• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    2020-11-30 04:43:18SHAOGuihangandLIYuguo
    Journal of Ocean University of China 2020年6期

    SHAO Guihang, and LI Yuguo, 2), *

    Numerical Simulation and Analysis of Electromagnetic Fields Induced by a Moving Ship Based on a Three-Layer Geoelectric Model

    SHAO Guihang1), and LI Yuguo1), 2), *

    1),,,,266100,2),,266237,

    In this paper, we present a numerical simulation method of electromagnetic (EM) fields induced by a moving ship (EMFMS), which consist of both the shaft-rate EM field and the static EM field. The shaft-rate EM fields in the frequency domain are first obtained by solving the partial differential equations together with suitable boundary conditions, and then they are transformed into the time domain by using the inverse Fourier transform. Finally, the static fields are added to obtain the EM fields of a moving ship. The effects of the source current intensity and the source position on the EM fields of a moving ship are discussed in detail. A field example of EM response of a moving ship is presented and its characteristics are analyzed.

    moving ship; shaft-rate EM field; static EM field; numerical simulation

    1 Introduction

    In order to prevent seawater corrosion, ships are often equipped with cathodic protection devices. The currents pro- duced by cathodic protection devices usually form two circuits as shown in Fig.1 (Jeffrey and Brooking, 1999). The one flowing through the ship’s propeller is modulated by the varying bearing resistance, and generates shaft-rate electromagnetic fields (Holtham., 1999). The other flowing through the ship’s coating damage point generates static electromagnetic fields (Nain., 2013). Thus, the electric and magnetic fields induced by a moving ship (EMFMS) consist of both the shaft-rate field and the sta- tic field.

    The study of ship’s EM fields began in the 1960s (Zolotarevskii., 2005), and many studies on EMFMS have been conducted since then (Holmes, 2006). In these studies, however, simulation problems are often simplified. For instance, the geoelectric model is designed as an air- sea two-layer model (Sun., 2003; Lu., 2004; Liu., 2004; Zhang and Wang, 2016), in which the current source of a moving ship is assumed to be equivalent to a horizontal electric dipole (Lu., 2005; Ni., 2006), or the shaft-rate EM fields are neglected (Bao., 2011; Li., 2012). Although these simplifications can reduce the complexity of numerical simulation, they donot sufficiently simulate the real situation. Therefore, three types of problems can be caused by the simplifications. Firstly, in shallow water areas, the seafloor sediment layer has a great influence on the EM responses of a moving ship, hence the two-layer model is improper. Secondly, since the location of the ship’s propeller is different from the coating damage points (Liu, 2009; Cheng., 2016), the ship cannot be equivalent to a horizontal electric dipole. Third, the EM fields of a moving ship consist of both the shaft-rate field and the static field, so both of them should be considered.

    In this paper, we consider an air-seawater-seafloor three- layer geoelectric model. Both the shaft-rate field and the static field are simulated in the frequency domain by using both the horizontal and vertical electric dipoles, then the results are transformed into the time domain by using the inverse Fourier transform, and the EMFMS are obtained by adding the shaft-rate field to the static field. Finally, the shaft-rate field and the static field are separated from the measured EMFMS data, and the characteristics of them are discussed.

    2 Simulation of the EMFMS

    2.1 Theory

    The EMFMS consists of the shaft-rate EM field and the static EM field. They can be approximated by the EM fields of the tilted electric dipole source in the air-sea- seafloor three-layer geoelectric model (Fig.2a). The EM fields generated by a tilted dipole source can be seen as the superposition of those caused by the horizontal and vertical electric dipoles (Fig.2b), and can be expressed as

    where,,andare EM fields generated by the horizontal and vertical electric dipoles, respe- ctively.

    The electromagnetic fields generated by both the horizontal electric dipole (HED) and vertical electric dipole (VED) sources in the layered earth have been well studied (Li and Li, 2016).

    To obtain the EMFMS, both the shaft-rate field and the static field need to be transformed into time domain from frequency domain. Assuming that a ship starts to move at time1and position1along the-axis at a constant velocity, the ship’s position at timet(Fig.3a) can be expressed as:

    where t1, x1and v are known. The ship arrives at location xi at time ti, and ri is the distance from the mid-point of an electric dipole source to a receiver positioned at the seafloor.

    The procedure for calculating the EMFMS is listed as follows.

    1) Calculate shaft-rate fields(x,) (=1, 2,…,) in the frequency domain;

    Fig.2 Schematic diagrams of (a) a moving ship in the air-sea-seafloor three-layer geoelectric model and (b) electric dipole vector decomposition.

    Fig.3 Schematic diagrams of (a) three-layer model for a moving ship and (b) the shaft-rate EM fields in the time domain.

    2) Transform(x,) into time domain response(x,t) (,=1, 2,…,, note thatandare not equal all the time) (shown as red lines in Fig.3b) by using the discrete inverse Fourier transform (Press., 1992), and get the EM field(x,t) (shown as black point in Fig.3b), which is the shaft-rate part of EMFMS;

    3) Set the source frequency to 0 and calculate the static field(x) (=1, 2,…,), then get the time domain static field(t) according to Eq. (3);

    4) Get EMFMS by adding the shaft-rate field(x,t) to static field(t).

    2.2 Numerical Examples

    To demonstrate the procedure described previously, we set an air-seawater-seafloor three-layer model, which is called model M0 (Fig.4a). The resistivity of the air, the seawater and the seafloor is set to be 1010Ωm, 0.3Ωm and 10Ωm, respectively, and the seawater depth is 500m.

    Assuming that a ship travels from1=?1250m to2= 1250m at a constant speed of 3ms?1, the EMFMS can be simulated by using two moving electric dipoles. The one is the alternating electric dipole with a frequency of 3.6Hz and the other is static electric dipole. Both the dipoles are located at the same place and the positive and negative electrodes are at the points (?25, 0, 3) and (+25, 0, 3), respectively. Both of them have a current of 20A. A receiver is positioned at point (0, 0, 500) on the seafloor. Both the frequency domain shaft-rate field (=3.6Hz) and steady field are calculated and shown in Figs.4b and 4c. Assuming that the centers of the dipole sources are equidistantly placed along the line from=?1250m to=1250m at a depth of 3m, the frequency domain shaft-rate fields are transformed into the time domain by using the discrete fast Fourier transform (iFFT), where the frequency interval Δis set to be 0.0012Hz and the number of sample points is equal to 213. The time domain shaft-rate fields at all 213points are obtained by using discrete iFFT (Press., 1992). Finally, the shaft-rate field at the receiver site is synthetized by extracting corresponding value from the 213data set and shown as the red lines in Figs.4d and 4e.

    Fig.4 The numerical example of the EMFMS. (a), Schematic diagram of model M0; (b), Frequency domain Ey component; (c), Hx component; (d), Time domain Ey component; (e), Hx component; (f), Ey component and (g) Hx component of EM- FMS.

    From Figs.4b–4e, one can see that the amplitude of the shaft-rate fields differs from the static field in both the frequency domain (Figs.4b and 4c) and the time domain (Figs.4d and 4e). This means that the EMFMS is different from either the shaft-rate EM field or the static field. Thus, both of them need to be simulated and investigated.

    3 Analysis of EMFMS

    The characteristics of EMFMS responses are related to several parameters in the model M0 shown in Fig.4a. In this section, the effects of both the source current intensity and source position on EMFMS are investigated, re- spectively.

    3.1 Source Current Intensity

    The current intensity of the shaft-rate field might be dif- ferent from that of the static field, thus there is a need to investigate their influences on the EMFMS, respectively.

    Firstly, we investigate the influence of the direct current intensity on the EMFMS. Assuming that the direct current intensities are 4A (model M1, Fig.5a) and 100A (model M2, Fig.5b), respectively, and the other parameters are the same as those in model M0 (Fig.4a), the simulated EMFMS for models M1 and M2 are shown in Figs.5c–5e.

    Fig.5 Schematic diagrams of (a) model M1 and (b) model M2 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of direct current intensity on the EMFMS.

    From Figs.5c–5e, one can see that the EMFMS has the following features:

    1) The horizontal components of both the electric and magnetic fields (EandH) have a single peak in their variation curves and is symmetric with respect to the axis of=416.5s (Figs.5c and 5e), while the vertical component of the electric fieldEhas two peaks, one of which is positive at=334s and the other is negative at=499s (Fig.5d). The EMFMS attenuates faster and faster when the ship approaches to the receiver, but this trend slows down when it is far away from the receiver. The EMFMS envelope is crescent-shaped for models M0 and M2, but is spindle-shaped for model M1.

    2) The EMFMS’s amplitude increases with the increase of the direct current intensity, and the influence of direct current intensity on the magnetic field (H) is much greater than on the electric fields (EandE).

    Next, we investigate the influence of alternative current intensity on the EMFMS. We assume that the alternative current intensity is 4A (model M3, Fig.6a) and 100A (mo-del M4, Fig.6b), respectively, and the other parameters are the same as those in model M0 (Fig.4a). The simulated EMFMS for models M3 and M4 are shown in Figs.6c–6e.

    From Figs.6c–6e, one can see that the EMFMS has the following features:

    1) The peak’s position and symmetric feature of EM- FMS response in models M3 and M4 are similar to those in models M1 and M2.

    2) The range of the EMFMS envelope increases with the increase of the alternating current intensity.

    From Figs.5 and 6, one can see that the direct current intensity affects the peak’s position and symmetric feature of the EMFMS, while the alternating current intensity af- fects the range of the envelope.

    3.2 Source Position

    The alternating current source is not usually located at the same position as the direct current source. In the following, we discussed the influence of the source position on EMFMS.

    We assume that the alternating current source shifts 50 m horizontally from its position in model M0 (Fig.4a) along the positive and negative-axis direction, respectively, as shown in Fig.7a (model M5) and Fig.7b (model M6), and the other parameters are same as those in model M0 (Fig.4a). The simulated results of EMFMS for models M5 and M6 are shown in Figs.7c–7e.

    From Figs.7c–7e, one can see that the EMFMS is no longer symmetric with respect to the axis of=416.5s, this is because the symmetric centers of the shaft-rate field and the static field are at different position.

    Considering the shallow sea environments, we assume that the thickness of the seawater layer is 100m in models M7 and M8 (Figs.8a and 8b), and the other parameters are same as those in models M5 and M6. The simulated EMFMS for models M7 and M8 are shown in Figs.8c–8e.

    Fig.6 Schematic diagrams of (a) model M3 and (b) model M4 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of alternating current intensity on the EMFMS.

    Fig.7 Schematic diagrams of (a) model M5 and (b) model M6 and the simulated results of (c) Ey, (d) Ez, and (e) Hx to illustrate the effects of the source position on the EM- FMS.

    By comparing Figs.7 and 8, one can find that when the seawater depth is much larger than the length of the current source, the source position has very little influence on the EMFMS, and vice versa. There are two reasons for this. One is that the shaft-rate field is of the same order in magnitude as the static field in shallow water. The other is the offsets of symmetric centers between the shaft-rate field and the static field are much larger in shallow water than in deep water.

    3.3 Combined Effect of HED and VED Sources

    In order to investigate the combined effect of HED and VED sources on EMFMS, we build the model M9 and M10. In model M9, there is a HED source, and both the alternating and static horizontal dipole sources are located at the same position and their positive and negative electrodes are at (?25, 0, 15) and (+25, 0, 15), respectively, as shown in Fig.9a. In model M10, the dipole source is tilted at an angle of 30? relative to the-axis and its center is at (, 0, 15), as shown in Fig.9b. The simulated EM- FMS of both models are shown in Figs.9c–9e.

    From Figs.9c–9e, one can see that for the tilted dipole source (model M10), the electric fields are no longer symmetrical with respect to the axis of=416.5s. The electrical field amplitude on the left side becomes smaller and that on the right side becomes larger, and the amplitude of the magnetic field is smaller than that due to the horizontal dipole source (model M9). It is obvious that these features are resulting from the combined effect of the HED and VED sources.

    Fig.8 Schematic diagrams of (a) model M7 and (b) model M8 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the effect of the source position on the EMFMS in shallow water.

    Fig.9 Schematic diagrams of (a) model M9 and (b) model M10 and the simulated results of (c) Ey, (d) Ez, and (e) Hxto illustrate the combined effect of HED and VED sources.

    4 Measured Data

    We conducted an EMFMS test in the South Yellow Sea. An ocean bottom EM receiver (OBEM) was positioned on the seabed and recorded three electric field components and two horizontal components of the magnetic field. The sampling rate is 500Hz, and the water depth is 37m.

    The research vessel ‘’ traveled across over the OBEM. The recorded data are processed. The shaft-rate of the vessel is about 3.667Hz.

    Figs.10a and 10b show the measuredEand Hfields during a period of 216s, respectively. The measured fields are divided into the shaft-rate field and static field by using the sliding window technique (Figs.10c and 10d).

    From Figs.10c and 10d, one can see the following features.

    1) The anomaly of the shaft-rate magnetic field is greater than the shaft-rate electric field (in SI unit).

    2) TheEcomponent and theHcomponent of the sta- tic field in Figs.10c and 10d are very similar to the static fields in Figs.4d and 4e.

    3) The amplitude of static magnetic field is much larger than that of the shaft-rate magnetic field.

    From the time-frequency spectrograms (Figs.10e and 10f), one can see the following features:

    1) The static electric field is dominated at a frequency very close to 0Hz and the shaft-rate field is very clear at the fundamental frequency of 3.67Hz and its harmonics.

    2) The amplitude of the static magnetic field is much larger than the shaft-rate magnetic field, which is generated by the metal material of the vessel.

    Fig.10 Time series of (a) Ey and (b) Hx for measured EMFMS, time series of (c) Ey and (d) Hx for shaft-rate EM field and static field and spectrogram of (e) Ey and (f) Hx for EMFMS.

    5 Conclusions

    In this paper, we present a simulation method of electric and magnetic fields of a moving ship (EMFMS), which consisted of both the shaft-rate field generated by alterna- ting electric currents and the static field excited by static electric current. Then we investigated the effects of the current intensity and the source positions on the EMFMS. The numerical simulation and real measured data show that the seafloor, the shaft-rate field and the static field all have great impacts on EMFMS, so none of them could be neglected for EMFMS study.

    Acknowledgements

    This study is supported by the Fundamental Research Funds for the Central Universities (No. 201861020) and the Wenhai Program of Qingdao National Laboratory for Marine Science and Technology (QNLM) (No. 2017WH ZZB0201). We thank Drs. Ying Liu, Yunju Wu, Jie Lu, and Baoqiang Zhang for helpful suggestions on formula derivation of shaft-rate EM fields and data processing. We also thank two anonymous reviewers for valuable comments on our manuscript.

    Bao, Z., Gong, S., Sun, J., and Li, J., 2011. Localization of a horizontal electric dipole source embedded in deep sea by using two vector-sensors., 23 (3): 53-57, DOI: 10.3969/j.issn.1009-3486.2011. 03.012 (in Chinese with English abstract).

    Cheng, R., Jiang, R., and Gong, S., 2016. Calculation method of vessels’ shaft rate electric field equivalent source magnitude., 38 (2): 138-143, DOI: 10.11887/j.cn.201602023 (in Chinese with Eng- lish abstract).

    Holmes, J., 2006.. Morgan & Claypool Publishers, London, 78pp.

    Holtham, P., Jeffrey, I., Brooking, B., and Richards, T., 1999. Electromagnetic signature modeling and reduction.. London, UK, 97-100.

    Jeffrey, I., and Brooking, B., 1999. A survey of new electromagnetic stealth technologies.. Biloxi, Mississippi, 1-7.

    Li, D., Chen, C., Liu, H., and Yang, S., 2012. Green function method for extrapolating of ship’s underwater static electric field., 24 (3): 1-6, DOI: 10.3969/j.issn.1009-3486.2012.03.001 (in Chinese with English abstract).

    Li, Y., and Li, G., 2016. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles., 13 (4): 505-515, DOI: 10.1088/1742-2132/13/4/505.

    Liu, S., Xiao, C., and Gong, S., 2004. Electromagnetic field of DC electric dipole in two-layer model., 28 (5): 641-644, DOI: 10.3963/j.issn.2095-3844.2004.05. 004 (in Chinese with English abstract).

    Liu, Y., 2009. The measurement method of ship’s electric field. Master thesis. Harbin Engineering University (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Liu, S., 2005. Quasi-near field localization of a time-harmonic HED in sea water., 29 (3): 331-334, DOI: 10.3963/j.issn.2095-3844. 2005.03.001 (in Chinese with English abstract).

    Lu, X., Gong, S., Zhou, J., and Sun, M., 2004. Analytical expressions of the electromagnetic fields produced by an ELF time-harmonic HED embedded in the sea., 19 (3): 290-295, DOI: 10.13443/j.cjors.2004. 03.008 (in Chinese with English abstract).

    Nain, H., Isa, M. C., Mohd, M., Yusoff, N. H. N., Yati, M. S. D., and Nor, I. M., 2013. Management of naval vessel’s electromagnetic signatures: A review of sources and countermeasures., 6 (2): 93-110.

    Ni, H., Sun, M., and Gong, S., 2006. Calculation of the electromagnetic fields generated by horizontal current element in semi-infinite space of seawater., 20 (1): 63-65, DOI: 10.3969/j.issn. 1672-1497.2006.01.016 (in Chinese with English abstract).

    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992.. Press Syndicate of the University of Cambridge, New York, 1574pp.

    Sun, M., Gong, S., Zhou, J., and Lu, X., 2003. Calculation of the electromagnetic fields generated by DC horizontal current element in semi-infinite space of seawater.. Istanbul, Turkey, 734-736.

    Zhang, J., and Wang, X., 2016. Arithetic research about electric- field intensity of horizontal-harmonic current in the deep sea., 38 (1): 90-93, DOI: 10.3404/j. issn.1672-7649.2016.1.019 (in Chinese with English abstract).

    Zolotarevskii, Y. M., Bulygin, F. V., Ponomarev, A. N., Narchev,V. A., and Berezina, L. V., 2005. Methods of measuring the low- frequency electric and magnetic fields of ships., 48 (11): 1140-1144, DOI: 10.1007/s11018-006- 0035-6.

    . E-mail: yuguo@ouc.edu.cn

    September 18, 2019;

    February 26, 2020;

    April 18, 2020

    (Edited by Chen Wenwen)

    久久国产乱子免费精品| 中国美女看黄片| 变态另类丝袜制服| 岛国在线免费视频观看| 日日撸夜夜添| 夜夜夜夜夜久久久久| 日日啪夜夜撸| 成年女人毛片免费观看观看9| 美女免费视频网站| 12—13女人毛片做爰片一| 欧美+日韩+精品| 国产精品人妻久久久久久| 国产高清三级在线| 欧美国产日韩亚洲一区| 99久久无色码亚洲精品果冻| 噜噜噜噜噜久久久久久91| 最好的美女福利视频网| 男女下面进入的视频免费午夜| 99热只有精品国产| 精品免费久久久久久久清纯| av女优亚洲男人天堂| 精品午夜福利视频在线观看一区| 国产色爽女视频免费观看| 欧美日本视频| 中文亚洲av片在线观看爽| 婷婷精品国产亚洲av在线| 精品久久久噜噜| 真人做人爱边吃奶动态| 大型黄色视频在线免费观看| 久久精品综合一区二区三区| 无人区码免费观看不卡| 天堂网av新在线| 国产精品野战在线观看| 身体一侧抽搐| av中文乱码字幕在线| 日本与韩国留学比较| 午夜a级毛片| 免费看美女性在线毛片视频| 欧美色欧美亚洲另类二区| a级一级毛片免费在线观看| 国内精品美女久久久久久| 亚洲av.av天堂| 免费搜索国产男女视频| 级片在线观看| 久久香蕉精品热| 久久99热这里只有精品18| 日日干狠狠操夜夜爽| 亚洲成a人片在线一区二区| 成人欧美大片| 午夜免费成人在线视频| 日本免费a在线| 美女高潮的动态| 国产色爽女视频免费观看| 一区二区三区激情视频| 久久久久久国产a免费观看| 免费观看人在逋| 国产精品亚洲一级av第二区| 禁无遮挡网站| 欧美成人a在线观看| 99久久精品国产国产毛片| 亚洲国产色片| 免费看av在线观看网站| 俺也久久电影网| 国产亚洲av嫩草精品影院| 欧美xxxx性猛交bbbb| 成熟少妇高潮喷水视频| 午夜精品一区二区三区免费看| 免费av观看视频| h日本视频在线播放| 亚洲专区中文字幕在线| 午夜福利18| 美女高潮喷水抽搐中文字幕| 欧美性感艳星| 欧美成人一区二区免费高清观看| aaaaa片日本免费| 直男gayav资源| 91狼人影院| 1000部很黄的大片| 亚洲最大成人av| 韩国av在线不卡| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 亚洲图色成人| 在线天堂最新版资源| 五月玫瑰六月丁香| 色视频www国产| 日日摸夜夜添夜夜添av毛片 | 久久精品久久久久久噜噜老黄 | 亚洲精品一卡2卡三卡4卡5卡| 搡老熟女国产l中国老女人| 在线观看av片永久免费下载| 国产一区二区亚洲精品在线观看| 色视频www国产| 久久久久久久久久成人| 亚洲av.av天堂| 一本一本综合久久| 亚洲av成人精品一区久久| 免费在线观看日本一区| 99riav亚洲国产免费| 一区二区三区免费毛片| 在线免费观看不下载黄p国产 | 国产免费男女视频| 日本熟妇午夜| 亚洲中文字幕日韩| 国产精品久久久久久亚洲av鲁大| 久久久午夜欧美精品| 久久久午夜欧美精品| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 亚洲天堂国产精品一区在线| av在线老鸭窝| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添小说| av在线亚洲专区| 国产极品精品免费视频能看的| 十八禁网站免费在线| 午夜爱爱视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产私拍福利视频在线观看| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| 国产黄片美女视频| 十八禁网站免费在线| 国产成人av教育| 国产亚洲精品av在线| 91av网一区二区| 欧美zozozo另类| 国产v大片淫在线免费观看| 国语自产精品视频在线第100页| 亚洲av.av天堂| 国内精品宾馆在线| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 成人永久免费在线观看视频| 亚洲中文字幕日韩| 又粗又爽又猛毛片免费看| 国产 一区精品| 久久精品夜夜夜夜夜久久蜜豆| 又粗又爽又猛毛片免费看| 动漫黄色视频在线观看| 午夜免费成人在线视频| 在线观看av片永久免费下载| 国产伦精品一区二区三区视频9| 少妇被粗大猛烈的视频| 3wmmmm亚洲av在线观看| 精品乱码久久久久久99久播| 欧美性猛交黑人性爽| 俄罗斯特黄特色一大片| 两个人视频免费观看高清| 亚洲av熟女| 中国美女看黄片| 夜夜夜夜夜久久久久| 成人综合一区亚洲| 国产成人一区二区在线| 久久欧美精品欧美久久欧美| av在线亚洲专区| 人妻丰满熟妇av一区二区三区| 久久久久久久亚洲中文字幕| 国产精品亚洲一级av第二区| 国产真实伦视频高清在线观看 | 亚洲av熟女| 最新在线观看一区二区三区| av专区在线播放| 蜜桃久久精品国产亚洲av| 成人鲁丝片一二三区免费| 免费人成在线观看视频色| 欧美最新免费一区二区三区| 此物有八面人人有两片| 男女做爰动态图高潮gif福利片| 丰满乱子伦码专区| 欧美成人一区二区免费高清观看| 国产单亲对白刺激| 成人欧美大片| av.在线天堂| 久久精品久久久久久噜噜老黄 | 午夜免费激情av| 日本在线视频免费播放| 免费无遮挡裸体视频| 国产 一区精品| 91麻豆精品激情在线观看国产| 欧美黑人巨大hd| 亚洲成a人片在线一区二区| 18+在线观看网站| 1000部很黄的大片| 长腿黑丝高跟| 国产一区二区亚洲精品在线观看| 久久国内精品自在自线图片| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| 欧美+亚洲+日韩+国产| 草草在线视频免费看| 超碰av人人做人人爽久久| 亚洲国产色片| 国产大屁股一区二区在线视频| 国产免费男女视频| 亚洲乱码一区二区免费版| 乱人视频在线观看| 亚洲最大成人av| 99久久中文字幕三级久久日本| 日韩av在线大香蕉| 乱系列少妇在线播放| 亚洲三级黄色毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品成人久久久久久| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看 | 日韩一区二区视频免费看| 波野结衣二区三区在线| 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 美女xxoo啪啪120秒动态图| www.www免费av| 桃色一区二区三区在线观看| 欧美潮喷喷水| 97碰自拍视频| 久久久久久久久久黄片| 亚洲黑人精品在线| 男女那种视频在线观看| 日日撸夜夜添| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 国产亚洲91精品色在线| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| 嫩草影院新地址| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 婷婷精品国产亚洲av在线| 免费高清视频大片| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 色哟哟哟哟哟哟| 国产av不卡久久| 日本一二三区视频观看| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区成人| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 最好的美女福利视频网| 国产黄a三级三级三级人| 日本欧美国产在线视频| 中文字幕免费在线视频6| 在线天堂最新版资源| 国产一区二区在线av高清观看| 一进一出抽搐动态| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 国产精品久久视频播放| 性欧美人与动物交配| 亚洲,欧美,日韩| 亚洲自拍偷在线| а√天堂www在线а√下载| 成人二区视频| 国产伦一二天堂av在线观看| 精品久久久久久,| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 国产欧美日韩精品亚洲av| 三级毛片av免费| 久久久久免费精品人妻一区二区| 午夜福利18| 欧美在线一区亚洲| 直男gayav资源| 国产免费一级a男人的天堂| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 18+在线观看网站| 丰满人妻一区二区三区视频av| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 久99久视频精品免费| 麻豆成人av在线观看| 搡老妇女老女人老熟妇| 中国美白少妇内射xxxbb| 九色成人免费人妻av| 国内久久婷婷六月综合欲色啪| 日韩欧美精品v在线| 午夜爱爱视频在线播放| 国产高潮美女av| 俺也久久电影网| 亚洲av五月六月丁香网| 亚洲七黄色美女视频| 在线播放无遮挡| 国产男人的电影天堂91| 级片在线观看| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 深夜a级毛片| 国产中年淑女户外野战色| 国产午夜福利久久久久久| 两个人视频免费观看高清| 天堂网av新在线| 久久久成人免费电影| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 成人二区视频| 日本色播在线视频| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 男女之事视频高清在线观看| 欧美人与善性xxx| 亚洲精品国产成人久久av| 老女人水多毛片| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 色吧在线观看| 男女那种视频在线观看| 亚洲av免费在线观看| 日本在线视频免费播放| www.色视频.com| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 免费看av在线观看网站| 久久国产乱子免费精品| 日韩精品青青久久久久久| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 搞女人的毛片| 国产黄色小视频在线观看| 午夜免费男女啪啪视频观看 | 18禁在线播放成人免费| 亚洲,欧美,日韩| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 97超视频在线观看视频| 久久久精品大字幕| 波多野结衣高清作品| 国产色爽女视频免费观看| 日日撸夜夜添| 亚洲人成网站高清观看| 亚洲av成人av| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 欧美日韩国产亚洲二区| 日本a在线网址| 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 婷婷亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久久成人| АⅤ资源中文在线天堂| 国产精品日韩av在线免费观看| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 免费无遮挡裸体视频| 欧美性猛交黑人性爽| 成人一区二区视频在线观看| 有码 亚洲区| 国产主播在线观看一区二区| 成人av在线播放网站| 99久久九九国产精品国产免费| 国产一区二区在线av高清观看| 免费黄网站久久成人精品| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 精品久久久久久,| 99在线视频只有这里精品首页| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 99久国产av精品| 日本免费一区二区三区高清不卡| 久久亚洲真实| 欧美高清成人免费视频www| 99久久中文字幕三级久久日本| 夜夜夜夜夜久久久久| 国产午夜福利久久久久久| 女人十人毛片免费观看3o分钟| 免费一级毛片在线播放高清视频| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲网站| 久久香蕉精品热| 国产精品女同一区二区软件 | 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 国产成人一区二区在线| 国产男人的电影天堂91| 一卡2卡三卡四卡精品乱码亚洲| 日本免费一区二区三区高清不卡| 亚洲精华国产精华精| 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 性欧美人与动物交配| 成人av一区二区三区在线看| 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看| 色吧在线观看| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 日韩高清综合在线| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 国产在视频线在精品| 2021天堂中文幕一二区在线观| 在现免费观看毛片| 国产黄片美女视频| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 麻豆一二三区av精品| 亚洲精品色激情综合| 内地一区二区视频在线| 精品人妻1区二区| 亚洲欧美日韩高清专用| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 免费av观看视频| 哪里可以看免费的av片| 直男gayav资源| 精华霜和精华液先用哪个| 热99re8久久精品国产| 亚洲成人免费电影在线观看| av视频在线观看入口| 国产午夜精品论理片| 亚洲精品粉嫩美女一区| 尤物成人国产欧美一区二区三区| 一进一出抽搐gif免费好疼| 免费观看的影片在线观看| h日本视频在线播放| 制服丝袜大香蕉在线| 国产在线男女| 亚洲精品色激情综合| 国产aⅴ精品一区二区三区波| 黄片wwwwww| 欧美色欧美亚洲另类二区| 大型黄色视频在线免费观看| 美女cb高潮喷水在线观看| 精品福利观看| 嫩草影院新地址| 久久久久久久久久成人| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 久久久成人免费电影| 欧美成人免费av一区二区三区| 国产av在哪里看| 很黄的视频免费| 22中文网久久字幕| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产日韩欧美精品在线观看| 成年女人永久免费观看视频| 国产又黄又爽又无遮挡在线| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| av在线蜜桃| 欧美色视频一区免费| 国产高清不卡午夜福利| 成人午夜高清在线视频| av专区在线播放| 十八禁网站免费在线| 久久人妻av系列| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 国产成人一区二区在线| 亚洲无线在线观看| 国产av麻豆久久久久久久| 亚洲内射少妇av| 日韩大尺度精品在线看网址| 精品午夜福利在线看| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 免费看av在线观看网站| 午夜影院日韩av| 两人在一起打扑克的视频| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 全区人妻精品视频| 色精品久久人妻99蜜桃| 一个人看视频在线观看www免费| 久久久久性生活片| 欧美丝袜亚洲另类 | 色综合站精品国产| 久久久久免费精品人妻一区二区| 久久久久国内视频| 此物有八面人人有两片| 麻豆av噜噜一区二区三区| 亚洲av中文av极速乱 | 国产精品久久久久久精品电影| 可以在线观看毛片的网站| 精品免费久久久久久久清纯| 国产极品精品免费视频能看的| xxxwww97欧美| 精品一区二区免费观看| 少妇的逼水好多| 夜夜爽天天搞| 91久久精品电影网| 97超级碰碰碰精品色视频在线观看| 九九久久精品国产亚洲av麻豆| 免费观看精品视频网站| 欧美日韩乱码在线| 午夜福利在线观看免费完整高清在 | av在线蜜桃| 又爽又黄无遮挡网站| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 性插视频无遮挡在线免费观看| 国产爱豆传媒在线观看| 老司机福利观看| АⅤ资源中文在线天堂| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 全区人妻精品视频| 干丝袜人妻中文字幕| 久久久久久久久久黄片| 国产免费男女视频| 中亚洲国语对白在线视频| 久久香蕉精品热| 亚洲av一区综合| 熟女人妻精品中文字幕| 日日啪夜夜撸| 99热这里只有是精品在线观看| 国产 一区精品| 又爽又黄a免费视频| 波多野结衣高清作品| 亚洲av成人精品一区久久| 他把我摸到了高潮在线观看| 国产 一区 欧美 日韩| 99热网站在线观看| 国产成人a区在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲无线观看免费| 岛国在线免费视频观看| 在线观看66精品国产| 高清毛片免费观看视频网站| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 如何舔出高潮| 草草在线视频免费看| 日本一本二区三区精品| 天堂√8在线中文| 99久久精品一区二区三区| 床上黄色一级片| 亚洲午夜理论影院| 春色校园在线视频观看| 97人妻精品一区二区三区麻豆| 日韩大尺度精品在线看网址| 免费人成视频x8x8入口观看| 波多野结衣高清无吗| 久久人妻av系列| 日本a在线网址| 久久热精品热| 尤物成人国产欧美一区二区三区| 免费大片18禁| 12—13女人毛片做爰片一| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕熟女人妻在线| 免费观看在线日韩| 欧美极品一区二区三区四区| 欧美性猛交黑人性爽| 亚洲成人免费电影在线观看| 极品教师在线视频| 欧美一区二区国产精品久久精品| 女同久久另类99精品国产91| 最新在线观看一区二区三区| 久久精品影院6| 色综合色国产| 在线看三级毛片| 精品乱码久久久久久99久播| 亚洲国产精品合色在线| 国产成人aa在线观看| www.色视频.com| 中国美白少妇内射xxxbb| 午夜福利视频1000在线观看| 日本色播在线视频| 国产激情偷乱视频一区二区| 亚洲va在线va天堂va国产| 亚洲成人中文字幕在线播放| 成人欧美大片| 亚洲va在线va天堂va国产| 18禁黄网站禁片免费观看直播| 美女被艹到高潮喷水动态| www.www免费av| 亚洲精品成人久久久久久| 看黄色毛片网站| 给我免费播放毛片高清在线观看| 五月伊人婷婷丁香| 联通29元200g的流量卡| 欧美zozozo另类| 人人妻人人澡欧美一区二区| 天堂网av新在线| 精品久久久久久久末码| 欧美日本亚洲视频在线播放| 窝窝影院91人妻| 男人的好看免费观看在线视频| 成人三级黄色视频| 人人妻人人看人人澡| 国产精品嫩草影院av在线观看 | 欧美成人一区二区免费高清观看|