郝馨 付紹珠 于博洋 崔曉春 董雙石 周丹丹
摘 要:隨著工業(yè)技術(shù)的快速發(fā)展,工業(yè)廢水產(chǎn)量也與日俱增,其中,焦化廢水排放量大、組成成分復(fù)雜、影響程度深,所引發(fā)的環(huán)境污染尤為突出,一系列排放標(biāo)準(zhǔn)規(guī)定日趨嚴(yán)格,焦化廢水的處理迫在眉睫。為盡快實現(xiàn)企業(yè)廢水“零排放”政策要求,多種新型處理技術(shù)應(yīng)運而生,治理效果和應(yīng)用范圍明顯提高。通過綜述現(xiàn)有焦化廢水處理技術(shù)的特征與局限性,發(fā)現(xiàn)焦化廢水處理方法多集中于生物處理技術(shù)和高級氧化法,而二者現(xiàn)常用技術(shù)在實際運行中仍存在處理效果不佳、運行成本過高等問題與挑戰(zhàn)。但是,生物降解和高級氧化耦合處理技術(shù)前景廣闊,不僅能提高處理效率,還能開拓多維探究領(lǐng)域,大量研究表明其對于難降解污染廢水處理具有較大可行性。展望多工藝聯(lián)用在焦化廢水處理中的實用性,為深化焦化廢水處理研究提供新的思路。
關(guān)鍵詞:焦化廢水;生物處理;高級氧化;新型處理技術(shù);多工藝聯(lián)用
中圖分類號:X703.1 文獻(xiàn)標(biāo)志碼:R 文章編號:2096-6717(2020)06-0153-12
Abstract: With the rapid development of industrial technology in China, the output of industrial wastewater is also increasing day by day, in which coking wastewater discharge is large, composition is complex, influence degree is deep, the environmental pollution caused by it is especially prominent, a series of discharge standards are becoming more and more strict, and the treatment of coking wastewater is imminent. In order to realize the policy requirement of "zero discharge" of enterprise wastewater as soon as possible, various new treatment technologies emerge as the times require, and the treatment effect and application scope are obviously improved. In this paper, the characteristics and limitations of the existing coking wastewater treatment technology are reviewed. At present, the coking wastewater treatment methods are mostly focused on biological treatment technology and advanced oxidation method, but there are still some problems and challenges in the actual operation of the two commonly used technologies, such as poor treatment effect and high operating cost. However, the technology of biodegradation and advanced oxidation coupling treatment has a broad prospect, which not only improves the treatment efficiency, but also opens up the field of multi-dimensional exploration. A large number of studies have shown that it has great feasibility for the treatment of refractory and polluted wastewater.
Keywords:coking wastewater;biological treatment;advanced oxidation;new treatment technology;multi-process combined
1 焦化廢水特征
作為世界上最大的工業(yè)品生產(chǎn)國,中國年工業(yè)廢水排放量高達(dá)186.4億t [1]。在煤化工行業(yè)占國民經(jīng)濟(jì)總量16%的大背景下[2],中國擁有的數(shù)百家焦化廠和煤氣廠排放焦化廢水量達(dá)3億t,約占工業(yè)化學(xué)總需氧量排放的1.6%,是中國工業(yè)廢水污染控制工作的重點與難點[3-4]。焦化廢水是典型的復(fù)雜、難降解、高毒性的有機廢水,其有機化合物種類達(dá)高500余種[5],化學(xué)需氧量(Chemical Oxygen Demand,COD)在4 000 mg/L以上。多數(shù)情況下,經(jīng)生物處理后,焦化廢水中COD和氰化物濃度依舊可達(dá)150~300、5.0~15.0 mg/L[6- 7],嚴(yán)重危害水生態(tài)環(huán)境與人類健康[8]。
1.1 焦化廢水的來源與排放標(biāo)準(zhǔn)
煤炭在能源結(jié)構(gòu)中處于重要位置,占世界一次能源消耗量的25%,被廣泛應(yīng)用于鋼鐵、電力、化工等工業(yè)生產(chǎn)及居民生活領(lǐng)域[9]。煤炭加工主要以煤為原料,經(jīng)氣化、液化、干餾以及焦油加工和電石乙炔化工等化學(xué)加工,將煤轉(zhuǎn)化為氣體、液體和固體燃料以及化學(xué)品。其中,煉焦是最為傳統(tǒng)和廣泛應(yīng)用的工藝,至今仍然是化學(xué)工業(yè)的重要組成部分。焦化廢水是焦化廠在煉焦、煤氣凈化和副產(chǎn)品回收過程中產(chǎn)生的,是一種典型的含有難降解污染物的工業(yè)廢水[10]。焦化廢水含有多種生物抑制性甚至毒性組分,比如酚類、多環(huán)芳烴(Polycyclic Aromatic Hydrocarbons,PAHs)、氰化物、硫化物、環(huán)狀化合物等[11]。
依據(jù)《煉焦化學(xué)工業(yè)污染物排放標(biāo)準(zhǔn)》(GB 16171—2012),自2015年1月1日起,現(xiàn)有普通地區(qū)焦化企業(yè)執(zhí)行表1規(guī)定的污染物排放限值;2015年10月1日后,新建企業(yè)執(zhí)行標(biāo)準(zhǔn)同上。此修改后的標(biāo)準(zhǔn)排放限值與1996年首次發(fā)布的相比更為嚴(yán)苛,焦化廢水的處理方法與排放模式也引起了更多的關(guān)注。
1.2 焦化廢水的水質(zhì)特征
根據(jù)焦化生產(chǎn)工藝不同,焦化廢水可分為洗滌水、蒸氨廢水、精制廢水[12]。其中,蒸氨廢水和精制廢水部分,包含大量的酚類、苯系物、多環(huán)芳烴、氰化物、硫化物、含氧和含硫雜環(huán)化合物以及長鏈烴等多種難降解物質(zhì)[13]。特別是廢水中的氰化物,不僅能引起急性中毒,短時間內(nèi)就會導(dǎo)致水生生物死亡,對微生物也會產(chǎn)生毒性抑制作用[14]。此外,酚類物質(zhì)也屬于典型的生物抑制性污染物[15],其中,鹵代酚是國際上公認(rèn)的優(yōu)先控制類污染物,具有致癌、致畸、致突變的“三致”作用。多環(huán)芳烴等雜環(huán)化合物則容易產(chǎn)生毒性積累,其中苯并(α)芘、苯并(α)蒽具有強致癌性,通過接觸人體皮膚即可導(dǎo)致中毒[10, 16]。焦化廢水中這些毒性強、危害大的有機組分導(dǎo)致焦化廢水處理難度大、效果差,甚至其尾水對環(huán)境仍有潛在危害。圖1為焦化廢水中各種有機組分所占總有機物百分比(BTEXs包括苯、甲苯、乙苯、二甲苯同分異構(gòu)體)經(jīng)不同生物處理和其他方法處理后的變化情況??梢?,經(jīng)生物處理后的焦化廢水仍有較高程度的污染物存在[17-18]。
2 焦化廢水處理技術(shù)
為了滿足焦化廢水行業(yè)日益嚴(yán)格的排放標(biāo)準(zhǔn),近年來研究者對焦化廢水的處理技術(shù)展開了更為深入的研究,生物法和高級氧化法是最常用且成熟的處理方法。
2.1 生物處理法的優(yōu)勢與挑戰(zhàn)
生物處理是焦化廢水處理的核心工藝,因經(jīng)濟(jì)、無二次污染的良好特性而得到廣泛應(yīng)用。厭氧生物處理焦化廢水時,能夠水解酸化大分子有機物質(zhì),并利用厭氧菌將產(chǎn)生的有機酸等小分子化合物轉(zhuǎn)化為甲烷和二氧化碳。然而,厭氧生物處理法對COD的去除率較低、出水pH偏酸性,因此,常與好氧生物處理工藝聯(lián)用:利用好氧微生物的代謝作用,經(jīng)過一系列的生化反應(yīng)并逐級釋放能量,最終以低能位的有機物甚至無機物使出水無害化。
常見的生物處理工藝有A/O、A2/O、A/O2、A2/O2等[19],不同工藝對焦化廢水中各組分的處理效率也有所差異(如圖1所示)。未經(jīng)處理的焦化廢水對環(huán)境和生物有明顯抑制性,而利用A2/O工藝對焦化廢水進(jìn)行處理后,其出水生物毒性明顯降低,且厭氧過程對毒性去除率最高[20]。焦化廢水中95%的有機物由酚類、PAHs和雜環(huán)類物質(zhì)組成。其中,酚類物質(zhì)通過生物處理后數(shù)量和種類減少,這是因為酚類不僅可被氧化還可被還原去除,進(jìn)而苯環(huán)也通過好氧或厭氧作用裂解和完全礦化。酚類物質(zhì)具有高毒性,對好氧和厭氧生物也具有毒殺作用,而微生物作為污水處理中不可或缺的主體,是轉(zhuǎn)化降解毒性物質(zhì)的首要實施者。在初始階段,從自然界中篩選馴化具有針對作用的優(yōu)勢菌群,從而抵抗并打敗目標(biāo)污染物,實現(xiàn)污水無害化。研究表明,好氧條件下苯酚通過羥化形成鄰苯二酚,再經(jīng)鄰位、間位兩個獨立代謝環(huán)裂解途徑形成三羧酸循環(huán)中間物[21-23]。好氧生物處理中苯酚、2-甲酚類物質(zhì)去除率達(dá)80%以上,而在厭氧生物處理階段更有利于三甲基苯酚和硝基苯等的去除[17]。對于PAHs類物質(zhì)來說,微生物對其降解難易程度取決于PAHs的結(jié)構(gòu)復(fù)雜性,微生物的馴化是優(yōu)勢菌群作用的前提。好氧條件下,微生物會在PAHs環(huán)上加入1分子O2,形成二氧化物中間體,最后代謝為二羥基化物;厭氧條件下,PAHs經(jīng)微生物的反硝化還原體系、硫酸鹽還原體系、產(chǎn)甲烷還原體系和金屬離子反應(yīng)還原體系進(jìn)行降解[24]。好氧處理可以去除50%左右的萘和甲基萘,厭氧處理中,分子量最小的PAHs萘可通過吸附在污泥上而被減少[25],而聯(lián)苯和苊的去除率分別為50%~60%和60%~70%左右[26]。值得關(guān)注的是,厭氧處理對高環(huán)PAHs具有更強的降解能力,3-4環(huán)PAHs的去除率可達(dá)60%以上,而好氧處理對低分子量物質(zhì)轉(zhuǎn)化效果較明顯。雙環(huán)PAHs在好氧和厭氧的組合工藝中均有較好的降解效果,但苊、蒽等PAHs類物質(zhì)在生物處理后還會存在20%左右,仍需深度處理強化去除[27]。作為難被生物降解的PAHs之一的苯并芘,是一種具有五苯環(huán)結(jié)構(gòu)而難以被環(huán)境中微生物利用的有機物,因此,在優(yōu)勢菌群篩選時難度較大,其代謝途徑及降解機理尚未明確。目前,苯并芘在環(huán)境中的降解方式主要通過共基質(zhì)代謝,共基質(zhì)種類的選擇決定了苯并芘的降解速度。有研究利用苯并芘作為Armillaria sp.F02菌株唯一碳氮源,通過添加葡萄糖使其對苯并芘的降解速度提高了2~5倍[28];Sphingomonas paucimobilis EPA 505本身對苯并芘幾乎不發(fā)生降解,而添加葡萄糖產(chǎn)生共代謝后,苯并芘降解了31.5%[29];此外,利用寡養(yǎng)單胞菌對多種PAHs進(jìn)行降解,發(fā)現(xiàn)目標(biāo)污染物分子結(jié)構(gòu)越簡單,菌株代謝能力越強。將苯并芘作為唯一碳源時,其降解率達(dá)46.8%,而加入苯酚作為共基質(zhì)可促進(jìn)苯并芘的代謝,這對于同樣包含高濃度苯酚的焦化廢水處理來說,無疑是一種優(yōu)勢體現(xiàn)[30]??偟膩碚f,與PAHs類物質(zhì)相比,好氧生物處理對酚類物質(zhì)的去除能力更為明顯,而對多環(huán)芳烴的去除效果一般[31],但厭氧生物對PAHs的代謝速度較慢,且途徑還有待進(jìn)一步研究[32]。雜環(huán)類物質(zhì)主要為含氮化合物,例如吡啶、吲哚、喹啉、異喹啉等,好氧處理對其降解效果為吡啶>吲哚>喹啉>甲基喹啉>異喹啉[18]。由此可見,生物處理法的選擇與調(diào)控對焦化廢水的降解具有顯著影響。
生物處理中,優(yōu)勢菌群的演替影響著目標(biāo)污染物的降解。在處理焦化廢水時,假單胞菌(Pseudomonas)、懶桿菌科(Ignavibacteriaceae)等對降解多環(huán)芳烴類污染物起著重要作用,與對碳?xì)浠衔锲鸱纸庾饔玫穆菪龡U菌科(Helicobacteraceae)共同促進(jìn)苯環(huán)裂解[33]。但是,由于多環(huán)芳烴的極端性質(zhì),其生物降解受到疏水性和溶解性的限制,降解效果仍不理想。與之相反,低環(huán)多環(huán)芳烴由于具有較高的溶解度和傳輸效率而更容易降解[34-35]。與苯酚相比,氯酚不僅需要裂解苯環(huán),還需先進(jìn)行脫氯,因此,降解過程較為復(fù)雜,如需有綠彎菌門(Chloroflexi)、變形菌門(Proteobacteria)等在降解過程中達(dá)到一定豐度完成脫氯過程[36]。脫硫球莖菌屬(Desulfobulbus)、脫硫弧菌(Desulfovibrio)、脫硫微菌(Desulfomicrobium)、地桿菌(Geobacter)、Hafniense這些硫酸鹽還原菌也是脫氯的重要菌群[37]。其中,Desulfovibrio可以去除鄰位氯,Hafniense則對所有位置的氯代基均能起到脫氯作用[38]。此外,浮霉菌門(Planctomycetes)主要進(jìn)行硝化反應(yīng),放線菌門(Actinobacteria)對脫氮起主導(dǎo)作用,Herminiimonas可以促進(jìn)有機物礦化等[39]。Syntrophomonadaceae、Syntrophus這種互營單胞菌是厭氧處理中水解酸化的重要菌群[40]。同時有研究表明,將焦化廢水進(jìn)行好氧生物處理,發(fā)現(xiàn)其中幾乎所有已知六環(huán)含氮雜環(huán)化合物以及硫氰酸鹽均可被去除,此時主要菌群為硫化細(xì)菌(Thiobacillus)、Pseudomonas、叢毛單胞菌屬(Comamonas)、伯克氏菌(Bulkholderia)[41-43]。綜上,優(yōu)勢菌群的種類在焦化廢水生物降解中起著決定性作用。
但是,生物處理運行時間通常較長,系統(tǒng)環(huán)境變化幅度較大,pH值也是影響整個體系的重要因素。廢水在處理過程中理化性質(zhì)的變化會引起菌群結(jié)構(gòu)發(fā)生依次演替,廢水組分的動態(tài)變化也會影響生物毒性和微生物活性。同一體系在不同pH值下對污染物有不同降解程度,pH值甚至?xí)蔀槲廴疚锝到獾臎Q定性因素。例如在厭氧消化過程中,pH處于4.5~8.0時,產(chǎn)酸菌能維系較好的優(yōu)勢,pH處于7.0~7.2時,產(chǎn)甲烷菌活性最高[44]。因此,維持pH值在適宜的范圍內(nèi)變化,提高優(yōu)勢菌群作用能力,也是生物處理工藝長時間穩(wěn)定運行面臨的挑戰(zhàn)之一。
2.2 高級氧化法的現(xiàn)狀與問題
焦化廢水的化學(xué)處理法主要是利用高級氧化技術(shù)(Advanced Oxidation Process,AOPs)產(chǎn)生具有強氧化性的自由基,將廢水中的有機物質(zhì)轉(zhuǎn)化為低毒或無毒產(chǎn)物,從而實現(xiàn)綠色排放。此過程產(chǎn)生的自由基種類已被發(fā)現(xiàn)的有羥基自由基(OH)、硫酸根自由基(SO2-4)、超氧自由基(O-2)等[45-46],其中研究最為廣泛的是OH。主要手段包括電催化氧化法、芬頓法、臭氧氧化法、光催化氧化法等[39, 47-55]。電催化氧化法是在電場作用下,通過溶液電解產(chǎn)生具有強氧化作用的自由基,使目標(biāo)污染物失去電子從而實現(xiàn)降解[39];芬頓法是利用Fe2+作為催化劑激發(fā)H2O2產(chǎn)生高氧化性的OH,可有效降解許多難生物降解的有機物,對揮發(fā)酚、苯等污染物的去除效果明顯[52];臭氧氧化法對有機物的降解方式主要有兩種,一種是以分子形式直接接觸反應(yīng),另一種是在水中自行分解,產(chǎn)生氧化性更強的自由基(主要是OH),將大分子有機物降解為小分子有機物,或完全礦化為CO2和H2O[54];光催化氧化法是利用紫外光或可見光與催化劑的作用下生成大量氧化活性物種,將污染物氧化分解,從而實現(xiàn)污染物降解[55]。多種實驗結(jié)果表明,AOPs對焦化廢水具有明顯降解效果,其中,電催化氧化法應(yīng)用尤為廣泛,芬頓法也是研究熱點,COD去除率甚至可達(dá)90%以上(如表2所示)。
從AOPs的反應(yīng)原理可以看出,OH的產(chǎn)生速率在AOPs處理工藝中起關(guān)鍵作用,對目標(biāo)污染物降解效率影響顯著,因此,提高強氧化性自由基的轉(zhuǎn)化也成為AOPs工藝的研究目標(biāo)。但是,AOPs經(jīng)常受到污染物特質(zhì)限制,對于焦化廢水這種色度極高的處理對象,AOPs類型的選擇至關(guān)重要,在實際應(yīng)用中存在局限性,例如,光催化氧化技術(shù)受水體透光性影響,色度極高的焦化廢水影響光能在水中傳遞從而削減降低處理效果。而與生物處理法相比,難以被降解的強極性分子,如芳香族化合物,是出水毒性高的主要原因,添加AOPs的技術(shù)會因OH的產(chǎn)生在污染物被降解的同時出現(xiàn)過度氧化,在降解焦化廢水時產(chǎn)生氯,從而造成出水急性毒性和遺傳毒性升高[56-57],且AOPs運行成本較高,基礎(chǔ)投資較大,在實際應(yīng)用中存在一定弊端。
總的來說,無論是生物法還是化學(xué)法,其本質(zhì)都是通過微生物代謝或自由基氧化,改變目標(biāo)污染物的結(jié)構(gòu),最終實現(xiàn)對焦化廢水的降解。微生物群落與功能基因表達(dá)及自由基的產(chǎn)生速率,就是影響焦化廢水處理效率的關(guān)鍵。
2.3 新型處理技術(shù)
除常規(guī)AOPs處理方法,一些新型的高級氧化技術(shù)也逐漸應(yīng)用于焦化廢水的處理。
2.3.1 臭氧催化氧化法
臭氧催化氧化法增加臭氧催化劑,刺激臭氧和H2O2分解,增強OH和O-2產(chǎn)生,實現(xiàn)對焦化廢水中喹啉90%左右的降解,且礦化效率最高達(dá)90%左右。與傳統(tǒng)的臭氧相比,催化臭氧通過添加催化劑使臭氧充分生成OH和O-2,極大地提高了污染物的去除和最終礦化效率[54]。
2.3.2 微電解技術(shù)
微電解技術(shù)將金屬和非金屬組合形成的復(fù)合材料作為填料,目前多以Fe和C分別作為陽極和陰極的基礎(chǔ)材料,通過陽極釋放的鐵離子和陰極釋放的OH-與目標(biāo)污染物接觸使其截留。有研究利用微電解電芬頓法對焦化廢水進(jìn)行預(yù)處理,并投入焦化廠進(jìn)行實際應(yīng)用,穩(wěn)定運行3個月后實現(xiàn)月平均降低COD 40%以上,氨氮去除率達(dá)15%以上,可生化性提高40%[58]。
微電解技術(shù)在反應(yīng)中發(fā)生電解、氧化還原反應(yīng)、絮凝作用等,非常適用于高鹽度、高COD及難降解有機廢水的處理[59],對焦化廢水的色度及酚類物質(zhì)有明顯的去除效果[60]。隨著科學(xué)技術(shù)的發(fā)展,微電解中新型填料的出現(xiàn)更提高了對難降解有機廢水COD的去除[61]。同時,有研究者將微電解技術(shù)和生物處理進(jìn)行聯(lián)合使用,不僅發(fā)揮各工藝自身優(yōu)勢,又會發(fā)生多種工藝的協(xié)同效應(yīng)[62-63],在焦化廢水處理方面具有廣闊的應(yīng)用前景。
2.3.3 微藻細(xì)菌組合
不同于利用厭氧或好氧生物法處理,有研究利用微藻細(xì)菌組合探究焦化廢水降解,在光照條件下,這種微藻與細(xì)菌共培養(yǎng)的方式可以完全去除苯酚,而單獨微藻體系去除率不足30%,油脂的產(chǎn)生率也提高了1.5倍[64]。研究表明,微藻具有去除含氮化合物的能力,且一些微藻有很強的耐毒性,可以通過代謝降解PAHs、酚類物質(zhì)和氰化物等[65],對焦化廢水中含量較高的有機組分的去除很有針對性。藻類和細(xì)菌共培養(yǎng)可以提高微藻對含有有機和無機污染物廢水的適用性[66],可高效去除目標(biāo)污染物并減少溫室氣體排放[67]。微藻細(xì)菌體系在降解焦化廢水的同時還可以產(chǎn)生油脂,既能減少環(huán)境污染,又能實現(xiàn)廢水資源的充分利用。
這些逐步更新的處理技術(shù)在原有降解焦化廢水的基礎(chǔ)上進(jìn)一步探究新成效,不僅可為解決焦化行業(yè)實際處理中水量大的難題做出可行預(yù)測,更為日后焦化廢水資源化提供理論基礎(chǔ)。
2.3.4 膜處理技術(shù)
由于膜處理技術(shù)的出水水質(zhì)高、占地面積小和能耗少等優(yōu)勢,常被用于焦化廢水的深度處理[68]?;谀ぬ幚砑夹g(shù)原理衍生了多種高效處理方法,例如微濾、超濾、納濾、反滲透和電滲析法等。而在實際應(yīng)用中多種聯(lián)合應(yīng)用膜處理技術(shù)工藝也較為常見。有研究利用超濾+納濾+反滲透對焦化廢水進(jìn)行深度處理,其降解效果達(dá)95%左右,且運行成本降低[69];有工廠利用超濾+反滲透對焦化廠生化出水進(jìn)行深度處理,處理后的出水氯離子含量大幅度降低,可達(dá)循環(huán)水標(biāo)準(zhǔn)進(jìn)行回用[70]。這種膜處理技術(shù)對于COD較高、鹽度較大的焦化廢水深度處理具有顯著優(yōu)勢。
2.3.5 ICPB技術(shù)
雖然常用的AOPs可以使大部分有機物質(zhì)氧化,對難降解有機物有突出的優(yōu)勢,但其成本一般較高,且易發(fā)生中間產(chǎn)物累積,甚至生成毒性更強的中間產(chǎn)物。與AOPs互補,生物處理法雖然成本低、可實現(xiàn)對污染物的毒性削減和生物礦化,但處理焦化廢水所需時間長,降解效率難以得到保障。研發(fā)設(shè)計能夠使AOPs與生物降解相互取長補短、集成式使用的新技術(shù),是一種新的發(fā)展趨勢。
2008年,美國工程院院士Rittmann課題組提出光催化生物降解直接耦合技術(shù)(Intimate Coupling of Photocatalysis and Biodegradation,ICPB)[71]:將光催化劑負(fù)載于多孔載體表面,培養(yǎng)好的生物膜生長于載體內(nèi)部,實現(xiàn)光催化技術(shù)與生物降解技術(shù)在同一單元內(nèi)直接耦合。利用外部紫外光照射,使催化劑產(chǎn)生具有強氧化性的活性物種,有機物通過光催化降解為簡單中間產(chǎn)物,再通過生物進(jìn)一步代謝降解[72](如圖2所示)。將光催化和生物降解直接耦合的技術(shù)方法可以結(jié)合二者的優(yōu)點,有研究利用ICPB技術(shù)對苯酚[73-75]、氯酚[76-77]、硝基苯[78]進(jìn)行降解,均具有良好的處理性能。ICPB技術(shù)的提出彌補了傳統(tǒng)單一處理方法存在的弊端,是一種高效、綠色的處理方法。
盡管目前尚鮮見ICPB直接用于焦化廢水處理的報道,但從ICPB對酚類物質(zhì)降解方面的優(yōu)勢可預(yù)見其潛力。Li等[77, 79]在ICPB降解氯酚廢水方面開展了大量工作,解析了三氯酚( Trichlorophenol,TCP)的去除與礦化機制。單一光催化對TCP(初始濃度為14 μmol/L)的去除率為93%,但對溶解性總有機碳(Dissolved Total Organic Carbon, DOC)的去除沒有顯著貢獻(xiàn)。與之相比,ICPB反應(yīng)不僅進(jìn)一步提高了TCP的去除效率,出水DOC的濃度較單獨的光催化反應(yīng)降低了90%。有共基質(zhì)存在時,活細(xì)胞比率可提高20%,且生物多樣性指數(shù)顯著提升,氯酚的去除率與礦化率分別提高了27%和23%[80]。同時,基于ICPB體系已經(jīng)開展較為系統(tǒng)和深入的工作,包括以優(yōu)勢活性物種影響為背景的催化劑篩選[80-81]、催化劑自組裝負(fù)載方法建立與優(yōu)化[82]、直接耦合反應(yīng)動力學(xué)模擬與驗證[83],以及直接耦合機制[73, 77, 79, 84-85]等,日漸揭開了ICPB技術(shù)的神秘面紗,在多種典型污染物降解與礦化方面的優(yōu)勢愈發(fā)凸顯。
此外,Su等[86]利用臭氧氧化和好氧生物近場耦合處理技術(shù),展示了該方法在抗生素廢水處理方面的優(yōu)勢,實現(xiàn)了其他AOPs和生物處理的聯(lián)用,為多工藝聯(lián)用技術(shù)奠定了理論基礎(chǔ),也為其他難降解污水處理拓寬了研究領(lǐng)域,未來應(yīng)進(jìn)一步探討該技術(shù)在焦化廢水處理與調(diào)控方面的可行性與調(diào)控策略。
2.4 其他處理技術(shù)
焦化廢水中的物化法因其操作簡單、成效顯著,成為了一種較為基礎(chǔ)的處理技術(shù),主要包括吸附法和混凝法等。
2.4.1 吸附法
吸附法是利用吸附劑對水體中某一組分進(jìn)行選擇吸附,從而去除目標(biāo)污染物,其對焦化廢水中的氰化物、氨氮等有明顯作用。焦化廢水處理中常用的吸附劑有活性炭[87]、吸附樹脂[88]、粉煤灰[89-90]等,但吸附法只是對污染物進(jìn)行相轉(zhuǎn)移,無法徹底降解污染物,且通常吸附劑成本過高、回收困難和二次污染等問題限制了吸附法在處理焦化廢水中大規(guī)模應(yīng)用。因此,吸附劑的優(yōu)化和開發(fā)也成為目前的研究趨勢。
2.4.2 混凝法
混凝法是利用混凝劑通過壓縮雙電層、化學(xué)架橋作用、吸附電中和及網(wǎng)捕卷掃等作用去除水體中可溶性有機物和懸浮顆粒物[91]。新型磁混凝技術(shù)在常規(guī)混凝法基礎(chǔ)上融入磁性磁種,使非磁性污染物與磁種結(jié)合形成穩(wěn)定絮體,在磁場作用下可以與水體分離,從而實現(xiàn)對污染物的去除[92]。磁混凝法不僅具有傳統(tǒng)混凝法優(yōu)點,而且其處理效率更高、絮體更緊實、沉降速度更快[93],其速度可達(dá)普通混凝法的20倍,是近年來發(fā)展速度最快、應(yīng)用最為廣泛的焦化廢水處理技術(shù)之一[93]。
多種新型技術(shù)的出現(xiàn)不僅提高了焦化廢水降解效果,更將處理方法延伸到多領(lǐng)域,包含但不局限于已有基礎(chǔ)領(lǐng)域中的好氧與厭氧生物處理和簡單的AOPs,充分利用已有經(jīng)驗使研究方向得到進(jìn)一步深化,為發(fā)展后續(xù)焦化廢水處理新平臺提供更多可能性。
3 結(jié)論與展望
隨著煤化工行業(yè)逐步發(fā)展,焦化廢水產(chǎn)量也在逐漸增多,其帶來的環(huán)境危害也開始進(jìn)入人們的視野,成為水源污染的重要源頭之一。為改善和解決焦化廢水所帶來的影響,多種新型技術(shù)應(yīng)運而生。這些新型技術(shù)的存在使焦化廢水處理效率日益提高,其中不僅有較為基礎(chǔ)的單元式處理工藝,更包含升華后的多種工藝聯(lián)用。多種工藝的“跨界”聯(lián)合應(yīng)用理論上不僅可以減少單獨工藝自身缺點,更可通過多者協(xié)同作用發(fā)揮“1+1>2”的優(yōu)勢。
不同新型處理技術(shù)具有不同的優(yōu)點,催化臭氧技術(shù)旨在提高降解效率,但催化劑的回收再利用仍是研究需要關(guān)注的重點;微電解技術(shù)處理效果明顯,但電解材料優(yōu)化是重中之重;膜處理技術(shù)占地面積小、能耗少,是應(yīng)用最為廣泛的方法之一,但對目標(biāo)污染物具有高度選擇性,且膜污染問題對此技術(shù)的發(fā)展限制性較大,還需對膜清潔和穩(wěn)定性做進(jìn)一步完善。
以ICPB技術(shù)為代表的高級氧化與生物降解近場耦合理念,將微生物學(xué)和物化多方向充分融合,為焦化廢水處理效率提升提供了新的研發(fā)開拓方向。為了解決ICPB技術(shù)以光能輸入激發(fā)催化氧化在處理色度較高的焦化廢水的局限性,應(yīng)進(jìn)一步研發(fā)其他高級氧化技術(shù)與生物降解近場耦合技術(shù)。
此外,針對焦化廢水高COD的特征,單一高級氧化預(yù)處理存在經(jīng)濟(jì)成本過高的瓶頸問題,好氧生物處理也不再能滿足其要求,厭氧處理法成本相對較低,且對于有機物濃度要求在1 000 mg/L以上,僅需要很少的能量和非常低的營養(yǎng),同時,厭氧菌可以將廢物中大多數(shù)有機物質(zhì)轉(zhuǎn)化為有用能,被認(rèn)為更適用于高負(fù)荷工業(yè)廢水的處理。而厭氧生物處理運行時間過長、受環(huán)境影響較大,在實際應(yīng)用中單獨使用具有一定局限性。因此,在未來焦化廢水處理技術(shù)的發(fā)展中,有必要進(jìn)一步研發(fā)高級氧化與厭氧生物處理近場耦合的新技術(shù)。應(yīng)充分發(fā)揮厭氧生物處理優(yōu)勢,在與高級氧化耦合聯(lián)用時使二者對焦化廢水處理效果最佳。參考文獻(xiàn):
[1] KONG Z, LI L, XUE Y, et al. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:A review [J]. Journal of Cleaner Production, 2019, 231: 913-927.
[2] 孫巖柏, 常鑫, 李衛(wèi)平, 等. Ti/RuO2-ZrO2電極電解處理焦化廢水生化出水[J]. 水處理技術(shù), 2020, 46(4): 111-115.
SUN Y B, CHANG X, LI W P, et al. Preparation of Ti/RuO2-ZrO2 electrode and electrolytic treatment for biochemical effluent from coking wastewater [J]. Technology of Water Treatment, 2020, 46(4): 111-115.(in Chinese)
[3] WEI C, WU H P, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization [J]. Journal of Environmental Management, 2019, 246: 324-333.
[4] GUO D S, SHI Q T, HE B B, et al. Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1788-1793.
[5] 張萬輝, 韋朝海, 吳超飛, 等. 焦化廢水中有機物的識別、污染特性及其在廢水處理過程中的降解[J]. 環(huán)境化學(xué), 2012, 31(10): 1480-1486.
ZHANG W H, WEI C H, WU C F, et al. Identification, property and degradation of organic compounds in coking wastewater during treatment processes [J]. Environmental Chemistry, 2012, 31(10): 1480-1486.(in Chinese)
[6] LI J, YUAN X, ZHAO H P, et al. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process [J]. Bioresource Technology, 2018, 247: 1206-1209.
[7] XU P, MA W C, HOU B L, et al. A novel integration of microwave catalytic oxidation and MBBR process and its application in advanced treatment of biologically pretreated Lurgi coal gasification wastewater [J]. Separation and Purification Technology, 2017, 177: 233-238.
[8] NEGREANU Y, PASTERNAK Z, JURKEVITCH E, et al. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils [J]. Environmental Science & Technology, 2012, 46(9): 4800-4808.
[9] 彭蘇萍. 中國煤炭資源開發(fā)與環(huán)境保護(hù)[J]. 科技導(dǎo)報, 2009, 27(17): 3.
PENG S P. China coal resource exploitation and environmental protection [J]. Science & Technology Review, 2009, 27(17): 3.(in Chinese)
[10] ZHANG M, TAY J H, QIAN Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal [J]. Water Research, 1998, 32(2): 519-527.
[11] ZHAO W T, SUI Q, HUANG X. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment [J]. Science of the Total Environment, 2018, 635: 716-724.
[12] 王立東. 焦化廢水深度處理與回用研究[D]. 上海: 華東理工大學(xué), 2017.
WANG L D. Research of reuse of coking wastewater [D].Shanghai: East China University of Science and Technology, 2017.(in Chinese)
[13] 夏立全, 陳貴鋒, 李文博, 等. 焦化廢水處理技術(shù)進(jìn)展與發(fā)展方向[J]. 潔凈煤技術(shù), 2020, 26(4): 56-63.
XIA L Q, CHEN G F, LI W B, et al. Progress and perspectives of coking wastewater treatment technology [J]. Clean Coal Technology, 2020, 26(4): 56-63.(in Chinese)
[14] 王小英. 焦化廢水的處理技術(shù)[J]. 山西焦煤科技, 2006, 30(5): 35-37. WANG X Y. Processing technology of coking waste water [J]. Shanxi Coking Coal Science & Technology, 2006, 30(5): 35-37.(in Chinese)
[15] MELO J S, KHOLI S, PATWARDHAN A W, et al. Effect of oxygen transfer limitations in phenol biodegradation [J]. Process Biochemistry, 2005, 40(2): 625-628.
[16] WU H Z, WANG M, ZHU S, et al. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater [J]. Chemosphere, 2019, 228: 128-138.
[17] SHARMA N K, PHILIP L. Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions [J]. Chemical Engineering Journal, 2014, 256: 255-267.
[18] REN J, LI J F, LI J G, et al. Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments [J]. Chemosphere, 2019, 222: 431-439.
[19] XU P, HAN H J, ZHUANG H F, et al. Anoxic degradation of nitrogenous heterocyclic compounds by activated sludge and their active sites [J]. Journal of Environmental Sciences, 2015, 31: 221-225.
[20] 石柳. A/A/O工藝對焦化廢水生物毒性削減效果評價[J]. 資源節(jié)約與環(huán)保, 2018(2): 81-82.
SHI L. Evaluation of Biological Toxicity Reduction Effect of Coking Wastewater by A/A/O [J]. Resources Economization & Environmental Protection, 2018(2): 81-82.
[21] 李淑彬, 陳振軍. 微生物降解酚類化合物的研究進(jìn)展[J]. 華南師范大學(xué)學(xué)報(自然科學(xué)版), 2005, 37(4): 136-142.
LI S B, CHEN Z J. Research advances in microbiodegradation of compound of phenols [J]. Journal of South China Normal University (Natural Science), 2005, 37(4): 136-142.(in Chinese)
[22] ARAI H, OHISHI T, CHANG M Y, et al. Arrangement and regulation of the genes for meta-pathway enzymes requiredfor degradation of phenol in Comamonas testosteroni TA441 [J]. Microbiology (Reading, England), 2000, 146 ( Pt 7): 1707-1715.
[23] 王一惠, 向述榮, 張銀定, 等. 微生物降解苯酚的研究進(jìn)展及其工程菌的應(yīng)用前景[J]. 高技術(shù)通訊, 2001, 11(12): 98-101.
WANG Y H, XIANG S R, ZHANG Y D, et al. Research advances of biodegradation of phenol and prospect of application of recombined strain [J]. High Technology Letters, 2001, 11(12): 98-101.(in Chinese)
[24] 陳秀鵑, 姜麗佳, 孫靖云, 等. 微生物降解多環(huán)芳烴的研究進(jìn)展[J]. 現(xiàn)代化工, 2018, 38(10): 34-37.
CHEN X J, JIANG L J, SUN J Y, et al. Research progress in microbial degradation of polycyclic aromatic hydrocarbons [J]. Modern Chemical Industry, 2018, 38(10): 34-37.(in Chinese)
[25] 李恩超, 侯紅娟, 董曉丹. 焦化廢水中苯胺和萘等物質(zhì)在厭氧條件下去除規(guī)律的研究[J]. 寶鋼技術(shù), 2009(3): 24-26.
LI E C, HOU H J, DONG X D. The removal performance and biodegradation pathway of aniline and naphthalene under anaerobic conditions in coking-plant wastewater [J]. Baosteel Technology, 2009(3): 24-26.(in Chinese)
[26] ZHANG W H, WEI C H, CHAI X S, et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant [J]. Chemosphere, 2012, 88(2): 174-182.
[27] HUANG Y, HOU X L, LIU S T, et al. Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment [J]. Chemical Engineering Journal, 2016, 304: 864-872.
[28] HADIBARATA T, KRISTANTI R A. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022 [J]. Bioresource Technology, 2012, 107: 314-318.
[29] YE D Y, SIDDIQI M A, MACCUBBIN A E, et al. Degradation of Polynuclear Aromatic Hydrocarbons bySphingomonas paucimobilis [J]. Environmental Science & Technology, 1996, 30(1): 136-142.
[30] 胡肖怡. 焦化廢水中多環(huán)芳烴生物降解的促進(jìn)機制[D]. 廣州: 華南理工大學(xué), 2018.
HU X Y. Enhanced biodegradation of polycyclic aromatic hydrocarbons in coking wastewater [D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[31] KONG Q P, WU H Z, LIU L, et al. Solubilization of polycyclic aromatic hydrocarbons (PAHs) with phenol in coking wastewater treatment system: Interaction and engineering significance [J]. Science of the Total Environment, 2018, 628/629: 467-473.
[32] 翟靖鑫, 葉波平. 微生物降解多環(huán)芳烴的研究進(jìn)展[J]. 科學(xué)技術(shù)創(chuàng)新, 2019(18): 29-30.
ZHAI J X, YE B P. Advances in microbial degradation of polycyclic aromatic hydrocarbons [J]. Scientific and Technological Innovation, 2019(18): 29-30.
[33] OXLEY A P A, POWELL M, MCKAY D B. Species of the family Helicobacteraceae detected in an Australian sea lion (neophoca cinerea) with chronic gastritis [J]. Journal of Clinical Microbiology, 2004, 42(8): 3505-3512.
[34] ZHOU Z, YU T, DONG H L, et al. Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral [J]. Applied Clay Science, 2019, 180: 105199.
[35] SUN S L, WANG Y X, ZANG T T, et al. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons [J]. Bioresource Technology, 2019, 281: 421-428.
[36] XU Y, HE Y, TANG X J, et al. Reconstruction of microbial community structures as evidences for soil redox coupled reductive dechlorination of PCP in a mangrove soil [J]. Science of the Total Environment, 2017, 596/597: 147-157.
[37] ZHEN H J, DU S Y, RODENBURG L A, et al. Reductive dechlorination of 1, 2, 3, 7, 8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195 [J]. Water Research, 2014, 52: 51-62.
[38] ZHANG D D, ZHANG C F, LI Z L, et al. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization [J]. Bioresource Technology, 2014, 164: 232-240.
[39] WU Z Y, LIU Y, WANG S Y, et al. A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment [J]. Bioresource Technology, 2019, 284: 222-230.
[40] SLEZAK R, GRZELAK J, KRZYSTEK L, et al. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation [J]. Waste Management, 2017, 68: 610-617.
[41] MA Q, QU Y Y, ZHANG X W, et al. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems [J]. Science Reports, 2015, 5: 17674.
[42] WANG Z P, LIU L L, GUO F, et al. Deciphering cyanide-degrading potential of bacterial community associated with the coking wastewater treatment plant with a novel draft genome [J]. Microbial Ecology, 2015, 70(3): 701-709.
[43] QU Y Y, ZHANG X W, SHEN W L, et al. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems [J]. Bioresource Technology, 2016, 211: 209-215.
[44] 孫琪媛, 胡以松, 王曉昌. 污水處理中厭氧動態(tài)膜生物反應(yīng)器的研究進(jìn)展[J]. 工業(yè)水處理, 2017, 37(3): 1-5.
SUN Q Y, HU Y S, WANG X C. Research progress in anaerobic dynamic membrane bioreactor(AnDMBR) for wastewater treatment [J]. Industrial Water Treatment, 2017, 37(3): 1-5.(in Chinese)
[45] LIU W T, MARSH T L, FORNEY L J. Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique [J]. Water Science and Technology, 1998, 37(4/5): 417-422.
[46] OSBORN A M, MOORE E R B, TIMMIS K N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environmental Microbiology, 2000, 2(1): 39-50.
[47] REN G B, ZHOU M H, ZHANG Q Z, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load [J]. Water Research, 2019, 154: 336-348.
[48] ZHANG T T, LIU Y J, YANG L, et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system [J]. Journal of Cleaner Production, 2020, 258: 120273.
[49] WU Z Y, ZHU W P, LIU Y, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen [J]. Chemosphere, 2020, 246: 125703.
[50] DUAN L J, LI J, SHANG K F, et al. Enhanced biodegradability of coking wastewater by gas phase dielectric barrier discharge plasma [J]. Separation andPurification Technology, 2015, 154: 359-365.
[51] VERMA V, CHAUDHARI P K. Optimization of multiple parameters for treatment of coking wastewater using Fenton oxidation [J]. Arabian Journal of Chemistry, 2020, 13(4): 5084-5095.
[52] ZHU X B, TIAN J P, LIU R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology [J]. Separation and Purification Technology, 2011, 81(3): 444-450.
[53] OZYONAR F, KARAGOZOGLU B. Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes [J]. Separation and Purification Technology, 2015, 150: 268-277.
[54] LIU D, WANG C R, SONG Y F, et al. Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe2O4/Sepiolite catalyst: Efficiency and mechanism [J]. Chemosphere, 2019, 227: 647-656.
[55] GAO M J, WANG X D, GUO M, et al. Contrast on COD photo-degradation in coking wastewater catalyzed by TiO2 and TiO2-TiO2 nanorod arrays [J]. Catalysis Today, 2011, 174(1): 79-87.
[56] 方元狄, 張靜, 鄭中原, 等. 焦化廢水處理試驗系統(tǒng)出水的生物毒性變化[J]. 生態(tài)毒理學(xué)報, 2017, 12(3): 317-326.
FANG Y D, ZHANG J, ZHENG Z Y, et al. The variation of effluent bio-toxicity in an experimental system for coking wastewater treatment [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 317-326.(in Chinese)
[57] YU X Y. Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions [J]. Journal of Physical and Chemical Reference Data, 2004, 33(3): 747-763.
[58] 楊帆, 劉歡, 張東波, 等. 微電解-芬頓法預(yù)處理廢水技術(shù)在邯鋼焦化廠的應(yīng)用實踐[J]. 山西化工, 2019, 39(3): 149-150.
YANG F, LIU H, ZHANG D B, et al. An application example of coking waste water pre-treatment by micro-electrolysis-Fenton [J]. Shanxi Chemical Industry, 2019, 39(3): 149-150.(in Chinese)
[59] YANG X Y, XUE Y, WANG W N. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis [J]. Bioresource Technology, 2009, 100(2): 649-653.
[60] 黃繼承. 微電解技術(shù)在工業(yè)廢水處理中的運用[J]. 中國科技信息, 2019(20): 40-41.
HUANG J C.Application of Microelectrolysis Technology in Industrial Wastewater Treatment [J]. China Science and Technology Information, 2019(20): 40-41.
[61] ZHU X Y, CHEN X J, YANG Z M, et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis [J]. Chemical Engineering Journal, 2018, 338: 46-54.
[62] 程言妍, 成偉東. Fe/C微電解技術(shù)處理工業(yè)廢水研究進(jìn)展[J]. 化學(xué)與生物工程, 2020, 37(3): 15-18, 24.
CHENG Y Y, CHENG W D. Research progress in treatment of industrial wastewater by Fe/C micro-electrolysis [J]. Chemistry & Bioengineering, 2020, 37(3): 15-18, 24.(in Chinese)
[63] HUANG L H, SUN G P, YANG T, et al. A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater [J]. Desalination, 2013, 309: 91-96.
[64] RYU B G, KIM J, HAN J I, et al. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids [J]. Bioresource Technology, 2017, 225: 58-66.
[65] RYU B G, KIM J, FAROOQ W, et al. Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions [J]. Bioresource Technology, 2014, 162: 70-79.
[66] ZHAO X, ZHOU Y, HUANG S, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production [J]. Bioresource Technology, 2014, 156: 322-328.
[67] SU Y Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios [J]. Bioresource Technology, 2012, 105: 67-73.
[68] 張萬輝, 韋朝海, 晏波, 等. 焦化廢水中溶解性有機物組分的特征分析[J]. 環(huán)境化學(xué), 2012, 31(5): 702-707.
ZHANG W H, WEI C H, YAN B, et al. Composition characterization ofdissolved organic matters in coking wastewater [J]. Environmental Chemistry, 2012, 31(5): 702-707.(in Chinese)
[69] 穆明明, 左青. 全膜法在焦化廢水回用的應(yīng)用[J]. 工業(yè)水處理, 2015, 35(1): 97-100.
MU M M, ZUO Q. Application of membrane process to coking wastewater reuse [J]. Industrial Water Treatment, 2015, 35(1): 97-100.(in Chinese)
[70] 王文強, 段繼海. 焦化廢水深度處理研究現(xiàn)狀[J]. 當(dāng)代化工, 2016, 45(8): 1959-1963.
WANG W Q, DUAN J H. Present situation of research on advanced treatment of coking wastewater [J]. Contemporary Chemical Industry, 2016, 45(8): 1959-1963.(in Chinese)
[71] MARSOLEK M D, TORRES C I, HAUSNER M, et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor [J]. Biotechnology and Bioengineering, 2008, 101(1): 83-92.
[72] 馬躍. 光催化與生物降解直接耦合降解四環(huán)素廢水的反應(yīng)動力學(xué)模型研究[D]. 長春: 吉林大學(xué), 2018.
MA Y. Study on the kinetic modeling of tetracycline wastewater removal by intimately coupled photocatalysis and biodegradation [D]. Changchun: Jilin University, 2018.(in Chinese)
[73] ZHOU D D, XU Z X, DONG S S, et al. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light [J]. Environmental Science & Technology, 2015, 49(13): 7776-7783.
[74] MA D M, ZOU D L, ZHOU D D, et al. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: Effect of hydrothermal treatment temperature [J]. International Biodeterioration & Biodegradation, 2015, 104: 178-185.
[75] WANG J W, ZHANG Y M, YAN N, et al. Enhanced phenol bioavailability by means of photocatalysis [J]. Biodegradation, 2013, 24(5): 597-602.
[76] ZHANG Y M, PU X J, FANG M M, et al. 2, 4, 6-trichlorophenol (TCP) photobiodegradation and its effect on community structure [J]. Biodegradation, 2012, 23(4): 575-583.
[77] LI G Z, PARK S, KANG D W, et al.2, 4, 5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation [J]. Environmental Science & Technology, 2011, 45(19): 8359-8367.
[78] YANG L H, ZHANG Y M, BAI Q, et al. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation [J]. Journal ofHazardous Materials, 2015, 287: 252-258.
[79] LI G Z, PARK S, RITTMANN B E.Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation [J]. Water Research, 2012, 46(19): 6489-6496.
[80] ZHAO M Y, SHI J L, ZHAO Z Q, et al. Enhancing chlorophenol biodegradation: Using a co-substrate strategy to resist photo-H2O2 stress in a photocatalytic-biological reactor [J]. Chemical Engineering Journal, 2018, 352: 255-261.
[81] XIONG H F, DONG S S, ZHANG J, et al. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor [J]. Water Research, 2018, 136: 75-83.
[82] ZHANG J, DU Y L, ZHANG L, et al. Preparation of sponge carrier supported photocatalyst by self-assembly technique for phenol photodegradation in visible light [J]. Molecular Catalysis, 2017, 432: 1-7.
[83] MA Y, XIONG H F, ZHAO Z Q, et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor [J]. Chemical Engineering Journal, 2018, 351: 967-975.
[84] XIONG H F, ZOU D L, ZHOU D D, et al. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB) [J]. Chemical Engineering Journal, 2017, 316: 7-14.
[85] WANG Y, CHEN C L, ZHOU D D, et al. Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation [J]. Chemosphere, 2019, 237: 124491.
[86] SU Y, WANG X S, DONG S S, et al. Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination [J]. Bioresource Technology, 2020, 304: 123009.
[87] ZHANG M H, ZHAO Q L, BAI X, et al. Adsorption of organic pollutants from coking wastewater by activated coke [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1/2/3): 140-146.
[88] YANG W L, LI X C, PAN B C, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer [J]. Water Research, 2013, 47(13): 4730-4738.
[89] SUN W L, QU Y Z, YU Q, et al. Adsorption of organicpollutants from coking and papermaking wastewaters by bottom ash [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 595-601.
[90] 王婷, 擺玉龍, 王維. 吸附法處理焦化廢水的研究[J]. 化工設(shè)計通訊, 2020, 46(5): 237-238.
WANG T, BAI Y L, WANG W. Study on the treatment of coking wastewater by adsorption [J]. Chemical Engineering Design Communications, 2020, 46(5): 237-238.(in Chinese)
[91] MATILAINEN A, VEPSLINEN M, SILLANP M. Natural organic matter removal by coagulation during drinking water treatment: a review [J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197.
[92] AMBASHTA R D, SILLANP M. Water purification using magnetic assistance: a review [J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 38-49.
[93] 張曉航, 何緒文, 王浩, 等. 磁絮凝工藝對含懸浮物礦井水處理效果的研究[J]. 水處理技術(shù), 2018, 44(4): 122-125, 132.
ZHANG X H, HE X W, WANG H, et al. Mine water treatment effect with magnetic flocculation technology and flocs fractal characteristics [J]. Technology of Water Treatment, 2018, 44(4): 122-125, 132.(in Chinese)
(編輯 章潤紅)