• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of Housekeeping Genes for Gene Expression Analysis in Iwagaki Oyster (Crassostrea nippona) Under Salinity Stress by Quantitative Real-Time PCR

    2020-11-30 03:53:00GONGJianwenLIQiYUHongLIUShikaiandKONGLingfeng
    Journal of Ocean University of China 2020年6期

    GONG Jianwen, LI Qi, 2), *, YU Hong, LIU Shikai, and KONG Lingfeng

    Validation of Housekeeping Genes for Gene Expression Analysis in Iwagaki Oyster () Under Salinity Stress by Quantitative Real-Time PCR

    GONG Jianwen1), LI Qi1), 2), *, YU Hong1), LIU Shikai1), and KONG Lingfeng1)

    1),,,266003,2),,266237,

    Hypo-salinity can reduce the immunological reaction in, even lead to massive mortality. It is important to understand the molecular mechanism of oyster defense system, while quantitative real-time PCR can be employed inthe study. However, the accuracy of quantitative real-time PCR relies on the use of suitable reference genes. In this study, the expression stability of 14 candidate reference genes including traditional housekeeping genesEF1A, TUB, TUA, GAPDH, RO21,as well as new candidate reference genes RPL5, RPL8, RPS27, RPL14, RPL4, CO3, RPS8, RPS4, CYTB in different tissues ofunder salinity stress has been validated by quantitative real-time PCR. Ribosomal protein genes selected through expression analysis of transcriptome data fromgenerally were more stable than traditional reference genes. According to the geNorm analysis, RPL4 and RPS4 could be used as internal controls for studying gene expression inwith real-time PCR under salinity stress.

    ; reference gene; hypo-salinity stress; ribosomal protein genes

    1 Introduction

    Quantitative real-time PCR (qRT-PCR) has been wide- ly used to measure gene expression because of its high sensitivity, flexibility, and reproducibility (Heid, 1996). The variations caused by differences in samples, RNA ex- traction, efficiency of enzyme and transcriptional activity can influence the experimental accuracy (Mackay, 2002). For accurate and reliable analysis of target gene expression, normalization of qRT-PCR data with suitable internal reference gene(s) is required (Radoni?, 2004). An ideal reference gene should express at stable level in all tissues, regardless of the experimental conditions or treatments (Vandesompele, 2002; Radoni?, 2004). Commonly used reference genes usually are those involv- ed in basic cellular processes, such as the components of cytoskeleton, glycolytic pathway, protein folding and de- gradation (Eisenberg and Levanon, 2003). However, evidences show that transcription levels of housekeeping genes vary considerably in different tissues and under variable conditions (Greer, 2010). Therefore, selecting mul-tiple stably expressed reference genes, other than the com- monly used housekeeping genes, is important for the ac- curate normalization of gene expression levels.

    is an important aquaculture species for it is edible during summer when other oysters are not available (Itoh, 2004).naturally ben- thic in shallow water along the coast of the seas of East Asia (Boudry, 2003). It is more sensitive to the salinity change of ambient seawater compared with euryha- line oysters, such as, which live in intertidal zones (Zhang, 2016). In the natural habitat, salinity declines with tidal cycles, rainfall and with drainage from the adjacent terrestrial sites (Drouin, 1985; Philippart, 2011). Hypo-salinity induces the immunological activity of oysters, such as the overexpression of heat shock proteins (HSPs) and phenoloxidase (Gagnaire, 2006; Kuchel, 2010; Li, 2016), and even lead to massive mortality (Meng, 2011).

    In this study, we compared the performance of 14 candidate reference genes (consisting of 5 commonly used housekeeping genes of animals, and 9 new candidate reference genes detected fromtranscriptome) in order to identify the most stable internal controls for nor- malization of real-time PCR data inunder sa- linity stress.

    2 Materials and Methods

    2.1 Biological Materials

    2.1.1 Unstressed samples (group A)

    Adultwere cultured in the fish farm of Rongcheng, Shandong Province, China. Tissues from the mantle (M), visceral mass (V), adductor muscle (A) and gill (S) were collected from 12 healthy oysters. They were immediately placed into liquid nitrogen to free- ze and then stored at ?80℃ for the subsequent analysis.

    2.1.2 Salinity stressed samples (group B)

    The experimentalwere maintained in 70L tanks containing aerated sand-filtered seawater (salinity: 30) for one week prior to experimentation. Then they were randomly divided into 3 groups under hypo-salinity stress in seawater with 30 (S3), 20 (S2), and 10 (S1) for one week (3 pools with 9 individuals each). The low salinity water was prepared by diluting sea water with tap water. Gill tissues of the experimental group were collected from 27 oysters under variant salinity stresses. They were im- mediately placed into liquid nitrogen to freeze and then stored at ?80℃ for subsequent analysis.

    2.2 RNA Isolation, Library Construction and Sequencing of C. nippona

    Total RNA was extracted from the samples using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. The purity and integrity of total RNA was de- termined using a Nanodrop 2000 spectrophotometer (Ther- mo, USA) and an Agilent 2100 BioAnalyzer (Agilent Technologies, USA). The RNA was pooled proportionally from three oysters in each experimental group (group A: M, V, A, S; group B: S1, S2, S3).

    The mRNA was enriched by Oligo(dT) beads and then fragmented. The cDNA was synthesized with random he- xamersmRNA fragments as templates. The cDNA fragments were purified and resolved with EB buffer for end repair, single-nucleotide adenine (A) addition and adap- tor connections. After PCR amplification, the 150bp li- brary was then sequenced via Illumina HiseqTM4000.

    2.3 De novo Assembly, Reads Mapping and Gene Clustering

    Clean reads were obtained by removing ‘dirty’ reads containing adapter sequences, sequences with more than 10% unknown bases, and low-quality reads containing more than 40% of low quality (-value<10) bases. Clean reads from four tissues were pooled together to assemble a comprehensive reference transcriptome by Trinity v2.8.4 (Grabherr., 2011). Then clean reads from each sample were mapped against the reference transcriptome using alignment tool Bowtie2 (Langmead and Salzberg, 2012) by default parameters. RSEM v1.3.1 (Li and Dewey, 2011) was used to quantify the mapped reads. The gene abundances were calculated and normalized to the number of reads per kb per million reads (RPKM) (Mortazavi., 2008). Gene clustering was performed with RPKM in group A and group B using kmeans command of the R statistical software.

    2.4 Primer Design and Real-Time qRT-PCR Assays

    The primers were designed using Primer Premier 5 soft- ware (http://www.premierbiosoft.com/). A series of 5-fold of 5 dilutions of cDNA were made to determine the gene specific PCR amplification efficiency for each primer pair using the following equation: Efficiency(%)=10(?1/slope)×100%.

    The purified RNA samples were reversely transcribed using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Dalian, China), following the manufacturer’s pro-tocol. Real-time qPCR was performed with Roche480 ins- trument and software, while QuantiNovaTMSYBR Green PCR Kit (Qiagen) was employed for RT-PCR. The PCR mixture contained 0.5μL diluted cDNA, 5μL 2× SYBR Green PCR Master Mix, 0.7μL forward (reverse) primers, and 3.1μL distilled water in a final volume of 10μL. Cycling conditions were 95℃ for 2min, followed by 40 cycles of 95℃ for 5s and 60℃ for 10s and then a melt curve stage after the cycling stage. The melting curve and agarose gel electrophoresis for all the genes demonstrated single peaks and bands, confirming gene-specific amplification. Real-time PCR was performed in triplicate for each sample. A no-template control was analyzed in parallel for each gene.

    2.5 Statistical Analysis

    Following PCR data collection, geNorm (Vandesompele, 2002) was used to rank the expression stability of reference genes. Briefly, the geNorm program is based on pairwise comparisons and stepwise exclusion of candidate genes according to their expression stability measure (M) values. In general, the lower thevalue, the higher the gene expression stability. The program recommends<1.5 to identify sets of reference genes with stable expression. The pairwise variation (GeNorm:/(+1) is used to determine the number of genes required for reliable normalization. A threshold value of 0.15 was report- ed by Vandesompele. (2002).

    3 Results

    3.1 Selection of New Candidate Reference Genes

    We identified 5 distinct clusters representing a variety of gene expression patterns in different tissues (group A) and under different salinity stresses (group B) respective- ly. Genes in cluster 3 (1491/37451 unigenes) of group A and in cluster 1 (1954/33157 unigenes) of group B show- ed the more stable and higher expression trends (Fig.1). A total of 1472 unigenes are presented in both groups (Fig.2). Among those common unigenes, nine unigenes with high and stable expression trends were selected to be new candidate reference genes (Table 1). In addition, five commonly used reference genes, RO21, EF1A, TUA, TUB and GAPDH, were selected as candidate reference genes.

    Fig.1 Clusters of genes in different tissues of C. nippona and under different salinity stresses. Different tissues include mantle (M), visceral mass (V), adductor muscle (A) and gill (S). Different salinity stresses include 30 (S3), 20 (S2), 10 (S1).

    Fig.2 Venn diagram of genes in cluster 3 of different tissues and cluster 1 under different salinity stresses.

    Table 1 Candidate reference genes and their primer sequences used for real-time PCR

    ()

    ()

    Gene nameAbbreviationPrimer sequence (5’–3’)Product size (bp) Cytochrome c oxidase subunit IIICO3F: CTATTAGTGGCATCTTCAGCR: ACAGACAGCCCCAAAGTAAC107 40S ribosomal protein S8RPS8F: GATAAATGGCACAAGAGGAGR: AGACGAAGGGCTCTGTATTT164 40S ribosomal protein S4RPS4F: AGGGACGCTTCACAGTTCACR: GGGTGGTGATGTAGGGAACG108 Cytochrome bCYTBF: AATAAACTCCACGGGCGACR: ATTATTCGGCAGATGAGCAG150 Elongation factor 1-alphaEF1AF: CTGGATGGCACGGAGATAACR: GACGAAGAGGTAAGTCAGTTGG162 Heterogeneous nuclear ribonucleoprotein A2/B1RO21F: TAGATTGGGCTGACCCTGTGR: CTGATGGTGGTTTGGCAAGT273 Glyceraldehyde 3-phosphate dehydrogenaseGAPDHF: CTACAGGGTGCTTCACTACTR: GATGTTCTGGTCTTTGGAGT146 α-tubulinTUAF: CGAGGCTATCTACGACATCTGCR: GCCAGAGGGAAGTGGATACG155 β-tubulinTUBF: CCTTAGCCCAGTTGTTTCCAGR: GCCAGAGGGAAGTGGATACG192

    3.2 Real-Time PCR Amplification of Candidate Housekeeping Genes

    All the primer pairs amplified single PCR product with expected size, and the specificity of amplicon was confirmed by the single peak of the melt curve and the sequencing analysis. PCR efficiencies of primers ranged from 94%–106%. The meant values of reference genes ranged from 22.02–29.36.

    3.3 Expression Stability of Candidate Housekeeping Genes

    RPS4 (=0.52), EF1A (=0.52) and RPL4 (=0.59) were the most stable genes in different tissues, while RPS8 (=2.40), CO3 (=2.02) and CYTB (=1.7) were the least stable. RPL4 and RPS4 (=0.21) were the most stable genes in gill tissue under salinity stress, while the most common used internal controls TUB (=1.36), RO21 (=1.05), TUA (=0.97), EF1A (=0.79) and GAPDH (=0.67) appeared less stable (Fig.3).

    Fig.3 Expression stability of reference genes calculated by GeNorm in different tissues (A) and under different salinity stresses (B).

    3.4 Optimum Number of Housekeeping Genes

    The2/3 value was 0.12 in different tissues, while it was 0.15 in gill tissue under salinity stress (Fig.4). This suggests that RPL4 and RPS4 can be chosen as reference genes to study the gene expression levels inunder salinity stress.

    4 Discussion

    This is the first study to analyze the stability of potential reference genes selected from transcriptome dataset ofunder different salinity stresses. The candidate reference genes detected from transcriptome datasets are almost ribosomal protein genes and mitochondrial respi- ratory chain protein genes (CO3 and CYTB). The less stable expression of respiratory chain genes can be explained by the energy demand of the organism under different salinity conditions (Ellison and Burton, 2008). Ribo- somal protein genes generally performed better than com- mon housekeeping genes.

    Fig.4 Determination of the optimal number of reference genes required for accurate normalization in different tissues (A) and under different salinity stresses (B), based on pairwise variation (Vn/n+1) between reference genes using GeNorm analysis.

    The ribosome, as a catalyst for protein synthesis, is uni- versal and essential for all organisms. A mammalian ribo- some has 79 ribosomal proteins, one more than a yeast ri- bosome encoded by 137 genes, of which L is for large subunit and S is for small subunit (Warner, 1999). Ribo- some protein genes are considered good reference genes because of their participation in all types of cells for the synthesis of new ribosomes (Hisao., 2001). Several recently published reports have validated that ribosomal protein genes showed high stability in diverse abiotic and biotic conditions, indicating that they may become ano- ther source of reference genes (Shakeel, 2018). They have been widely used as internal genes in both human and other animals, as well as in plants and algae (Barsalobres-Cavallari, 2009; Rosic, 2011; Liu, 2012). RPL4 and RPS4 are the most stably expressed genes in different tissues under salinity stress in the current study. RPS4 was demonstrated to be the best housekeeping genes in the algaunder thermal stress (Rosic, 2011).

    EF1A, TUB, TUA, GAPDH and RO21 are commonly used as internal controls for qRT-PCR in oysters (Boutet, 2004; Gonzalez, 2007; Meistertzheim, 2007). EF1A is a member of the G-protein family, which plays a key role in protein translation (Browne and Proud, 2002). Although EF1A has stable expression levels in the gill tissue under variant salinity stresses, it has less stable expression compared among each tissue, implying that it is not suitable to be a reference gene under salinity stress. The heterodimeric protein α, β-tubulin assembles the mi- crotubule in a head-to-tail arrangement (McKean, 2001). GAPDH functions in nuclear RNA export, DNA replication, DNA repair, exocytotic membrane fusion, cyto- skeletal organization and phosphotransferase activity (Tri- stan, 2011); RO21 is heterogeneous nuclear ribonucleo-protein (hnRNP) and plays a significant role in the regulation of mRNA-related processes (Siomi and Drey- fuss, 1997). None of these five commonly used housekeeping genes showed high stability under salinity stress, suggesting that they were unsuitable as internal controls in this situation.

    The unstable expression levels of commonly used house- keeping genes mean that there is no ‘one-size-fits-all’gene that can be used for the normalization of gene expression data under all conditions (Barber, 2005). Vandesompele(2002) have proposed the use of the mean expression level of several genes for normalization. Pairwise variation in the A and B groups were both below the cut-off value of 0.15, showing that the use of RPL4 and RPS4 as reference genes is sufficient in gene expression studies inunder salinity stress, irrespective of different tissues.

    In conclusion, our data suggest that the novel genes detected from transcriptome data performed better than commonly used reference genes of. The results of the present study will facilitate sensitive and accurate quantification of gene expression in, which could also be extrapolated to related oyster species.

    Acknowledgements

    This study was supported by grants from the National Natural Science Foundation of China (No. 31772843), the Natural Science Foundation of Guangxi Province (No. AA17204080-4), the Fundamental Research Funds for the Central Universities (No. 201762014), and the Ocean Uni- versity of China-Auburn University Joint Research Cen- ter for Aquaculture and Environmental Science.

    Barber, R. D., Harmer, D. W., Coleman, R. A., and Clark, B. J., 2005. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues., 21: 389-395.

    Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., and Maia, I. G., 2009. Identification of suitable internal control genes for expression studies inunder different experimental conditions., 10: 1.

    Boudry, P., Heurtebise, S., and Lapègue, S., 2003. Mitochondrial and nuclear DNA sequence variation of presumedandspecimens: A new oyster species in Hong Kong?, 228: 15-25.

    Boutet, I., Tanguy, A., and Moraga, D., 2004. Response of the Pacific oysterto hydrocarbon contamination under experimental conditions., 329: 147-157.

    Browne, G. J., and Proud, C. G., 2002. Regulation of peptide-chain elongation in mammalian cells., 269: 5360-5368.

    Drouin, G., Himmelman, J. H., and Béland, P., 1985. Impact of tidal salinity fluctuations on echinoderm and mollusc populations., 63: 1377-1387.

    Eisenberg, E., and Levanon, E. Y., 2003. Human housekeeping genes are compact., 19: 362-365.

    Ellison, C. K., and Burton, R. S., 2008. Genotype-dependent va- riation of mitochondrial transcriptional profiles in interpopulation hybrids., 105: 15831-15836.

    Gagnaire, B., Frouin, H., Moreau, K., Thomas-Guyon, H., and Renault, T., 2006. Effects of temperature and salinity on hae- mocyte activities of the Pacific oyster,(Thun- berg)., 20: 536-547.

    Gonzalez, M., Gueguen, Y., Desserre, G., De Lorgeril, J., Romestand, B., and Bachère, E., 2007. Molecular characterization of two isoforms of defensin from hemocytes of the oyster., 31: 332-339.

    Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome., 29: 644-652.

    Greer, S., Honeywell, R., Geletu, M., Arulanandam, R., and Rap- tis, L., 2010. Housekeeping genes; expression levels may change with density of cultured cells., 355: 76-79.

    Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M., 1996. Real time quantitative PCR., 6: 986-994.

    Hsiao, L. L., Dangond, F., Yoshida, T., Hong, R., Jensen, R. V., Misra, J., Dillon, W., Lee, K. F., Clark, K. E., Haverty, P., Weng, Z., Mutter, G. L., Frosch, M. P., MacDonald, M. E., Milford, E. L., Crum, C. P., Bueno, R., Pratt, R. E., Mahadevappa, M., Warrington, J. A., Stephanopoulos, G., and Gullans, S. R., 2001. A compendium of gene expression in normal human tissues., 7: 97-104.

    Itoh, N., Tun, K. L., Komiyama, H., Ueki, N., and Ogawa, K., 2004. An ovarian infection in the Iwagaki oyster,, with the protozoan parasite., 27: 311-314.

    Kuchel, R. P., Raftos, D. A., and Nair, S., 2010. Immunosuppressive effects of environmental stressors on immunological function in., 29: 930-936.

    Langmead, B., and Salzberg, S. L., 2012. Fast gapped-read align- ment with Bowtie 2., 9: 357-359.

    Li, B., and Dewey, C. N., 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome., 12: 323.

    Li, J., Zhang, Y., Liu, Y., Zhang, Y., Xiao, S., and Yu, Z., 2016. Co-expression of heat shock protein (HSP) 40 and HSP70 inresponse to thermal, low salinity and bacterial challenges., 48: 239-243.

    Liu, C., Wu, G., Huang, X., Liu, S., and Cong, B., 2012. Validation of housekeeping genes for gene expression studies in an ice algaduring freezing acclimation., 16: 419-425.

    Mackay, I. M., Arden, K. E., and Nitsche, A., 2002. Real-time PCR in virology., 30: 1292-1305.

    McKean, P. G., Vaughan, S., and Gull, K., 2001. The extended tubulin superfamily., 114: 2723-2733.

    Meistertzheim, A. L., Tanguy, A., Moraga, D., and Thébault, M. T., 2007. Identification of differentially expressed genes of the Pacific oysterexposed to prolonged ther- mal stress., 274: 6392-6402.

    Meng, X., Dong, Y., Dong, S., Yu, S., and Zhou, X., 2011. Mortality of the sea cucumber,Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression., 316: 88-92.

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-seq., 5: 621-628.

    Philippart, C. J., Anadón, R., Danovaro, R., Dippner, J. W., Drink- water, K. F., Hawkins, S. J., Oguz, T., O’Sullivan, G., and Reid, P. C., 2011. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators., 400: 52-69.

    Radoni?, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., and Nitsche, A., 2004. Guideline to reference gene selection for quantitative real-time PCR., 313: 856-862.

    Rosic, N. N., Pernice, M., Rodriguez-Lanetty, M., and Hoegh- Guldberg, O., 2011. Validation of housekeeping genes for gene expression studies inexposed to thermal and light stress., 13: 355-365.

    Shakeel, M., Rodriguez, A., Tahir, U. B., and Jin, F., 2018. Gene ex- pression studies of reference genes for quantitative realtime PCR: An overview in insects., 40: 227-236.

    Siomi, H., and Dreyfuss, G., 1997. RNA-binding proteins as re- gulators of gene expression., 7: 345-353.

    Tristan, C., Shahani, N., Sedlak, T. W., and Sawa, A., 2011. The diverse functions of GAPDH: Views from different subcellular compartments., 23: 317-323.

    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes., 3: research0034.1.

    Warner, J. R., 1999. The economics of ribosome biosynthesis in yeast., 24: 437-440.

    Zhang, G., Li, L., Meng, J., Qi, H., Qu, T., Xu, F., and Zhang, L., 2016. Molecular basis for adaptation of oysters to stressful marine intertidal environments., 4: 357-381.

    . Tel: 0086-532-82031622

    E-mail: qili66@ouc.edu.cn

    December 26, 2019;

    February 13, 2020;

    June 30, 2020

    (Edited by Qiu Yantao)

    美女福利国产在线| 亚洲欧美激情在线| 亚洲国产看品久久| 黄片小视频在线播放| 黄频高清免费视频| 大码成人一级视频| 精品久久久精品久久久| av天堂在线播放| 精品乱码久久久久久99久播| 免费人妻精品一区二区三区视频| 正在播放国产对白刺激| 天堂俺去俺来也www色官网| 搡老岳熟女国产| 成在线人永久免费视频| 亚洲熟女精品中文字幕| 国产精品免费大片| 亚洲精品一卡2卡三卡4卡5卡 | 精品熟女少妇八av免费久了| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 亚洲欧美精品综合一区二区三区| 日韩欧美一区二区三区在线观看 | 亚洲精品久久成人aⅴ小说| 成年美女黄网站色视频大全免费| 少妇人妻久久综合中文| 又黄又粗又硬又大视频| 国产精品香港三级国产av潘金莲| 男女边摸边吃奶| 国产男女内射视频| 97精品久久久久久久久久精品| 日韩电影二区| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 在线 av 中文字幕| 少妇精品久久久久久久| 大型av网站在线播放| 欧美一级毛片孕妇| 9191精品国产免费久久| 国产亚洲一区二区精品| 可以免费在线观看a视频的电影网站| 日韩人妻精品一区2区三区| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 日本wwww免费看| 免费av中文字幕在线| 精品高清国产在线一区| 国产亚洲精品一区二区www | 亚洲男人天堂网一区| 精品少妇黑人巨大在线播放| 久久久久精品人妻al黑| 男女无遮挡免费网站观看| 日韩欧美一区二区三区在线观看 | 成人手机av| 久久性视频一级片| 一区在线观看完整版| 桃花免费在线播放| 18禁裸乳无遮挡动漫免费视频| 国产av精品麻豆| 免费观看人在逋| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区黑人| 亚洲av电影在线进入| 国内毛片毛片毛片毛片毛片| 国产亚洲精品久久久久5区| 国产精品久久久久久人妻精品电影 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区国产一区二区| 欧美午夜高清在线| 久9热在线精品视频| 国产99久久九九免费精品| 亚洲国产欧美日韩在线播放| 国产一区二区三区在线臀色熟女 | 他把我摸到了高潮在线观看 | 亚洲国产精品一区三区| 999久久久国产精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩成人在线一区二区| 久久 成人 亚洲| 91字幕亚洲| 色94色欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 黑人操中国人逼视频| 国产精品免费视频内射| 午夜免费观看性视频| 国内毛片毛片毛片毛片毛片| 99精品久久久久人妻精品| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 欧美黄色淫秽网站| 久热爱精品视频在线9| 1024香蕉在线观看| 99热国产这里只有精品6| 国产成人精品久久二区二区免费| 精品视频人人做人人爽| 久久九九热精品免费| 亚洲欧美日韩高清在线视频 | 成人免费观看视频高清| 日韩制服骚丝袜av| 国产精品久久久久成人av| 亚洲第一av免费看| 黄片大片在线免费观看| 人人澡人人妻人| 免费在线观看影片大全网站| 性高湖久久久久久久久免费观看| 国产区一区二久久| 岛国在线观看网站| 日本精品一区二区三区蜜桃| e午夜精品久久久久久久| 亚洲欧美清纯卡通| 国产一卡二卡三卡精品| 欧美人与性动交α欧美精品济南到| 91精品国产国语对白视频| 乱人伦中国视频| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 久久久精品区二区三区| videosex国产| 国产激情久久老熟女| 午夜两性在线视频| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久 | 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 午夜视频精品福利| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| 午夜福利在线免费观看网站| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 亚洲九九香蕉| 亚洲av电影在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 欧美一级毛片孕妇| 欧美日韩亚洲高清精品| 国产成人精品久久二区二区91| 国产片内射在线| 悠悠久久av| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx| 一级黄色大片毛片| 国产欧美亚洲国产| 欧美另类亚洲清纯唯美| 18禁观看日本| 视频在线观看一区二区三区| 99九九在线精品视频| 一区福利在线观看| 中文字幕人妻熟女乱码| a级毛片黄视频| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看 | 欧美性长视频在线观看| 久久中文看片网| 国产精品秋霞免费鲁丝片| 美国免费a级毛片| 久久精品国产亚洲av香蕉五月 | 日韩人妻精品一区2区三区| 看免费av毛片| 精品人妻在线不人妻| 久久九九热精品免费| 9191精品国产免费久久| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影 | 精品国产乱码久久久久久男人| 桃红色精品国产亚洲av| 日本91视频免费播放| 捣出白浆h1v1| 亚洲精品自拍成人| 99久久精品国产亚洲精品| 精品一区在线观看国产| av免费在线观看网站| 搡老岳熟女国产| 岛国毛片在线播放| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| 91精品国产国语对白视频| 久久人人爽人人片av| tube8黄色片| 五月开心婷婷网| 这个男人来自地球电影免费观看| 亚洲精品乱久久久久久| 脱女人内裤的视频| 不卡av一区二区三区| 99久久人妻综合| 亚洲精品美女久久av网站| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 岛国毛片在线播放| 青春草亚洲视频在线观看| 亚洲 国产 在线| 永久免费av网站大全| 淫妇啪啪啪对白视频 | 最近最新中文字幕大全免费视频| 久久青草综合色| 国产亚洲精品第一综合不卡| 亚洲美女黄色视频免费看| 欧美人与性动交α欧美软件| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 成在线人永久免费视频| 亚洲色图综合在线观看| 18禁国产床啪视频网站| 人妻久久中文字幕网| 老汉色∧v一级毛片| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| av在线老鸭窝| 国产国语露脸激情在线看| 国产精品1区2区在线观看. | 丝袜喷水一区| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 91av网站免费观看| 丝袜美足系列| 久久久欧美国产精品| 色婷婷av一区二区三区视频| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av | 91老司机精品| 欧美黑人精品巨大| 成人国语在线视频| 国产日韩欧美视频二区| 啪啪无遮挡十八禁网站| 久久国产亚洲av麻豆专区| 亚洲精品久久成人aⅴ小说| 日本wwww免费看| 日韩一区二区三区影片| 亚洲国产欧美一区二区综合| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 91老司机精品| 欧美另类亚洲清纯唯美| av线在线观看网站| 欧美人与性动交α欧美精品济南到| 国产精品久久久久久精品电影小说| 美女高潮到喷水免费观看| 免费av中文字幕在线| 国产亚洲精品第一综合不卡| 一区二区av电影网| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 亚洲自偷自拍图片 自拍| 国产欧美日韩精品亚洲av| 日本猛色少妇xxxxx猛交久久| 国产在线一区二区三区精| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 男女床上黄色一级片免费看| 国产激情久久老熟女| 新久久久久国产一级毛片| 黄片大片在线免费观看| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 精品高清国产在线一区| 国产在线免费精品| 国产人伦9x9x在线观看| 久久精品国产亚洲av香蕉五月 | 久久这里只有精品19| 黑人巨大精品欧美一区二区mp4| 俄罗斯特黄特色一大片| 精品少妇久久久久久888优播| 两个人免费观看高清视频| 成人国语在线视频| 国产野战对白在线观看| 日韩制服骚丝袜av| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 又紧又爽又黄一区二区| 久久人妻福利社区极品人妻图片| 亚洲欧美一区二区三区久久| 亚洲精品美女久久久久99蜜臀| 高清av免费在线| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 天天躁夜夜躁狠狠躁躁| 两性夫妻黄色片| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀| www.熟女人妻精品国产| avwww免费| 国产成人免费观看mmmm| 精品亚洲成a人片在线观看| 欧美人与性动交α欧美精品济南到| 久久人人爽人人片av| 交换朋友夫妻互换小说| 久久精品国产综合久久久| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频 | 国产成人精品久久二区二区91| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 国产精品av久久久久免费| 美女扒开内裤让男人捅视频| 亚洲欧美激情在线| 女人久久www免费人成看片| 成人国语在线视频| 国产视频一区二区在线看| h视频一区二区三区| 99香蕉大伊视频| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 亚洲国产av影院在线观看| 欧美国产精品va在线观看不卡| 亚洲av美国av| 国产成人免费观看mmmm| 黑人巨大精品欧美一区二区mp4| 女人久久www免费人成看片| 午夜激情久久久久久久| 丰满饥渴人妻一区二区三| 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 人成视频在线观看免费观看| 丝袜脚勾引网站| 精品免费久久久久久久清纯 | 国产99久久九九免费精品| 免费在线观看完整版高清| 一级毛片电影观看| 1024香蕉在线观看| 搡老乐熟女国产| 国产精品久久久人人做人人爽| 国产精品亚洲av一区麻豆| 亚洲精品在线美女| 高清黄色对白视频在线免费看| 国产av国产精品国产| 日韩欧美一区二区三区在线观看 | 婷婷成人精品国产| 黄频高清免费视频| av在线播放精品| 男人添女人高潮全过程视频| 嫁个100分男人电影在线观看| 国产成人精品久久二区二区免费| h视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 免费观看人在逋| 人人澡人人妻人| 欧美精品高潮呻吟av久久| a在线观看视频网站| 欧美 亚洲 国产 日韩一| 亚洲精品一二三| 成人国语在线视频| 性色av一级| 久久人妻熟女aⅴ| 午夜免费鲁丝| 美女午夜性视频免费| 久9热在线精品视频| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 脱女人内裤的视频| 国产免费现黄频在线看| 精品国产国语对白av| 天天添夜夜摸| 精品久久久精品久久久| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 日韩一区二区三区影片| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 亚洲熟女精品中文字幕| 91字幕亚洲| 国产一区二区在线观看av| 嫩草影视91久久| 日本wwww免费看| 午夜免费成人在线视频| 成年女人毛片免费观看观看9 | 老司机在亚洲福利影院| 18在线观看网站| 久久久精品区二区三区| 精品熟女少妇八av免费久了| 99国产极品粉嫩在线观看| 亚洲国产av新网站| 亚洲成人免费av在线播放| 操美女的视频在线观看| 精品国产一区二区三区四区第35| 国产精品免费大片| 黄片小视频在线播放| 两个人看的免费小视频| 国产一区二区激情短视频 | 老鸭窝网址在线观看| 久久久久国产精品人妻一区二区| 久久精品亚洲av国产电影网| 老熟妇仑乱视频hdxx| 热99re8久久精品国产| 亚洲少妇的诱惑av| 欧美日韩亚洲国产一区二区在线观看 | 久久ye,这里只有精品| 亚洲国产精品999| 精品少妇久久久久久888优播| 岛国毛片在线播放| 亚洲精品国产av成人精品| 欧美xxⅹ黑人| 国产精品1区2区在线观看. | 香蕉国产在线看| 久久久久久人人人人人| 女人精品久久久久毛片| 一区福利在线观看| 久久久久久久久免费视频了| videosex国产| 欧美人与性动交α欧美软件| 男女边摸边吃奶| 激情视频va一区二区三区| 国产熟女午夜一区二区三区| 99国产极品粉嫩在线观看| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 久久久久精品国产欧美久久久 | 多毛熟女@视频| 久久亚洲国产成人精品v| 我的亚洲天堂| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲 | 久久青草综合色| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 伊人亚洲综合成人网| 一级黄色大片毛片| av福利片在线| 韩国精品一区二区三区| 中文精品一卡2卡3卡4更新| 在线永久观看黄色视频| 精品国内亚洲2022精品成人 | 天天躁狠狠躁夜夜躁狠狠躁| 国产男女内射视频| 久久久久国产一级毛片高清牌| 一个人免费看片子| 老司机午夜十八禁免费视频| 久久久久久人人人人人| 亚洲色图 男人天堂 中文字幕| 国产在视频线精品| 国产精品九九99| av国产精品久久久久影院| 在线天堂中文资源库| 亚洲 欧美一区二区三区| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 深夜精品福利| 黄片播放在线免费| 亚洲男人天堂网一区| 精品一区在线观看国产| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 国产国语露脸激情在线看| 999精品在线视频| 桃红色精品国产亚洲av| 伦理电影免费视频| 午夜福利一区二区在线看| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 91精品国产国语对白视频| 在线永久观看黄色视频| av福利片在线| 少妇 在线观看| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 天天躁夜夜躁狠狠躁躁| 日本av免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 1024视频免费在线观看| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 黑人猛操日本美女一级片| 久久亚洲精品不卡| 久久久国产一区二区| 男女无遮挡免费网站观看| 国产激情久久老熟女| 99久久人妻综合| 精品久久久久久电影网| 丝瓜视频免费看黄片| 极品人妻少妇av视频| 男女午夜视频在线观看| 美女大奶头黄色视频| 国产国语露脸激情在线看| 91字幕亚洲| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 一级黄色大片毛片| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 国产不卡av网站在线观看| 亚洲第一欧美日韩一区二区三区 | 九色亚洲精品在线播放| 中文字幕另类日韩欧美亚洲嫩草| 咕卡用的链子| 国产精品.久久久| 天堂8中文在线网| 亚洲视频免费观看视频| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 久久香蕉激情| 老汉色∧v一级毛片| 香蕉国产在线看| 另类精品久久| 久久久久久久久久久久大奶| 久久人人爽人人片av| 亚洲黑人精品在线| 水蜜桃什么品种好| 成人手机av| 成年av动漫网址| 色婷婷av一区二区三区视频| 国产在线观看jvid| 精品一区二区三区av网在线观看 | 成人手机av| 国产精品麻豆人妻色哟哟久久| 欧美久久黑人一区二区| 国产伦人伦偷精品视频| 黄色 视频免费看| av网站在线播放免费| 亚洲精品粉嫩美女一区| a级毛片黄视频| 久久精品久久久久久噜噜老黄| 久久亚洲精品不卡| 精品卡一卡二卡四卡免费| 汤姆久久久久久久影院中文字幕| 久久久国产欧美日韩av| 精品国产乱子伦一区二区三区 | 热re99久久精品国产66热6| 中文字幕色久视频| 亚洲国产日韩一区二区| 水蜜桃什么品种好| 少妇人妻久久综合中文| 国产伦理片在线播放av一区| 超碰成人久久| 两性夫妻黄色片| 美女午夜性视频免费| 免费一级毛片在线播放高清视频 | 久久ye,这里只有精品| 亚洲九九香蕉| 美女视频免费永久观看网站| 日本猛色少妇xxxxx猛交久久| 国产免费现黄频在线看| 亚洲精品国产av蜜桃| 国产精品久久久久久人妻精品电影 | 热re99久久精品国产66热6| 久久久久国产一级毛片高清牌| 国产一区二区三区综合在线观看| 免费日韩欧美在线观看| 亚洲美女黄色视频免费看| 美女午夜性视频免费| 啦啦啦视频在线资源免费观看| 一级,二级,三级黄色视频| 精品人妻一区二区三区麻豆| 黄色a级毛片大全视频| cao死你这个sao货| 欧美+亚洲+日韩+国产| 国产精品一区二区在线不卡| 国产伦人伦偷精品视频| 中文字幕制服av| 伦理电影免费视频| 免费观看人在逋| 午夜视频精品福利| av一本久久久久| 国产亚洲精品久久久久5区| 成人av一区二区三区在线看 | www.999成人在线观看| 国产免费视频播放在线视频| 免费高清在线观看日韩| 国产成人精品久久二区二区免费| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 欧美精品亚洲一区二区| 一区在线观看完整版| 精品亚洲成国产av| 老司机福利观看| 亚洲国产看品久久| 亚洲精品国产色婷婷电影| 中文字幕人妻丝袜一区二区| 热re99久久国产66热| 久久精品国产亚洲av高清一级| 国产视频一区二区在线看| 美女主播在线视频| videos熟女内射| 欧美中文综合在线视频| www.999成人在线观看| 精品国产国语对白av| 男女之事视频高清在线观看| 老司机亚洲免费影院| 亚洲人成电影观看| 自线自在国产av| 国产亚洲欧美精品永久| 亚洲成av片中文字幕在线观看| 咕卡用的链子|