• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative genetic studies with applications in plant breeding in the omics era

    2020-12-20 16:55:22JinkngWngJosCrossJunyiGi
    The Crop Journal 2020年5期

    Jinkng Wng, José Cross, Junyi Gi

    aInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    bInternational Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El Batan, Texcoco, Mexico

    cSoybean Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China

    Quantitative genetics is concerned with the inheritance of biological traits showing continuous(or quantitative)phenotypic variation.Quantitative traits are common and have been extensively investigated and studied in evolutionary and genetic studies and in plant and animal breeding.Quantitative traits are normally controlled by multiple genes with various kinds of genetic effect,and their phenotypes are readily modified by environmental variation.Based on the multifactorial hypothesis of quantitative traits,classical theories of quantitative genetics(also referred to as statistical genetics in early years)were well established by the 1940s,owing mainly to the contributions of R.A.Fisher,J.B.S.Haldane,and S.Wright.Thanks to the publication of monographs by Mather[1],Kempthorne[2],and Falconer[3],quantitative genetics has spread widely in western countries since 1950 and contributed immensely to the improvement of plants and animals in the 20th century.In China,quantitative genetics started to be taught at agricultural colleges and universities as a postgraduate academic course from the late 1970s to early 1980s,thanks in part to the publication of textbooks by Wu[4],Ma[5],and Liu et al.[6].

    Rapid progress in molecular biology and genomics has made fundamental impacts in theoretical and applied studies of quantitative genetics since the landmark paper of Lander and Botstein[7].In the era of omics,availability of fine-scale genetic linkage maps and easily-accessed genotyping technologies has led to progress in quantitative genetics theory,together with the intensive use of quantitative trait locus(QTL)mapping and map-based cloning in the genetic study of quantitative traits in plants,animals,and humans.As a consequence,novel molecular breeding methods have been developed,including marker-assisted selection,designed breeding,and genomic selection.Two recent Chinese textbooks by Kong[8]and Wang[9]covered classical and modern theories and breeding applications from both population and quantitative genetics.Two professional books edited by Gai et al.[10]and Wang et al.[11],describe some of the major achievements in theoretical and applied quantitative genetics research during the past 30 years in China.

    From 8 to 10 May 2000,Prof.Huidong Mo,a famous biometrician and quantitative geneticist in China,organized a meeting on quantitative genetics at Yangzhou University.Two distinguished scientists,Prof.Changxin Wu(China Agricultural University,Academician of Chinese Academy of Sciences)and Prof.Junyi Gai(Nanjing Agricultural University,Academician of Chinese Academy of Engineering)attended the meeting.During the meeting,the two professors and other participants advocated to have the meeting regularly held once every two years,and named the meeting in Yangzhou as the first National Symposium on Quantitative Genetics in Plants and Animals.Two years later as scheduled,Prof.Wu organized the second symposium at Xiangshan Hotel,Beijing in align with the Xiangshan Scientific Series Conferences led by the Chinese Academy of Sciences.Thereafter,the symposium series became an important event in the Chinese scientific community.The eighth symposium(http://qgc2019.isbreeding.net/)was held from 26 to 28 August 2019 in the Friendship Hotel in Beijing.Eighteen presentations were invited on six themes:(1)new and future areas of quantitative genetics;(2)omics-driven quantitative genetics studies;(3)genetic analysis and gene mapping of quantitative traits;(4)whole-genome dissection and prediction of quantitative traits;(5)quantitative genetic theories for molecular breeding;and(6)applications of quantitative genetics. About 120 researchers and graduate students attended the symposium. Distinguished guests professor Huqu Zhai (former president of CAAS), professor Laifu Liu(Beijing Normal University) and professor Chunming Liu(director general of the Institute of Crop Sciences, CAAS)attended the symposium and gave remark speeches during the opening ceremony. In support of the symposium, The Crop Journal arranged a special issue with the title “Quantitative genetics in the omics era”. After peer review, 17 articles were finally selected, including one review article on genomic selection [12], five articles on analytical methods and tools for quantitative traits [13–17], six articles on genetic studies of quantitative traits [18–23], and five articles on applications in breeding for quantitative traits [24–28].

    For future quantitative genetics, we anticipate that populations that can be used to dissect the genetic architecture of quantitative traits will be more diversified; genetic data and gene information will become more abundant and diverse and will come from more sources and levels; functions and genetic networks of more quantitative trait genes will be investigated; demand for genetic studies and breeding applications will be more specialized and become ever stronger.Bearing in mind these trends, and also based on the articles collected in this issue, we outline below a few research areas that may be potential in theoretical and applied quantitative genetics studies in the near future.

    1.From bi-parental to multi-parental populations

    Genetic study is impossible without the use of one or several populations[11].Bi-parental segregating populations are derived from two homozygous parents,such as doubled haploid lines,recombinant inbred lines,backcross,and F2and F3populations,which have been widely used in genetic studies and QTL mapping.The integrated QTL IciMapping software package[29]provides many analysis methods for phenotypic and genotypic data associated with such populations.In bi-parental populations,genetic loci with identical genotypes in the two parents cannot be detected,and the number of recombination events is relatively limited,resulting in a lack of mapping precision.In addition,it is not clear whether an identified QTL has multiple alleles unless it is studied in other independent populations.To save time in population development and identify more alleles at a locus,association mapping(also called genome-wide association study,GWAS)has been employed in natural populations or germplasm panels.GWAS depends on population-wide marker-phenotype associations and historical recombination events,and may suffer from unknown population structure and low linkage disequilibrium.As a result,association mapping in plants has so far failed to identify a single major QTL allele that has been of value in public breeding programs[30].

    Multi-parental populations have been developed and are being used in genetic studies in several species in the past ten years.In these populations,each locus harbors multiple alleles,kinship or genetic relationships in the progenies are well defined,and accordingly population structure can be precisely defined.Greater opportunity of recombination during population development increases mapping accuracy and abundant genetic variation allows the detection of more genes and alleles.Linkage analysis methods,QTL mapping methods and associated software packages have been reported for F1populations from two heterozygous parents and from double(or four-way)crosses among four inbred parental lines[31–33],populations of pure lines derived from a double cross[34,35],and populations of pure lines derived from an eight-way cross among eight inbred parental lines[34,36].In this special issue,there is one paper describing the use of a four-way cross pure-line population for mapping QTL for oil content in soybean[22].We anticipate that multi-parental populations will be increasingly developed and used in genetic studies of quantitative traits in the near future,as analysis methods and tools are developed.When more parents are to be considered in population development,the selection of crossing or mating design becomes an issue worthy of investigation[11,32,35,36].In the meantime,there is a need for QTL-by-environment interaction analysis for multiparental populations.To our knowledge,epistatic mapping methods in multi-parental populations have also not been studied.

    2.From QTL to gene function,gene regulation,and gene network

    As mentioned earlier,molecular biology and genomics together with high-resolution QTL mapping methods have made fundamental impacts in theoretical and applied quantitative genetics studies.Genetic architecture refers to the number and genome locations of genes that affect a trait,the magnitude of their effects,and the relative contributions of additive,dominant,and epistatic gene effects[37].Dissecting the genetic architecture of quantitative traits is a long-term and major task in genetics and quantitative genetics.Three articles in this special issue address theoretical aspects of QTL mapping:ordering of high-density molecular markers in linkage map construction[13],improvement of time efficiency in GWAS using high-density SNP markers[15],and statistical methods suitable for multi-trait GWAS[16].Several articles address the application of QTL mapping for kernel shape and color in durum wheat[18],panicle traits in rice[19],seed flooding tolerance in soybean[20],branch number in soybean[21],seed oil content in soybean[22],yield and plant height in alfalfa[23],and seed glucosinolate content in Brassica napus[27].In the study of Sobhi et al.[21],one major-effect QTL was further localized to a chromosomal region 116 kb in length and a candidate gene in this region was confirmed to control branch number in soybean.Wang et al.[27]identified a sulfotransferase gene that has minor but stable effects on plant height traits in Brassica napus.

    We anticipate that QTL mapping will continue to be a major approach in genetic analysis of biological and economic traits.We also expect that the causal genes and sequence changes of detected QTL will be identified,together with their functions and biochemical pathways from gene to phenotype.While this remains a major challenge and will take sustained effort,it is not impossible.The procedure used to elucidate the signaling pathway of GW5 in regulating grain width and grain weight in rice can serve to demonstrate the tedious effort and long research path from one detected QTL to its function and pathway[38–41].In 2005,a QTL for grain width was reported[38]to show stable genetic effects across a wide range of environments in two mapping populations,one of recombinant inbred lines and the other of chromosome segment substitution lines.In 2008,the QTL was fine-mapped in a recombination hotspot region on rice chromosome 5[39],and was further isolated and characterized as a major QTL for grain width and grain weight[40].Weng et al.[40]reported that a 1212-bp deletion was associated with increased grain width in the japonica parent Asominori,in comparison with the slender grain in the indica parent IR 24.In 2017,the GW5 allele at the locus was reported[41]to act in the brassinosteroid signaling pathway and finally regulate grain width and grain weight in rice.

    In the above example,it took 12 years from preliminary QTL mapping to full understanding of how the QTL or gene contributes to the final grain width and grain weight phenotype in rice.This time would be much longer if population development for the initial QTL mapping were counted.Nonetheless,we anticipate that,in the near future,more and more quantitative trait genes will be fine-mapped,isolated,cloned,and functionally analyzed.This information not only strengthens our understanding of the genetics of quantitative traits,but also helps to apply new biotechnological approaches,such as genome editing and molecular design,in targeted improvement of quantitative traits.In addition,minor-effect QTL or genes have been occasionally reported[27,42].They can be repeatedly detected across environments and populations when a lower inclusion threshold is used,and their genetic effects on phenotypic traits are estimated toward the same direction[42].These minor but stable QTL or genes should also be further investigated.

    3.Increase of prediction accuracy in genomic selection

    The concept of genomic selection(GS)was proposed by Meuwissen et al.[43]in 2001,aiming to use genome-wide,densely distributed DNA markers to increase the efficiency of improving quantitative traits.Reduction in breeding cost per cycle and increase in time efficiency are two major advantages of GS over phenotype-based selection.GS has been applied in two different cases.In the first case,we are interested in the prediction of additive(breeding)values rather than total genetic value,and here additive linear models that summarize the effects of markers are sufficient.In the second case,we are interested in predicting complete genetic values of individuals by considering both additive and non-additive(dominance and epistasis)effects,thereby estimating the performance(commercial value)of the cultivars.There is one review article and one methodology article on GS in this special issue[12,14].Considering the complicated and varied genetic architectures of different quantitative traits,we conclude that new approaches and algorithms are still needed to further increase GS prediction accuracy by considering more genetic and environmental factors.

    GS employs genome-wide markers and phenotypic information from one or several observed and genotyped populations to establish an association between genotype and phenotype and then to predict phenotypic values in tested and/or breeding populations that have been only genotyped with genome-wide markers.Over the last decade,many prediction models have been proposed,differing from one another in assumptions in estimating breeding values and in computational complexity.Genetic values of breeding lines can be predicted for some environments using an incomplete multi-environment testing scheme.Complexity arises in predicting the values of unobserved lines in specific environments using estimates of genotype by environment(GE)interaction.Also important is the high genomic complexity of GE interactions for multiple traits,requiring the use of statistical genetic models that exploit genetic correlations among environments,traits,and traits and environments simultaneously[44,45].In addition,the volume and complexity of GS data demand more interdisciplinary research in computer science,machine learning,mathematics,physics,statistics,genetics and quantitative genetics,and bioinformatics.Deep learning algorithms are powerful for modeling nonlinear patterns and can be incorporated into GS for integrating data from different sources and increasing prediction accuracy.

    4.Applications of genomic selection in conventional breeding programs

    The concept of GS has been proposed for 20 years,during which prediction models have been developed and implemented in various programming languages and platforms.In the meantime,some private companies have adopted GS in their breeding programs,especially for economically important large animals.However,the application of GS in plant breeding lags behind.The major factors may be the differences between animals and plants:generation length,population size,selection intensity,and breeding objectives.But one major reason may be the genotyping cost.Every individual in a newly developed breeding population has to be genotyped with high-density markers for the prediction of its breeding value.Populations in animal breeding normally consist of hundreds or thousands of progeny,sizes much smaller than those of most plant breeding populations.Taking wheat as an example,every season a breeder makes tens or hundreds of single crosses,grows out the F1hybrids made in the previous season,grows out the F2populations(each of 1000–3000 plants)derived from the F1bulk in the previous season,and so on.Thus,one wheat breeder grows millions of segregating and heterozygous individuals and thousands of advanced lines in just one season.Some breeding programs may have two or more seasons in one calendar year.Even though genotyping costs per sample are becoming ever cheaper,the total cost of genotyping all individual plants and the cost relative to the value of the individual(think of a milk cow compared to a wheat plant)are still too expensive for most plant breeding programs.

    Fortunately,the collection of parents used in plant breeding is rather limited,normally numbering in the tens or hundreds every season.It can be acceptable for plant breeders to genotype all parents that will be used to make crosses for a new breeding cycle.Phenotypic data for these parental lines are already available from previous breeding cycles.Guo et al.[46]investigated the accuracy of several models in predicting the performance of F1hybrids between recombinant inbred lines derived from the cross of two elite maize inbred lines.Through GS prediction,the authors identified untested F1hybrids predicted to have higher grain yield than the original commercial F1hybrid.Yao et al.[47]evaluated the prediction power of several GS models in wheat breeding using a set of parents as the training population.By predicting the performance of all possible crosses,they identified and recommended to breeders the optimum crosses for the simultaneous improvement of grain quality and yield.Three articles describing GS applications in plant breeding are included in this special issue.The first focuses on the prediction of general combining ability of maize inbred lines using a sparse diallel cross design[24],the second focuses on the prediction of untested F1maize hybrids from a limited number of tested hybrids between two heterotic groups[25],and the third focuses on the family information of highly structured populations without pedigree data[26].Ali et al.[48]used a wheat population to investigate the prediction accuracies of various GS models for yield and yieldrelated traits in various quality control scenarios,with missing-genotype imputation,and with GWAS-derived markers.These studies suggest future directions in applying GS in plant breeding.

    5.Simulation,prediction and decision-support tools in genetics and breeding

    Many QTL and genes for quantitative traits have been reported for various traits in plants and animals.The challenge remains for breeders to determine how best to use this abundance of information[6].Simulation approaches could consider more practical genetic models incorporating multiple alleles,pleiotropy,epistasis,and gene-byenvironment interaction which have been learned from genetic studies,and therefore compare and optimize the selection method under more realistic scenarios[11,28,49].Several articles describing tools are included in this special issue:for linkage analysis and genetic map construction[13],for genome-wide association study[15,16],and for phenotypic data analysis[17].

    In the omics ear together with the coming of big data times,we anticipate that simulation,prediction and decisionsupport tools are in high demand in genetics and breeding.In one paper reporting a breeding simulation tool,the authors describe its use to compare GS with conventional selection in the presence of epistasis[28].Such tools will be highly helpful for breeders wishing to compare breeding efficiencies among selection strategies,to predict cross performance using known gene information,and to investigate the efficient use of identified QTL and GS in conventional breeding[49].Such tools can help breeders to investigate many what-if crossing and selection scenarios and allow them to be rapidly tested and compared in silico before resource-intensive field experiments are conducted.

    Acknowledgments

    The authors appreciate the financial support from the National Natural Science Foundation of China(31861143003),the Agricultural Science and Technology Innovation Program of CAAS,and the CAAS Talent Program.The authors also wish to extend their sincere thanks to all contributors to the eighth symposium and the special issue.

    人成视频在线观看免费观看| 成人18禁在线播放| 久久人妻av系列| 国产成+人综合+亚洲专区| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 欧美性猛交╳xxx乱大交人| 久久九九热精品免费| 制服丝袜大香蕉在线| 欧美成人一区二区免费高清观看 | 母亲3免费完整高清在线观看| 两人在一起打扑克的视频| 中文字幕久久专区| 午夜视频精品福利| 黄色视频不卡| 一进一出抽搐动态| 免费在线观看日本一区| 日本熟妇午夜| 最好的美女福利视频网| 亚洲无线在线观看| 国产亚洲欧美98| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 亚洲真实伦在线观看| 国产亚洲欧美在线一区二区| 国产成人一区二区三区免费视频网站| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 国产精品爽爽va在线观看网站 | 久热爱精品视频在线9| 精华霜和精华液先用哪个| 国产精品av久久久久免费| 国产极品粉嫩免费观看在线| 看黄色毛片网站| 国产高清视频在线播放一区| 女性生殖器流出的白浆| xxxwww97欧美| 久久精品亚洲精品国产色婷小说| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 看黄色毛片网站| 久久欧美精品欧美久久欧美| 久久久国产精品麻豆| 18禁黄网站禁片午夜丰满| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 亚洲色图 男人天堂 中文字幕| 黑人欧美特级aaaaaa片| 国产午夜福利久久久久久| 国产成年人精品一区二区| 99riav亚洲国产免费| 中文字幕最新亚洲高清| 精品不卡国产一区二区三区| 宅男免费午夜| 午夜免费激情av| 人人澡人人妻人| 老司机靠b影院| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 亚洲国产精品sss在线观看| 免费观看人在逋| 性欧美人与动物交配| 中文字幕精品免费在线观看视频| 啦啦啦免费观看视频1| 亚洲一码二码三码区别大吗| 天堂影院成人在线观看| 老司机靠b影院| 女性生殖器流出的白浆| 夜夜夜夜夜久久久久| 中文资源天堂在线| 国产高清激情床上av| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 亚洲中文字幕日韩| 久久久国产精品麻豆| e午夜精品久久久久久久| 国产免费男女视频| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 国产精品永久免费网站| 少妇熟女aⅴ在线视频| 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 国产精品九九99| 三级毛片av免费| 亚洲av成人一区二区三| 日韩成人在线观看一区二区三区| 俺也久久电影网| 最近最新中文字幕大全电影3 | 亚洲国产精品成人综合色| 亚洲男人的天堂狠狠| 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 色播在线永久视频| 婷婷六月久久综合丁香| 国产精华一区二区三区| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 欧美激情极品国产一区二区三区| 欧美中文日本在线观看视频| 亚洲色图av天堂| 宅男免费午夜| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 欧美黑人精品巨大| 久久久国产成人免费| 一级毛片精品| 日韩 欧美 亚洲 中文字幕| 午夜福利在线观看吧| 两个人看的免费小视频| 国产精品久久久久久亚洲av鲁大| 欧美成人性av电影在线观看| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 大型av网站在线播放| 国产又黄又爽又无遮挡在线| 97碰自拍视频| 麻豆av在线久日| 精品国内亚洲2022精品成人| 美女大奶头视频| 精品久久久久久久末码| 中文字幕av电影在线播放| 国产三级在线视频| 免费看十八禁软件| 在线观看舔阴道视频| 国产不卡一卡二| 俺也久久电影网| 国产激情偷乱视频一区二区| 啦啦啦免费观看视频1| 国产成人影院久久av| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 国产精华一区二区三区| 中文字幕精品免费在线观看视频| 88av欧美| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 免费在线观看完整版高清| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区| 国产精品九九99| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 性色av乱码一区二区三区2| 色尼玛亚洲综合影院| 亚洲国产欧美日韩在线播放| а√天堂www在线а√下载| 伦理电影免费视频| 成人国产一区最新在线观看| 18美女黄网站色大片免费观看| 国产99久久九九免费精品| 波多野结衣av一区二区av| 一级片免费观看大全| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡免费网站照片 | 亚洲成av片中文字幕在线观看| 女警被强在线播放| 国产黄片美女视频| 在线天堂中文资源库| 少妇的丰满在线观看| 在线观看66精品国产| 亚洲精品美女久久av网站| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 亚洲av熟女| 男女那种视频在线观看| 丁香欧美五月| 女警被强在线播放| 熟女电影av网| 精品免费久久久久久久清纯| 中文字幕av电影在线播放| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 又黄又粗又硬又大视频| 国产一区二区在线av高清观看| 在线av久久热| 日韩欧美 国产精品| av在线天堂中文字幕| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 一级毛片高清免费大全| 1024香蕉在线观看| 亚洲第一欧美日韩一区二区三区| 欧美三级亚洲精品| 久久人妻福利社区极品人妻图片| 观看免费一级毛片| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频 | av在线天堂中文字幕| 91麻豆av在线| 亚洲成av人片免费观看| 免费看十八禁软件| 国产成人啪精品午夜网站| 一本大道久久a久久精品| 动漫黄色视频在线观看| 男女下面进入的视频免费午夜 | 1024手机看黄色片| 国产久久久一区二区三区| 少妇熟女aⅴ在线视频| 99国产极品粉嫩在线观看| 亚洲精品国产精品久久久不卡| 日韩高清综合在线| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 亚洲自拍偷在线| 51午夜福利影视在线观看| 91老司机精品| 久久99热这里只有精品18| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 久久久久久大精品| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 最新在线观看一区二区三区| 亚洲 国产 在线| 亚洲精品久久国产高清桃花| 熟妇人妻久久中文字幕3abv| 亚洲av日韩精品久久久久久密| 免费看日本二区| 国产99白浆流出| 人成视频在线观看免费观看| 中文字幕精品免费在线观看视频| 久久久精品欧美日韩精品| 观看免费一级毛片| 少妇被粗大的猛进出69影院| 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 禁无遮挡网站| 亚洲五月色婷婷综合| 国内毛片毛片毛片毛片毛片| 亚洲av中文字字幕乱码综合 | 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 神马国产精品三级电影在线观看 | 精品一区二区三区av网在线观看| 天天躁狠狠躁夜夜躁狠狠躁| tocl精华| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片 | 免费高清在线观看日韩| 中文在线观看免费www的网站 | 啪啪无遮挡十八禁网站| 一本综合久久免费| 天天添夜夜摸| 成人一区二区视频在线观看| 亚洲第一青青草原| svipshipincom国产片| 午夜影院日韩av| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 久久 成人 亚洲| 欧美午夜高清在线| 日本在线视频免费播放| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 精品福利观看| 最近最新中文字幕大全免费视频| 久久久久免费精品人妻一区二区 | 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 日韩中文字幕欧美一区二区| 免费搜索国产男女视频| 无限看片的www在线观看| 亚洲熟妇熟女久久| 50天的宝宝边吃奶边哭怎么回事| 88av欧美| 亚洲在线自拍视频| 岛国视频午夜一区免费看| 日本三级黄在线观看| 波多野结衣av一区二区av| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 国产亚洲av高清不卡| 欧美zozozo另类| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 日韩欧美一区二区三区在线观看| 欧美中文综合在线视频| 一a级毛片在线观看| 欧美丝袜亚洲另类 | www日本黄色视频网| 午夜激情福利司机影院| 亚洲精品中文字幕在线视频| 男人的好看免费观看在线视频 | 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 亚洲国产欧美日韩在线播放| 一级作爱视频免费观看| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 99国产精品99久久久久| 精品久久久久久久毛片微露脸| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美精品永久| 99re在线观看精品视频| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月色婷婷综合| 超碰成人久久| 草草在线视频免费看| 两个人视频免费观看高清| 法律面前人人平等表现在哪些方面| 妹子高潮喷水视频| 亚洲无线在线观看| 国产激情久久老熟女| 999精品在线视频| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 男人的好看免费观看在线视频 | 看免费av毛片| 欧美av亚洲av综合av国产av| tocl精华| 天天一区二区日本电影三级| 亚洲成av片中文字幕在线观看| 欧美中文日本在线观看视频| 亚洲熟女毛片儿| 国产精品九九99| 欧美色欧美亚洲另类二区| 女性被躁到高潮视频| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 国产午夜福利久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 村上凉子中文字幕在线| 香蕉丝袜av| 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩有码中文字幕| 久久久久国产精品人妻aⅴ院| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 亚洲精品国产一区二区精华液| 免费在线观看影片大全网站| 一夜夜www| 久久 成人 亚洲| 他把我摸到了高潮在线观看| aaaaa片日本免费| 亚洲电影在线观看av| 国产精品自产拍在线观看55亚洲| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 久99久视频精品免费| 九色国产91popny在线| 国产成人系列免费观看| 99在线视频只有这里精品首页| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 美女扒开内裤让男人捅视频| 999久久久国产精品视频| 日本 欧美在线| 精品卡一卡二卡四卡免费| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 国产高清有码在线观看视频 | 欧美日韩精品网址| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 精品无人区乱码1区二区| 91成人精品电影| 久久久久久亚洲精品国产蜜桃av| 午夜福利欧美成人| 亚洲欧洲精品一区二区精品久久久| 亚洲激情在线av| 人人澡人人妻人| 国产一区二区在线av高清观看| 看黄色毛片网站| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 最近最新免费中文字幕在线| 亚洲一区二区三区色噜噜| 亚洲成人久久爱视频| 成人国产一区最新在线观看| www国产在线视频色| 美女大奶头视频| www.精华液| 国产91精品成人一区二区三区| 精品一区二区三区av网在线观看| 亚洲无线在线观看| 亚洲最大成人中文| 午夜福利在线观看吧| 999久久久精品免费观看国产| 亚洲一区二区三区色噜噜| 日本免费a在线| 一级毛片精品| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 精品不卡国产一区二区三区| 99riav亚洲国产免费| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 国产黄片美女视频| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看 | 色av中文字幕| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| av免费在线观看网站| 亚洲五月婷婷丁香| 久久欧美精品欧美久久欧美| 老司机福利观看| 草草在线视频免费看| 黄片播放在线免费| 天天添夜夜摸| 国产精品99久久99久久久不卡| 两性夫妻黄色片| 此物有八面人人有两片| 国产亚洲欧美精品永久| 88av欧美| 久久久久免费精品人妻一区二区 | 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 精品不卡国产一区二区三区| 日本一区二区免费在线视频| 啦啦啦免费观看视频1| 亚洲天堂国产精品一区在线| 欧美日韩中文字幕国产精品一区二区三区| 日韩国内少妇激情av| 18美女黄网站色大片免费观看| 黄色 视频免费看| 非洲黑人性xxxx精品又粗又长| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 88av欧美| 一本综合久久免费| 这个男人来自地球电影免费观看| 日韩免费av在线播放| 成人国语在线视频| 宅男免费午夜| 亚洲av片天天在线观看| 国产精品久久久久久人妻精品电影| 动漫黄色视频在线观看| av片东京热男人的天堂| 丰满的人妻完整版| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 国产精品一区二区精品视频观看| 亚洲人成电影免费在线| 中文字幕人成人乱码亚洲影| 国产成人av激情在线播放| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜看夜夜爽夜夜摸| 国产主播在线观看一区二区| 首页视频小说图片口味搜索| 男人舔奶头视频| 首页视频小说图片口味搜索| 国产在线观看jvid| 色综合欧美亚洲国产小说| 午夜视频精品福利| 久久这里只有精品19| 最好的美女福利视频网| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 在线观看免费午夜福利视频| 丝袜在线中文字幕| bbb黄色大片| 国产野战对白在线观看| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 欧美国产日韩亚洲一区| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| av在线播放免费不卡| 婷婷丁香在线五月| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 老司机靠b影院| 欧美日韩福利视频一区二区| 亚洲成人久久性| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | netflix在线观看网站| 精品久久久久久久毛片微露脸| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 超碰成人久久| cao死你这个sao货| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 亚洲久久久国产精品| 欧美久久黑人一区二区| 久久婷婷人人爽人人干人人爱| 法律面前人人平等表现在哪些方面| 91成人精品电影| 国产精品一区二区三区四区久久 | 国产黄色小视频在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品美女久久av网站| 国产激情偷乱视频一区二区| 日韩视频一区二区在线观看| 国产亚洲精品一区二区www| 免费高清在线观看日韩| 国产成+人综合+亚洲专区| 亚洲av熟女| 一级黄色大片毛片| 成人手机av| 12—13女人毛片做爰片一| 热99re8久久精品国产| 午夜福利18| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 99国产综合亚洲精品| 欧美乱色亚洲激情| 人成视频在线观看免费观看| 一级黄色大片毛片| 久久性视频一级片| 亚洲美女黄片视频| 欧美一级a爱片免费观看看 | 校园春色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 又紧又爽又黄一区二区| 亚洲一区高清亚洲精品| 亚洲国产欧洲综合997久久, | 最近在线观看免费完整版| 久久国产乱子伦精品免费另类| 日韩大尺度精品在线看网址| 99久久无色码亚洲精品果冻| 人人妻,人人澡人人爽秒播| 九色国产91popny在线| 亚洲av第一区精品v没综合| 在线观看www视频免费| 老司机午夜十八禁免费视频| 18禁黄网站禁片免费观看直播| 日韩有码中文字幕| 国内精品久久久久精免费| 国产欧美日韩精品亚洲av| 久久国产精品人妻蜜桃| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 禁无遮挡网站| 午夜福利在线在线| 视频在线观看一区二区三区| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 久久久国产欧美日韩av| 国产高清videossex| 久久香蕉国产精品| 黑人操中国人逼视频| 久久中文字幕人妻熟女| 精品福利观看| 好男人在线观看高清免费视频 | 午夜福利在线观看吧| 欧美一区二区精品小视频在线| 成人国语在线视频| 国产av一区二区精品久久| 91大片在线观看| 美女高潮喷水抽搐中文字幕| 真人做人爱边吃奶动态| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 日韩欧美国产一区二区入口| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出|