久久久久人妻蜜臀av| 亚洲国产欧洲综合997久久,| 欧美丝袜亚洲另类 | 一级片免费观看大全| 欧美乱色亚洲激情| 欧美黑人精品巨大| 亚洲五月婷婷丁香| 中文字幕久久专区| 男人舔女人的私密视频| 视频区欧美日本亚洲| 免费在线观看成人毛片| 国产伦在线观看视频一区| 97人妻精品一区二区三区麻豆| 欧美在线一区亚洲| 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 成人av在线播放网站| 午夜日韩欧美国产| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 亚洲欧洲精品一区二区精品久久久| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 久久午夜综合久久蜜桃| 岛国视频午夜一区免费看| 亚洲av电影不卡..在线观看| www.自偷自拍.com| 久久久久国内视频| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| 国产片内射在线| 少妇人妻一区二区三区视频| 久99久视频精品免费| 国产亚洲精品久久久久久毛片| 色播亚洲综合网| 99国产精品99久久久久| www日本黄色视频网| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 国产精品久久久av美女十八| 一边摸一边抽搐一进一小说| 脱女人内裤的视频| 精品久久久久久,| 亚洲精品久久国产高清桃花| 亚洲 欧美一区二区三区| 亚洲美女黄片视频| 这个男人来自地球电影免费观看| 一级毛片精品| 99re在线观看精品视频| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 1024手机看黄色片| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 国产日本99.免费观看| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 免费观看人在逋| 欧美久久黑人一区二区| 国产亚洲精品第一综合不卡| www.www免费av| 欧美日本视频| 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 久久国产精品影院| 亚洲狠狠婷婷综合久久图片| 色尼玛亚洲综合影院| 日韩欧美国产一区二区入口| 精品久久久久久久末码| 欧美高清成人免费视频www| 少妇被粗大的猛进出69影院| 操出白浆在线播放| 国语自产精品视频在线第100页| 亚洲国产欧美人成| 成人18禁在线播放| 亚洲精品在线观看二区| 十八禁人妻一区二区| 久久精品亚洲精品国产色婷小说| 深夜精品福利| 亚洲av电影不卡..在线观看| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| 精品高清国产在线一区| 1024香蕉在线观看| 国产单亲对白刺激| 一进一出抽搐gif免费好疼| 人成视频在线观看免费观看| 精品高清国产在线一区| 亚洲,欧美精品.| 女人被狂操c到高潮| 午夜福利高清视频| 日韩大码丰满熟妇| 不卡av一区二区三区| 国产精品日韩av在线免费观看| 精品久久久久久久久久久久久| 亚洲成人精品中文字幕电影| 久久香蕉激情| 中文亚洲av片在线观看爽| 国产高清有码在线观看视频 | 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 亚洲人成网站高清观看| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 动漫黄色视频在线观看| 99久久无色码亚洲精品果冻| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人av| 亚洲天堂国产精品一区在线| 中文字幕人成人乱码亚洲影| 99久久精品国产亚洲精品| 国产高清视频在线播放一区| 丝袜人妻中文字幕| 在线十欧美十亚洲十日本专区| or卡值多少钱| 免费一级毛片在线播放高清视频| 在线免费观看的www视频| 国产久久久一区二区三区| 97人妻精品一区二区三区麻豆| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 亚洲五月婷婷丁香| 在线观看66精品国产| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 日韩av在线大香蕉| 日韩国内少妇激情av| av在线天堂中文字幕| 久久久久久久久中文|