• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve?

    2021-10-28 07:15:40XianJinQi祁先進(jìn)NiNaYang楊妮娜XiaoXuDuan段孝旭andXueZhuLi李雪竹
    Chinese Physics B 2021年10期
    關(guān)鍵詞:妮娜

    Xian-Jin Qi(祁先進(jìn)) Ni-Na Yang(楊妮娜) Xiao-Xu Duan(段孝旭) and Xue-Zhu Li(李雪竹)

    1Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction,Ministry of Education,Kunming University of Science and Technology,Kunming 650093,China

    2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,China

    Keywords: exchange bias field,spin valves,temperature,thermal relaxation

    1. Introduction

    In 1986, Grunberget al.[1]found that in the Fe/Cr/Fe sandwiched structure, exchange coupling between Fe layers occurs through the Cr layer, and when the Cr layer thickness is appropriate value,antiferromagnetic coupling is present between the two Fe layers. In 1988, Baibichet al.[2]reported that at a low temperature (4.2 K) with an outfield of 20 kOe(1 Oe=79.5775 A·m?1), the resistance of Fe (3.0 nm)/Cr(0.9 nm) multilayered film prepared by molecular beam epitaxy is increased by 50%, far exceeding the anisotropic magnetoresistance(about 0.2%)of the pure Fe layer.This is called the giant magnetoresistance(GMR)effect,which has attracted attention because of its wide application prospects in highdensity readout heads and magnetic storage devices (such as hard disks).[3–6]Therefore,the recording density of computer hard disks and the data reading speed of magnetic heads are greatly increased, which allows the hard disk capacity to be increased while their sizes are reduced. Because the exchange bias principle in ferromagnetic/antiferromagnetic systems has important applications in GMR heads, non-volatile memory,and magnetic transducers for high-density magnetic recording,materials with exchange coupling effects,such as spin valves and tunnel junctions,have been extensively investigated.[7–11]

    The magnetic electronic devices,when being used, must be able to withstand high temperatures or magnetic fields,which reduces the size of the exchange bias field of the devices and also restricts their performances. The thermal stability of an exchange bias greatly influences the reliability of magnetic electronic device. For example, after being treated at 250°C,the FeMn nailing spin valve multilayered film loses the nailing effect of its antiferromagnetic layer,and the GMR may even disappear.[12]In the IrMn nailing spin valve multilayered film,after about 100-°C temperature treatment,it was found that the nailing effect of IrMn antiferromagnetic layer is weakened, and exchange bias field is reduced.[13]Therefore,a study of the thermal–magnetic stability of the exchange bias will help design and use magnetic electronic devices. In addition,the study of thermal relaxation of an exchange bias field will reveal the nature of the exchange bias.

    This paper focuses mainly on the influence of temperature on the structure and magnetic properties of spin valve.The relationship between temperature and exchange bias field is analyzed through modeling.At the same time,the characteristics of thermal relaxation of spin valve multilayered film are studied,and the thermal relaxation phenomenon is reasonably analyzed.

    2. Experimental process

    CoFe/Cu/CoFe/IrMn spin valve was prepared on a silicon substrate by high-vacuum magnetron sputtering (Japan vacuum MPS-4000-HC2). The structure and thickness of the spin valve was Ta(5 nm)/Co75Fe25(5 nm)/Ir20Mn80(12 nm)/Ta(8 nm). To prevent the sample from being oxidized in the air,an 8-nm-thick Ta layer was deposited on the IrMn layer as a protective layer. During sputtering,the background vacuum degree was higher than 5×10?7Pa.High-purity argon gas was used for sputtering,the air pressure was 7×10?2Pa,the sputtering power was 120 W, and the growth rate was controlled at 0.03 nm/s–0.12 nm/s. During deposition,an external magnetic field of 100 Oe was applied parallel to the film surface to induce an easy magnetization direction.

    An HH10 VSM was used to measure hysteresis loops at room temperature. The magnetic field was applied parallel to the film surface,and the positive field direction was parallel to the external field direction added during deposition. The magnetic field scanning range was from?800 Oe to 800 Oe,and the scanning speed was 3 Oe/s. The texture of the film was studied with a D8-Advance XRD,and the interface roughness was studied by AFM.

    During the thermal relaxation of spin valve,the magnetic field was swept from the forward saturation field to the reverse saturation field,and then remained under the reverse magnetic field with an absolute value greater than 200 Oe–300 Oe.After holding for a certain time,the magnetic field was swept from the reverse saturation field to the forward saturation field.During magnetic field conversion, the back branch curve of the hysteresis loop can be measured. When there is no hold time in the forward saturation field, the front hysteresis loop can be measured by sweeping directly from the forward field to the reverse field. A second residence was then performed at a magnetic field in a range of 200 Oe–300 Oe in the reverse saturation field. The effect of temperature on the thermomagnetic properties of the exchange bias field of the spin valves was studied by the time accumulation method.

    3. Results and discussion

    3.1. Effect of temperature on structure of spin valves

    Figure 1 shows the x-ray diffraction (XRD) pattern of the CoFe/Cu/CoFe/IrMn spin valve film at room temperature,150°C,and 275°C and IrMn has a good(111)direction texture. When the temperature increases to 150°C,the peak intensity of IrMn(111)decreases(curveband curvecin Fig.1).When the temperature reaches 275°C, the diffraction peak shifts towards a higher 2θvalue, possibly because of chemical diffusion and strain-relief.[14,15]

    Fig.1. XRD patterns of spin valves at room temperature(curve a),150 °C(curve b),and 275 °C(curve c).

    To further investigate the effect of temperature on the structure of the spin valve multilayered film, the surface/interface morphologies are studied by using AFM. It is generally believed that multilayered film deposited by magnetron sputtering is continuous and coherent at a certain thickness when it is deposited continuously at the same pressure.In this way,when the interface is not far away from the surface,the surface morphology is approximately the same as the interface morphology.[16]The ferromagnetic/antiferromagnetic interface in the bilayer film studied in this paper is 20 nm away from the surface. Thus, it is likely that the surface roughness of the sample can indirectly reflect the interfacial roughness between IrMn and CoFe layers.

    The AFM images are shown in Fig.2,where figures 2(a),2(b), and 2(c) show the three-dimensional topograph of the sample at room temperature, 150°C, and 275°C, respectively. The correspondingRrmsroughness of the sample is 0.542 nm, 0.791 nm, and 1.078 nm, respectively. The surface/interfaceRrmsincreases with the temperature rising after the spin valve has been heated.This is consistent with the conclusion obtained by Chenet al.,[17]in which the roughness of NiFe/FeMn bilayer increases with the temperature rising.

    Fig.2. AFM images of spin valve at(a)room temperature,(b)150 °C,and(c)275 °C.

    3.2. Effect of temperature on magnetic properties of multilayer spin valve film

    Figure 3 shows that the shape of the hysteresis loop of the CoFe/Cu/CoFe/IrMn spin valve changes greatly with the increase of temperature.Hex=(Hc1+Hc2)/2(Hc1is the value of the forward branch of the hysteresis loop deviating from the zero field,andHc2is the value of the backward branch of the hysteresis loop deviating from the zero field.) shows that the exchange bias field decreases as the temperature increases(specific data are given in Table 1). The coercive force of the pinned layer and the free layer can be obtained from the formula,Hc=(Hc1?Hc2)/2. The coercivity of the nailed layer decreases at higher temperatures, while the coercivity of the free layer increases as the temperature increases(specific data are listed in Table 1).

    Fig.3. Hysteresis loops of samples at Tm =room temperature(RT),150 °C,and 275 °C.

    Table 1. Values of spin valve exchange bias field, pinning layer, and free layer coercivity at three different temperatures.

    According to the XRD pattern(Fig.1), IrMn has a good(111) directional texture after it has been heated at different temperatures,showing that the multilayered spin valve experiences exchange bias after having been heated. However,upon increasing the heating temperature,the IrMn(111)directional texture is weakened,which reduces the pinning effect of IrMn and the spin valve exchange bias field as well.

    Roughness is also an important factor that affects exchange bias.[17–19]Generally, the exchange bias field decreases upon increasing the roughness;[20,21]therefore,the increased surface/interface roughness after heating at 150°C and 275°C is another major reason for the reduction in the multilayer exchange bias field of the spin valves.

    The relationship between the temperatureTmand exchange bias fieldHexfor the spin valve is shown in Fig. 4,whereHexis normalized.Hexdecreases monotonically with temperature increasing, which has already been found in many thin films of exchange coupled systems, such as CoFe/IrMn exchange-coupled bilayer[22]and(CoFe, Co, and NiFe)/Cu/CoFe/IrMn spin valves.[23]The cutoff temperature of thin film can be determined by the linear extrapolation of the exchange bias and temperature plot,and this method shows that the cutoff temperature of the CoFe/Cu/CoFe/IrMn spin valve is about 340°C.

    Fig.4. Measured and calculated variation of exchange bias field(Hex)with temperature of pinning layer in a spin valve.

    In general, when the temperature is room temperature(Tm),the relation of the exchange bias field with the exchange coupling constant and the saturated magnetic moment can be written as[24]

    whereHex(Tm) is the exchange bias field atTm,J(Tm) is the interface exchange coupling constant atTm,Msp(Tm)is the saturation magnetic moment of the pinned ferromagnetic layer atTm, andtFis the thickness of the pinned ferromagnetic layer of the spin valve.

    The relationship betweenJandTmcan be written as[25,26]

    whereJ(0) is the exchange bias constant between ferromagnetism and antiferromagnetism at 0 K,andTNis the Nell temperature.

    According to Eqs. (1) and (2), the equation representing the effect of the size ofHexbecomes

    According to formula(3),the relation betweenHexandTmis fitted as shown by the dotted line in Fig. 4, which indicates that there is a slight deviation between the fitted data and the experimental data. This is mainly because changes in the microstructure,such as grain size and texture,are not considered in the fitting formula. However, in the actual processes, increasing the temperature will affect the microstructure(Fig.1).

    Figure 5 shows the coercivity of the free layerHcfversustemperature and the saturation magnetic momentMspversustemperature of the spin valve multilayered film. The change in the coercivity withTmof the free layer in spin valve is nonmonotonic, and the maximum value appears atTm=225°C.This phenomenon has also been observed in exchange-coupled NiFe[27]and CoFe films.[28,29]

    Fig. 5. Coercivity of the free layer (Hcf) and saturation magnetic moment(Ms)versus temperature of the spin valve multilayered film.

    When the temperature is lower than 225°C,bothTmandHcfincrease, mainly because of the phase transition of the CoFe free layer. In general,when CoFe is deposited on the Cu layer,an fcc structure forms easily.[30]In this study,the CoFe free layer deposited on the Ta seed layer may form a partial bcc structure. As the temperature increases, some CoFe with a bcc structure changes into an fcc structure, which increases the fcc phase in the CoFe free layer. Because fcc phase is harder than bcc phase,Hcfincreases withTmincreasing when the temperature is lower than 225°C.

    When the temperature is higher than 225°C,Tmincreases andHcfdecreases. This is mainly due to the decline in the texture direction of CoFe(111) in the free layer at elevatedTm(Fig. 1), resulting in a less-anisotropic material.[31]In addition, the transition from a bcc structure to an fcc structure of the CoFe free layer may terminate at about 225°C. For these two reasons,Hcfdecreases asTmincrease at temperatures greater than 225°C.

    Fig.6. Normalized coercivity Hcp varying with temperature in nailed layer.

    Figure 6 shows the variation in the coercivity of the nailing layerHcpwith temperatureTm. The normalized coercivityHcpof the nailed layer decreases monotonically with the temperature increasing,which is consistent with the Lam Yet al.’s result,[32]who studied the influence of temperature on the coercivity of NiMn/CoFe/NiMn film.

    3.3. Effect of temperature on thermal relaxation of multilayer spin valve film

    The effect of temperature on the thermal relaxation of the spin valve is studied by placing the samples in a reverse saturated field for different times. Figure 7 shows the variations of multilayered film exchange bias field with residence time in the reverse saturation field of the spin valves at different temperatures. As can be seen from Fig.7, when the temperature is lower than 200°C the exchange bias field decreases as the residence time increases At the beginning of the negative saturation field,the exchange bias field decreases first faster,and then slowly gradually. When the temperature is higher than 200°C,the exchange bias field remains unchanged as the residence time increases.

    Fig. 7. Curves of spin valve multilayered film exchange bias field (Hex)versus residence time in reverse saturation field(tsat)at(curve a)room temperature, (curve b) 50 °C, (curve c) 100 °C, (curve d) 150 °C, (curve e)200 °C,(curve f)250 °C,(curve g)275 °C,and(curve g)300 °C.

    When the temperature is lower than 200°C,the exchange bias field of the spin valves decreases with the residence time increasing because the magnetic moments in some regions of the antiferromagnetic layer are reversed due to the thermal activation across the energy barrier.[33–35]When the applied magnetic field is scanned from the forward saturation to the reverse saturation,the magnetic moment direction of the ferromagnetic layer is parallel to the direction of the external magnetic field, for the Zeeman energy produced by the external magnetic field is greater than the exchange coupling energy between ferromagnetism and antiferromagnetism. However,the anisotropy of the antiferromagnetic layer is greater than that of the Zeeman energy generated by the external magnetic field. Therefore, the magnetic moment of the antiferromagnetic layer does not change with the direction of the external magnetic field but remains in its original direction.At this time, the system is in a metastable state. When the CoFe/Cu/CoFe/IrMn spin valve multilayered film is still in the reverse saturation field,the magnetic moment of antiferromagnetism begins to reverse due to exchange coupling between strong ferromagnetism and strong antiferromagnetism. The anisotropy energy of the antiferromagnetic layer decreases with the reversal of the magnetic moment,which weakens the pinning effect of the antiferromagnetic layer.With the increase of the residence time of CoFe/Cu/CoFe/IrMn in the reverse saturation field,more magnetic moments in the antiferromagnetic layer are reversed by thermal activation across the energy barrier distribution. Finally,the multilayer film exchange bias field of the spin valve decreases with the increase of the residence time in the reverse saturation field.

    At each temperature below 200°C, at the beginning of the negative saturation field,Hexdecreases first faster and then slowly gradually because the smaller antiferromagnetic (AF)domain barrier is lower. The smaller AF domains are reversed more easily than the larger ones.[36]The number of small domains with low energy barriers in the antiferromagnetic layer decreases with residence time increasing at each temperature.In addition, magnetic domain nucleation and domain growth occur during inversion. Under a negative saturation field, vacancies and crystal defects are generated in the thin film,and the magnetic domain nucleation process is more likely to occur near crystal defects.[37]With the film’s residence time in the negative saturation field increasing, the number of defects available for nucleation gradually decreases in comparison with the number of initial nucleation defects. Thus, at the beginning of the residence in a negative saturation field,at each temperature,Hexbegan to decrease first faster and then slowly gradually.

    When the temperature is higher than 200°C, the exchange bias field does not change with the residence time increasing, which is mainly because the high temperature increases the energy barrier of magnetic moment inversion in some regions of the antiferromagnetic layer and narrows the overall energy barrier distribution. During residence in a reverse saturation field, the exchange coupling energy between the ferromagnetic layer and the antiferromagnetic layer cannot overcome the energy barrier of the antiferromagnetic moment reversal, because the energy barrier of the moment reversal of each part of the antiferromagnetic layer is relatively large. That is to say, the magnetic moment of the antiferromagnetic layer does not flip when the residence time in the reverse saturation field increases. Therefore, when the temperature is greater than 200°C,the exchange bias field of the spin valve does not change at a longer residence time.

    It can be seen from Fig.7 that temperature speeds up the thermal relaxation ofHexin the exchange bias field, that is,the increase of temperature quickens the decrease ofHex. The distribution of the energy barrier determines AF domain inversion, and the mechanism of AF domain inversion is different at different temperatures.[38]When the temperature is relatively low, the magnetic domain of AF layer is reversed uniformly. The energy barrier is fairly wide. To achieve a reversal,all domains must simultaneously cross the highest energy barrier. This reversal pattern must therefore be powerful enough.As the temperature increases,the reversal mechanism changes from uniform inversion to the inversion in the helical domain form. The energy barrier distribution of the inversion in the spiral domain form is relatively narrow,so it is easier to realize the inversion. As the temperature increases, the number of reversals increases due to the helical domains formed by magnetic domains.[36,38]So this speeds up the decrease ofHex. Therefore,the temperature increase can quicken the thermal relaxation of the spin valve exchange bias fieldHex.

    4. Conclusions

    The effect of temperature on the thermal relaxation of CoFe/Cu/CoFe/IrMn spin valve in an exchange bias field is studied. The results show that the temperature affects the structure and magnetic properties of CoFe/Cu/CoFe/IrMn. As the temperature increases,the texture of IrMn(111)decreases,the surface roughness and interface roughness increase, and the exchange bias field decreases. When the temperature is lower than 200°C,the exchange bias field decreases with residence time increasing, and when the temperature is greater than 200°C, the exchange bias field is basically unchanged though the residence time increases.

    猜你喜歡
    妮娜
    當(dāng)考拉離開桉葉
    女報(bào)(2020年6期)2020-08-17 07:15:49
    電影《黑天鵝》物質(zhì)意象的心理分析
    斑鬣狗的小心愿
    淘氣鬼妮娜
    印度裔女孩首獲美國小姐桂冠 跳寶萊塢舞
    電影畫刊(2013年9期)2013-11-19 03:58:06
    完美的代價(jià)——電影《黑天鵝》的一種解讀
    對(duì)自我的超越:影片《黑天鵝》解讀
    戲劇之家(2012年7期)2012-08-15 00:42:11
    今天你做夢(mèng)了嗎?
    《黑天鵝》:自戀與完美的達(dá)成
    戲劇之家(2011年9期)2011-07-11 03:36:54
    保姆妮娜
    短小說(2009年3期)2009-06-04 09:37:03
    每晚都被弄得嗷嗷叫到高潮| 精品人妻熟女毛片av久久网站| 亚洲中文日韩欧美视频| 亚洲av欧美aⅴ国产| 精品亚洲乱码少妇综合久久| xxxhd国产人妻xxx| 久久亚洲真实| 成年动漫av网址| 热re99久久国产66热| 操出白浆在线播放| 99精品欧美一区二区三区四区| 色婷婷久久久亚洲欧美| 国产精品亚洲av一区麻豆| 日韩视频一区二区在线观看| 91成人精品电影| 精品高清国产在线一区| 成人黄色视频免费在线看| 人妻 亚洲 视频| 一区二区三区激情视频| 午夜久久久在线观看| 欧美在线黄色| 99国产精品99久久久久| 一级片免费观看大全| 欧美日韩黄片免| 99香蕉大伊视频| 19禁男女啪啪无遮挡网站| 18禁观看日本| 看免费av毛片| 亚洲色图 男人天堂 中文字幕| 亚洲第一青青草原| 妹子高潮喷水视频| 天堂8中文在线网| 国产欧美日韩一区二区精品| 日本精品一区二区三区蜜桃| 丰满饥渴人妻一区二区三| 亚洲情色 制服丝袜| 免费看十八禁软件| 一进一出好大好爽视频| 亚洲三区欧美一区| 国产在线精品亚洲第一网站| 日韩大码丰满熟妇| 精品人妻熟女毛片av久久网站| 亚洲中文字幕日韩| 国产高清国产精品国产三级| av超薄肉色丝袜交足视频| 久久av网站| 亚洲三区欧美一区| 亚洲欧美日韩高清在线视频 | 国产成人精品无人区| 丁香六月天网| 精品国产国语对白av| 亚洲精品乱久久久久久| 日本av免费视频播放| 麻豆av在线久日| 亚洲国产毛片av蜜桃av| 久久精品熟女亚洲av麻豆精品| av线在线观看网站| 国产成人系列免费观看| 亚洲精品在线美女| av免费在线观看网站| 久热爱精品视频在线9| 亚洲精品国产区一区二| 日日摸夜夜添夜夜添小说| 久久人妻av系列| 国产精品久久电影中文字幕 | 国产在线一区二区三区精| 久久精品国产亚洲av高清一级| 中文字幕制服av| 国产精品1区2区在线观看. | 老汉色av国产亚洲站长工具| 精品人妻在线不人妻| 女人高潮潮喷娇喘18禁视频| 超碰97精品在线观看| 日本撒尿小便嘘嘘汇集6| 岛国毛片在线播放| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 亚洲,欧美精品.| tube8黄色片| 久久 成人 亚洲| 亚洲国产欧美一区二区综合| 99国产精品免费福利视频| 久久久久久人人人人人| 又紧又爽又黄一区二区| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人一区二区三| 日日摸夜夜添夜夜添小说| 91精品国产国语对白视频| 久久久久久久久免费视频了| 中文字幕最新亚洲高清| 久久ye,这里只有精品| 老司机午夜福利在线观看视频 | 国产激情久久老熟女| 可以免费在线观看a视频的电影网站| 国产精品成人在线| 国产淫语在线视频| 欧美+亚洲+日韩+国产| 久久久久久免费高清国产稀缺| 一区二区三区激情视频| 黄网站色视频无遮挡免费观看| 9热在线视频观看99| 亚洲国产欧美网| 久久影院123| 精品久久蜜臀av无| 久久精品亚洲av国产电影网| 美女高潮到喷水免费观看| 亚洲精品久久成人aⅴ小说| av线在线观看网站| 亚洲欧美日韩另类电影网站| 精品国产国语对白av| 91老司机精品| 亚洲国产欧美网| 国产精品久久久久久精品电影小说| 人人澡人人妻人| 国产片内射在线| 久久久国产一区二区| av天堂久久9| 99热国产这里只有精品6| 美女主播在线视频| 一区在线观看完整版| 国产色视频综合| 91国产中文字幕| 久久人妻福利社区极品人妻图片| 1024香蕉在线观看| 亚洲国产毛片av蜜桃av| 欧美av亚洲av综合av国产av| 搡老岳熟女国产| 免费黄频网站在线观看国产| 在线观看一区二区三区激情| 日韩成人在线观看一区二区三区| 精品亚洲成a人片在线观看| 国产成人系列免费观看| 欧美精品亚洲一区二区| 欧美人与性动交α欧美精品济南到| 黄色视频,在线免费观看| 国产免费av片在线观看野外av| 免费少妇av软件| 欧美在线黄色| 搡老岳熟女国产| 精品亚洲乱码少妇综合久久| av天堂在线播放| 天天影视国产精品| 日韩 欧美 亚洲 中文字幕| 一区福利在线观看| 国产欧美日韩一区二区三| 国产不卡av网站在线观看| 日韩欧美一区视频在线观看| 午夜福利一区二区在线看| 久久天堂一区二区三区四区| 亚洲久久久国产精品| 19禁男女啪啪无遮挡网站| 免费高清在线观看日韩| 日韩欧美国产一区二区入口| 久久久久久人人人人人| 国产野战对白在线观看| 黄色 视频免费看| 亚洲午夜理论影院| 婷婷成人精品国产| 美女高潮喷水抽搐中文字幕| 欧美精品人与动牲交sv欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩一区二区三区精品不卡| 一本久久精品| 亚洲av成人不卡在线观看播放网| 99国产精品免费福利视频| 十八禁网站网址无遮挡| 国产福利在线免费观看视频| 亚洲免费av在线视频| 色尼玛亚洲综合影院| 在线观看免费高清a一片| 亚洲色图综合在线观看| 欧美黄色淫秽网站| 黄色片一级片一级黄色片| 啦啦啦中文免费视频观看日本| 亚洲欧美激情在线| 亚洲成人免费av在线播放| www.999成人在线观看| 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 久久热在线av| 黄色成人免费大全| 午夜福利欧美成人| 在线看a的网站| 国产成人一区二区三区免费视频网站| 久久人妻av系列| 亚洲成人免费电影在线观看| 精品视频人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| 中文欧美无线码| 老鸭窝网址在线观看| 狠狠精品人妻久久久久久综合| 9色porny在线观看| 日本一区二区免费在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久精品人妻al黑| 国产日韩欧美亚洲二区| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区久久| 一二三四在线观看免费中文在| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产a三级三级三级| 啦啦啦免费观看视频1| 日韩欧美一区二区三区在线观看 | 欧美一级毛片孕妇| 成人18禁高潮啪啪吃奶动态图| 精品高清国产在线一区| 手机成人av网站| 动漫黄色视频在线观看| 亚洲少妇的诱惑av| 在线永久观看黄色视频| 国产精品国产av在线观看| 亚洲国产欧美日韩在线播放| 窝窝影院91人妻| 国产精品一区二区免费欧美| 两个人看的免费小视频| 精品一区二区三区四区五区乱码| 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区91| 亚洲精品粉嫩美女一区| 精品国产一区二区三区四区第35| 国产亚洲一区二区精品| 亚洲专区国产一区二区| 一边摸一边抽搐一进一出视频| 老司机深夜福利视频在线观看| 午夜福利视频精品| 久久 成人 亚洲| 王馨瑶露胸无遮挡在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美性长视频在线观看| 熟女少妇亚洲综合色aaa.| 男女边摸边吃奶| 18在线观看网站| 成年人黄色毛片网站| 嫁个100分男人电影在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品.久久久| 久久久久精品人妻al黑| 黑丝袜美女国产一区| 亚洲av欧美aⅴ国产| 三级毛片av免费| 美女扒开内裤让男人捅视频| 久久国产精品人妻蜜桃| 久久精品国产综合久久久| 欧美日韩精品网址| 又紧又爽又黄一区二区| 99久久99久久久精品蜜桃| 亚洲精品久久午夜乱码| 高潮久久久久久久久久久不卡| 正在播放国产对白刺激| 青青草视频在线视频观看| 精品国产国语对白av| 国产在视频线精品| 国产免费视频播放在线视频| 美国免费a级毛片| 麻豆乱淫一区二区| 在线观看人妻少妇| 亚洲第一青青草原| 国产成人精品无人区| 最近最新中文字幕大全免费视频| 亚洲精品国产区一区二| 一区福利在线观看| 美女高潮喷水抽搐中文字幕| 一级a爱视频在线免费观看| 欧美日韩亚洲高清精品| 国产一区有黄有色的免费视频| 十八禁网站免费在线| 一级片免费观看大全| 午夜老司机福利片| 中文字幕色久视频| 精品第一国产精品| 亚洲人成77777在线视频| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 久久国产亚洲av麻豆专区| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 久久久欧美国产精品| 欧美精品一区二区大全| av片东京热男人的天堂| 日本av手机在线免费观看| 免费日韩欧美在线观看| 男人舔女人的私密视频| av在线播放免费不卡| 热re99久久精品国产66热6| 午夜福利欧美成人| 12—13女人毛片做爰片一| 美女午夜性视频免费| 午夜精品国产一区二区电影| 国产成+人综合+亚洲专区| 国产老妇伦熟女老妇高清| 一本久久精品| 国产精品国产高清国产av | 国产精品偷伦视频观看了| 国产麻豆69| 中文字幕最新亚洲高清| 99国产精品一区二区三区| 国产日韩欧美视频二区| 欧美在线黄色| 亚洲九九香蕉| 国产97色在线日韩免费| 伦理电影免费视频| 精品少妇内射三级| 国产高清视频在线播放一区| 自线自在国产av| 国产精品久久久av美女十八| 国产精品一区二区在线观看99| 一级片免费观看大全| 亚洲九九香蕉| 黄片小视频在线播放| 国产一卡二卡三卡精品| 老汉色av国产亚洲站长工具| 老司机影院毛片| 俄罗斯特黄特色一大片| 又大又爽又粗| 国产成人影院久久av| 免费久久久久久久精品成人欧美视频| 国产高清国产精品国产三级| 青青草视频在线视频观看| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 动漫黄色视频在线观看| 精品亚洲乱码少妇综合久久| 99精品欧美一区二区三区四区| 精品国产一区二区三区久久久樱花| 国产亚洲欧美在线一区二区| 青草久久国产| 热99re8久久精品国产| 国产97色在线日韩免费| 9色porny在线观看| 黄片播放在线免费| 久久精品国产综合久久久| 蜜桃国产av成人99| 好男人电影高清在线观看| 国产无遮挡羞羞视频在线观看| 国产精品免费视频内射| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 18禁裸乳无遮挡动漫免费视频| 久久精品国产综合久久久| 亚洲伊人色综图| 国产在线免费精品| 91国产中文字幕| 最新美女视频免费是黄的| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 久久精品国产综合久久久| 色综合婷婷激情| 91九色精品人成在线观看| 777久久人妻少妇嫩草av网站| 18禁观看日本| 99久久人妻综合| 深夜精品福利| a在线观看视频网站| 高清av免费在线| 国产老妇伦熟女老妇高清| 乱人伦中国视频| 亚洲精品一二三| www.999成人在线观看| 麻豆国产av国片精品| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 午夜激情久久久久久久| 精品第一国产精品| 精品一区二区三区av网在线观看 | 久久精品亚洲av国产电影网| 母亲3免费完整高清在线观看| 中文字幕人妻熟女乱码| 黄片大片在线免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产单亲对白刺激| 热re99久久国产66热| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码| 一区二区av电影网| 精品久久久精品久久久| 12—13女人毛片做爰片一| 欧美变态另类bdsm刘玥| 黄频高清免费视频| 国产成人欧美在线观看 | 国产福利在线免费观看视频| 俄罗斯特黄特色一大片| 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 两个人看的免费小视频| 中文字幕av电影在线播放| 久久久久久免费高清国产稀缺| 日韩制服丝袜自拍偷拍| 久久av网站| 久久免费观看电影| 亚洲免费av在线视频| 日日爽夜夜爽网站| 大型黄色视频在线免费观看| 91麻豆精品激情在线观看国产 | 国产免费现黄频在线看| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 欧美精品啪啪一区二区三区| 亚洲 国产 在线| 欧美黑人欧美精品刺激| 一级,二级,三级黄色视频| 亚洲国产av影院在线观看| 女性被躁到高潮视频| 两个人免费观看高清视频| 久久午夜亚洲精品久久| 青青草视频在线视频观看| 麻豆乱淫一区二区| 精品视频人人做人人爽| 国产福利在线免费观看视频| 在线av久久热| 侵犯人妻中文字幕一二三四区| 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 精品国产乱码久久久久久小说| 久久影院123| 又紧又爽又黄一区二区| 女人高潮潮喷娇喘18禁视频| 一夜夜www| 欧美国产精品va在线观看不卡| av免费在线观看网站| av在线播放免费不卡| 狠狠婷婷综合久久久久久88av| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| videosex国产| 两人在一起打扑克的视频| 国产精品国产高清国产av | 亚洲中文字幕日韩| 国产在线免费精品| 国产精品 欧美亚洲| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 久久久久国内视频| 午夜免费鲁丝| 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 国产精品国产高清国产av | 国产又色又爽无遮挡免费看| 亚洲七黄色美女视频| 肉色欧美久久久久久久蜜桃| 国产激情久久老熟女| 老熟女久久久| av网站免费在线观看视频| 一区二区三区国产精品乱码| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 超碰成人久久| 日本黄色日本黄色录像| 一区在线观看完整版| 中文字幕高清在线视频| 午夜福利,免费看| 精品久久久久久电影网| 欧美成人午夜精品| 在线天堂中文资源库| 大码成人一级视频| 国产精品亚洲一级av第二区| 成年人免费黄色播放视频| 欧美中文综合在线视频| 飞空精品影院首页| 亚洲人成电影观看| 女同久久另类99精品国产91| 精品熟女少妇八av免费久了| 国产在线一区二区三区精| 一进一出抽搐动态| 少妇精品久久久久久久| 久久久久视频综合| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 亚洲成人国产一区在线观看| 久久国产亚洲av麻豆专区| 日韩三级视频一区二区三区| 成人永久免费在线观看视频 | 久久久精品94久久精品| 一二三四社区在线视频社区8| 我的亚洲天堂| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 男女免费视频国产| 女同久久另类99精品国产91| 一区二区三区精品91| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说 | 99国产极品粉嫩在线观看| 日本wwww免费看| 少妇精品久久久久久久| av又黄又爽大尺度在线免费看| 考比视频在线观看| 搡老乐熟女国产| av有码第一页| 午夜福利视频精品| 男女下面插进去视频免费观看| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 欧美成人午夜精品| 人人妻人人澡人人看| 老司机靠b影院| 午夜精品久久久久久毛片777| videos熟女内射| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 国产av又大| www日本在线高清视频| 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 亚洲国产av新网站| 在线观看免费视频网站a站| 欧美日韩亚洲国产一区二区在线观看 | 一进一出抽搐动态| 精品国产一区二区三区四区第35| 欧美久久黑人一区二区| 极品教师在线免费播放| 亚洲欧美日韩另类电影网站| 99久久国产精品久久久| 丝袜喷水一区| 国产男女内射视频| 日本黄色日本黄色录像| 色视频在线一区二区三区| 叶爱在线成人免费视频播放| 日韩免费高清中文字幕av| 性色av乱码一区二区三区2| 亚洲三区欧美一区| 免费观看a级毛片全部| 亚洲国产毛片av蜜桃av| 欧美另类亚洲清纯唯美| 老汉色av国产亚洲站长工具| 天堂8中文在线网| 亚洲九九香蕉| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 美女国产高潮福利片在线看| 69av精品久久久久久 | 精品国产乱码久久久久久小说| 亚洲全国av大片| 国产男女内射视频| 国产在线免费精品| 黄片播放在线免费| 国产亚洲精品久久久久5区| 午夜两性在线视频| 亚洲天堂av无毛| 国产在线一区二区三区精| 久久久精品94久久精品| 国产成人系列免费观看| 成人影院久久| 久热这里只有精品99| 国产精品 欧美亚洲| 性高湖久久久久久久久免费观看| 正在播放国产对白刺激| 大陆偷拍与自拍| 欧美成人午夜精品| 欧美日韩视频精品一区| tube8黄色片| 淫妇啪啪啪对白视频| 女人久久www免费人成看片| 国产亚洲精品一区二区www | 国产av精品麻豆| 亚洲欧美激情在线| 人成视频在线观看免费观看| 999精品在线视频| 色综合欧美亚洲国产小说| 在线永久观看黄色视频| 99九九在线精品视频| 亚洲人成电影观看| 老熟妇仑乱视频hdxx| 久久久久久亚洲精品国产蜜桃av| 国产xxxxx性猛交| 看免费av毛片| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 操美女的视频在线观看| kizo精华| 正在播放国产对白刺激| 国产不卡av网站在线观看| 国产精品电影一区二区三区 | 国产免费福利视频在线观看| 国产亚洲一区二区精品| 视频区图区小说| 国产成+人综合+亚洲专区| 一区二区三区精品91| 欧美精品高潮呻吟av久久| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区黑人| 成人av一区二区三区在线看| 国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 成人精品一区二区免费| 丝袜人妻中文字幕| 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| 大陆偷拍与自拍| 国产精品久久久久久精品电影小说| bbb黄色大片| 亚洲精品一二三| 一级毛片女人18水好多| cao死你这个sao货| 欧美+亚洲+日韩+国产| 精品欧美一区二区三区在线| 国产精品九九99| 国产视频一区二区在线看| 69精品国产乱码久久久| 久久精品国产亚洲av香蕉五月 |