• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    2014-06-01 09:56:34HuiminLiangYaozhouZhangXiaoyanShiTianxiangWeiJiyuLou

    Huimin Liang, Yaozhou Zhang, Xiaoyan Shi, Tianxiang Wei Jiyu Lou

    1 Second Af fi liated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China

    2 Huaihe Hospital of Henan University, Kaifeng, Henan Province, China

    3 Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China

    4 Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China

    Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Huimin Liang1,2, Yaozhou Zhang3, Xiaoyan Shi4, Tianxiang Wei1, Jiyu Lou1

    1 Second Af fi liated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China

    2 Huaihe Hospital of Henan University, Kaifeng, Henan Province, China

    3 Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China

    4 Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Di fl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Di fl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

    nerve regeneration; Alzheimer’s disease; amyloid beta-peptide (25-35); Notch-1; PC12 cells; apoptosis; oxidative stress; nuclear factor kappa B; neural regeneration

    Liang HM, Zhang YZ, Shi XY, Wei TX, Lou JY. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res. 2014;9(13):1297-1302.

    Introduction

    Alzheimer’s disease is one of the most common neural degenerative diseases in humans and is characterized by memory impairment (Glenner and Wong, 1984; Hardy and Higgins, 1992; Tomita, 2011; Drachman, 2014). Studies indicated that synaptic changes and β-amyloid (Aβ), a 39- to 43-amino acid β-sheet peptide derived from proteolytic processing at the N-terminus of the amyloid precursor protein, are characteristic histopathological features of Alzheimer’s disease patients (Selkoe, 1991; Levine, 1993; Selkoe, 1994; Hardy, 1997; Crump et al., 2013). From a physiological point of view, Aβ25-35, a derivative of Aβ1-40and Aβ1-42, has been demonstrated to be the shortest fragment that exhibits biological activity and retains toxicity of the full-length peptide(s) (Shearman et al., 1994; Terzi et al., 1994; Fuller et al., 1995; Iversen et al., 1995; Pike et al., 1995).

    Notch-1 signaling is an important signaling pathway and has an important role in individual developmental processes, cell proliferation, differentiation and cell fate decisions by interacting with transcriptional regulators (Yu et al., 2000; Selkoe, 2001; Sisodia and St George-Hyslop, 2002; Harper et al., 2003; Ahmed et al., 2014; Liao et al., 2014). Recently, some studies demonstrated that Notch-1 was also expressed in the hippocampus of adult human brains, indicating Notch-1 may have a specific function in neural developmental. Notch-1 expression was signi fi cantly increased in the hippocampus of Alzheimer’s disease patients compared with normal subjects (Berezovska et al., 1999; Mitani et al., 2014; Wagner et al., 2014). It is well known that the hippocampus relates to the generation and formation of new memories. Notch-1 potentially in fl uences neurogenesis and neuronal plasticity in the hippocampus (Albensi and Mattson, 2000; Wang et al., 2004; Oikawa et al., 2012). To date, whether the Notch signaling pathway is involved in Aβ-induced neuronal cell apoptosis and the underlying molecular mechanism are unknown.

    The present study demonstrated an effect of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch-1 signaling pathway inhibitor, on PC cell apoptosis induced by Aβ25-35and oxidative stress, in a broad attempt to explore the prevention and treatment of Alzheimer’s disease.

    Materials and Methods

    PC12 cell culture and intervention

    PC12 cells (American Type Culture Collection, Manassas, VA, USA) were cultured with complete RPMI-1640 medium (Hyclone, Logan, Utah, USA) supplemented with 5% fetal calf serum (Hyclone), 10% horse serum (Hyclone), 100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C in a 5% CO2incubator. Logarithmic growth phase cells were digested and seeded at appropriate densities on poly-L-lysine-coated plates or chambers. PC12 cells were pre-incubated with different concentrations of DAPT (0, 0.1, 1.0, 10 and 100 nmol/L), a γ-secretase inhibitor and indirect inhibitor of Notch-1 sig-naling (Xiao et al., 2014) (Gene Operation, Ann Arbor, MI, USA) for 30 minutes. Subsequently, the cells were treated with 10 μmol/L Aβ25-35(Sigma-Aldrich, St. Louis, MO, USA) for 48 hours. Concentrations of 0, 1.0 or 10 nmol/L were used to study the mechanisms of DAPT in PC12 cell apoptosis.

    PC12 cell viability detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

    MTT assay was used to detect cell viability by measuring levels of formazan produced. PC12 cells at a density of 1 × 104were plated in 96-well plates with 100 μL medium in every well. After 24 hours, the cells were incubated with 10 μmol/L Aβ25-35for 48 hours pretreated with various concentrations of DAPT (0.1-100 nmol/L) for 30 minutes. After incubation, cells were treated with 20 μL MTT solution (5 mg/mL; Beyotime Institute of Biotechnology, Shanghai, China) for an additional 4 hours. Then the medium was removed and 200 μL dimethylsulfoxide was added to every well. Absorbance was determined with a microplate reader (Becton Dickenson, San Francisco, CA, USA) at 570 nm. Cell viability was normalized as a percentage of the absorbance values compared to the controls, which were not exposed to DAPT or Aβ25-35.

    Measurement of intracellular reactive oxygen species generation in PC12 cells detected by fl ow cytometry

    The level of intracellular reactive oxygen species was determined by a change in fl uorescence resulting from intracellular esterases to non-fluorescent 2′,7′-dichlorofluorescin diacetate (DCFH), which was performed using a Becton Dickenson FACScanTMflow cytometer (Becton Dickenson) with a reactive oxygen species-sensitive dye, hydroethidine. PC12 cells were plated at a density of 3 × 105cells per 6-well dish. Twenty-four hours later, PC12 cells were pre-incubated for 30 minutes with DAPT, and then incubated with 10 μmol/L Aβ25-35. The cells were then placed in 10 μmol/L DCFH-DA for 20 minutes at 37°C, and washed three times with DMEM. Reactive oxygen species levels were detected by flow cytometry. A total of 10,000 events were recorded for each analysis and the value for each treatment group was shown as a percentage of the control value.

    Morphology of apoptotic PC12 cells observed by Hoechst 33342/propidium iodide double staining

    Hoechst 33342/propidium iodide double staining was used for detection of morphological changes of apoptotic cells. PC12 cells at a density of 1 × 106were plated in 6-well plates with 2 mL of medium in every well, and were treated as previously described. After treatment, cells were stained with the DNA dye Hoechst 33342/propidium iodide (Beyotime Institute of Biotechnology) for 15 minutes, followed by fi xing with 4% formaldehyde in PBS for 5 minutes at 4°C. After being washed with PBS three times, the cells were visualized under a fl uorescence microscope (Olympus, Tokyo, Japan).

    Superoxide dismutase activity in PC12 cells detected by microplate reader

    Superoxide dismutase activity was estimated according to the previously described method (Beauchamp and Fridovich, 1971; Marcus et al., 1998) by assaying the auto-oxidation and illumination of pyrogallol at 440 nm. This method employs xanthine and xanthine oxidase to generate superoxide radicals, which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride to form a red formazan dye. Superoxide dismutase activity is then measured by the degree of inhibition of this reaction. Superoxide dismutase inhibits the reaction by converting the superoxide radical to oxygen. The absorbance at 505 nm was measured by spectrophotometer (Shimadzu UV-1700, Tokyo, Japan) and used to calculate superoxide dismutase activity.

    Catalase activity in PC12 cells detected by microplate reader

    Catalase activity was measured according to the instructions of the Catalase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA), based on the reaction of catalase with methanol in the presence of an optimal concentration of H2O2. The cells were treated as previously, and equal amounts of total proteins were used for detection as described in the manufacturer’s instructions. The absorbance at 450 nm was measured by spectrophotometer and used to calculate catalase activity.

    Expression of caspase-9, caspase-8, caspase-3, Notch-1, nuclear factor kappa B, catalase, superoxide dismutase in PC12 cells detected by western blot analysis

    PC12 cells were subcultured and treated as previously described. After pretreatment with DAPT for 30 minutes and Aβ25-35for 48 hours, the cells were collected and lysed in RIPA buffer (including 1% Triton, 0.1% sodium dodecylsulfate, 0.5% deoxycholate, ethylenediaminetetraacetic acid 1 mmol/L, Tris 20 mmol/L (pH 7.4), NaCl 150 mmol/L, and NaF 10 mmol/L). Insoluble material was removed by centrifugation at 12,000 r/min for 20 minutes at 4°C. A bovine serum albumin kit was used for quantifying protein concentrations. The samples were equalized for protein concentration. Total proteins were separated by 12% SDS-PAGE, and transferred to polyvinyl difluoride membranes. The membranes were blocked with 5% non-fat milk in PBST buffer for 1 hour at room temperature prior to incubation with rabbit anti-rat caspase-9 (pro-form), caspase-8 (pro-form), caspase-3 (activated form), Notch-1, nuclear factor kappa B, catalase, and superoxide dismutase monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C, followed by goat anti-rabbit IgG conjugated to HRP (1:1,000, Santa Cruz Biotechnology). The results were scanned and analyzed with ImageJ software (http://rsbweb. nih.gov/ij/download.html). The expression level was corrected to β-actin. The results are shown as relative absorbance detected by spectrophotometer (BioTek, Winooski, VT, USA).

    Statistical analysis

    SPSS 11.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. All data were expressed as mean ± SD. Statistical analysis was performed using the two sample independent t-test for comparison of two groups and differences of P < 0.05 were considered statistically signi fi cant. All experiments were repeated at least three times.

    Results

    Notch-1 signaling inhibitor inhibited Aβ25-35-induced reduction of PC12 cell viability

    MTT assay indicated that the viability of PC12 cells was reduced signi fi cantly after Aβ25-35treatment, which decreased to 40.22% of the control group (P < 0.05).

    The viability of PC12 cells incubated with Aβ25-35was significantly increased after pretreatment with different concentrations of DAPT (1-100 nmol/L) (P < 0.05 or P < 0.01). Cell viability increased slightly by treatment with 0.1 nmol/L DAPT, but there was no statistically signi fi cant difference compared with the Aβ25-35treatment group (P >0.05;Figure 1A).

    Notch-1 signaling inhibitor reduced PC12 cell apoptosis induced by Aβ25-35

    The morphological changes of apoptotic cells were con fi rmed by Hoechst 33342/propidium iodide double staining. PC12 cells treated with Aβ25-35alone appeared to undergo cellular nuclear condensation, contraction and fragmentation, suggesting that Aβ25-35induced apoptosis in PC12 cells. The number of Hoechst 33342/propidium iodide positive cells was decreased upon pretreatment with 1 and 10 nmol/L DAPT (P < 0.05;Figure 1B, C). We also examined the expression of apoptotic proteins by western blot analysis. Caspase-3, caspase-8, and caspase-9 expression was significantly increased in PC12 cells in response to treatment with Aβ25-35(P < 0.05, Aβ25-35vs. control). However, the expression of these proteins significantly decreased in groups pretreated with 1 or 10 nmol/L DAPT (P < 0.05;Figure 2).

    Notch-1 signaling inhibitor attenuated oxidative stress in PC12 cells induced by Aβ25-35

    After PC12 cells were pretreated with Aβ25-35, the activity of superoxide dismutase and catalase in cells was signi fi cantly decreased, while the production of intracellular reactive oxygen species was signi fi cantly increased (P < 0.05). Furthermore, the activity of superoxide dismutase and catalase in cells was signi fi cantly increased after DAPT treatment, and the levels of reactive oxygen species were reduced (P < 0.05;Figure 3). Western blot analysis showed that Aβ25-35treatment increased the levels of Notch-1, nuclear factor kappa B, superoxide dismutase and catalase proteins in PC12 cells (P < 0.05). Notch-1 and nuclear factor kappa B expression was reduced, while superoxide dismutase and catalase protein levels were increased by treatment with 1-10 nmol/L of DAPT (P < 0.05;Figure 4).

    Discussion

    The PC12 cell line is usually used as a cellular model to study neurodegenerative diseases (Vaudry et al., 2002; Yan et al., 2013). Previous studies have shown that Aβ25-35not only induced cytotoxicity, but also elicited excessive reactive oxygen species production, apoptosis and cell death in PC12 cells (Xiao et al., 2002; Ge et al., 2008; Chen et al., 2013; Dimitrov et al., 2013; Grimm et al., 2013; Prox et al., 2013). However, to date, the role of Notch signaling in the regulation of apoptosis induced by Aβ25-35remains unknown. Therefore, the present study explored whether DAPT has a protective role against Aβ25-35-induced apoptosis in PC12 cells. This study showed that PC12 cells treated with Aβ25-35underwent apoptotic cell death in accordance with previous studies. A signi fi cant cytotoxic effect of Aβ25-35on PC12 cells was detected by MTT assay and Hoechst 33342/propidium iodide double staining. Apoptosis induced by Aβ25-35was con fi rmed to be the activation of caspase-3 and high levels of caspase-8 and caspase-9. We also demonstrated that the cytotoxicity of Aβ25-35was associated with oxidative stress. The level of intracellular reactive oxygen species in PC12 cells increased and the activities of superoxide dismutase and catalase decreased when PC12 cells were treated with Aβ25-35.

    Notch signaling is an important pathway that is widely expressed in many tissues (Hansson et al., 2004; Lasky and Wu, 2005; Bonini et al., 2013; Newman et al., 2014). Recent research demonstrated that Notch is highly expressed and has high activity in the brain, particularly in Alzheimer’s disease patients, suggesting Notch signaling might play an important role in neuron development (Redmond and Ghosh, 2001; Gaiano and Fishell, 2002; Woo et al., 2009; Dimitrov et al., 2013; Shen, 2013; Singh et al., 2013). Studies also demonstrated that overexpression of Notch and exogenous Notch had a role in neuronal cell protection to oxidative and ischemic insults, and exogenous Notch reduced blood-brain barrier permeability and preserved tissue against injury (Deane and Zlokovic, 2007; Li et al., 2013; McKee et al., 2013). However, the molecular mechanisms by which Notch is involved in neuronal impairment remain unclear. We speculated that a Notch inhibitor might have a protective role in the neurodegenerative process in diseases such as Alzheimer’s disease by decreasing the oxidative stress induced by Aβ.

    Previous research suggested that Notch signaling was involved in the regulation of cell apoptosis through the nuclear factor kappa B signaling pathway (Wang et al., 2008; Abdallah and Kassem, 2012; Xie et al., 2012; García-Escudero et al., 2013). Many studies have shown that Aβ-induced neurotoxicity is mediated by free radicals in vitro (Butter fi eld et al., 2001; Cai et al., 2011; Alberi et al., 2013). Consistent with these fi ndings, results con fi rmed that Aβ stimulated reactive oxygen species production associated with nuclear factor kappa B signaling pathway. Furthermore, Aβ25-35treatment decreased survival and increased apoptosis of PC12 cells associated with reactive oxygen species overproduction. However, the effects were reversed signi fi cantly when PC12 cells were pretreated with DAPT before the addition of Aβ25-35. In addition, elevated reactive oxygen species levels by Aβ25-35were decreased after treatment with DAPT.

    To explore the molecular mechanism of Notch involvement in protection of PC12 cells against apoptosis induced by Aβ25-35, the generation of reactive oxygen species was detected. Administration of a Notch inhibitor reduced reactive oxygen species production by elevating superoxide dismutase and catalase levels. The expression of activated caspase-3 was signi fi cantly increased, indicating apoptosis initiation. Administration of the Notch inhibitor also signi fi cantly decreased theAβ-induced expression of activated caspase-3, suggesting it exerts protective effects against Aβ25-35-induced apoptosis.

    Figure 1 Effect of Notch-1 signaling on PC12 cell viability, apoptosis, and morphology induced by amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Figure 2 Role of Notch-1 signaling on the expression of apoptotic proteins after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    In summary, the present study demonstrated that Notch signaling is involved in the regulation of PC12 cell apoptosis induced by Aβ treatment. The use of Notch inhibitors might be useful in cellular defense against oxidative stress during the neurodegenerative process in Alzheimer’s disease.

    Author contributions:Liang HM and Lou JY designed the study and wrote the paper. Liang HM, Zhang YZ and Shi XY performed the experiments and data analysis. All authors approved the final version of the manuscript.

    Con fl icts of interest:None declared.

    Abdallah BM, Kassem M (2012) New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50:540-545.

    Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa AC, Gardiner KJ (2014) Protein pro fi les associated with context fear conditioning and their modulation by memantine. Mol Cell Proteomics 13:919-937.

    Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35:151-159.

    Figure 3 Role of Notch-1 signaling on oxidative stress in PC12 cells after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Figure 4Role of Notch-1 signaling on cellular redox regulation after amyloid beta-peptide (25-35) (Aβ25-35) treatment.

    Alberi L, Hoey SE, Brai E, Scotti AL, Marathe S (2013) Notch signaling in the brain: in good and bad times. Ageing Res Rev 12:801-814.

    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287.

    Berezovska O, Frosch M, McLean P, Knowles R, Koo E, Kang D, Shen J, Lu FM, Lux SE, Tonegawa S, Hyman BT (1999) The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Brain Res Mol Brain Res 69:273-280.

    Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M (2013) Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 6:375-385.

    Butter fi eld DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548-554.

    Cai Z, Zhao B, Ratka A (2011) Oxidative stress and β-amyloid protein in Alzheimer’s disease. Neuromolecular Med 13:223-250.

    Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY (2013) Protective e ff ect of bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 33:837-850.

    Crump CJ, Johnson DS, Li YM (2013) Development and mechanism of γ-secretase modulators for Alzheimer’s disease. Biochemistry 52:3197-3216.

    Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimers disease. Curr Alzheimer Res 4:191-197.

    Dimitrov M, Alattia JR, Lemmin T, Lehal R, Fligier A, Houacine J, Hussain I, Radtke F, Dal Peraro M, Beher D, Fraering PC (2013) Alzheimer’s disease mutations in APP but not γ-secretase modulators a ff ect epsilon-cleavage-dependent AICD production. Nat Commun 4:2246.

    Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 10:372-380.

    Fuller SJ, Storey E, Li QX, Smith AI, Beyreuther K, Masters CL (1995) Intracellular production of beta A4 amyloid of Alzheimer’s disease:modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 34:8091-8098.

    Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471-490.

    García-Escudero V, Martín-Maestro P, Perry G, Avila J (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxid Med Cell Longev 2013:162152.

    Ge J, Yu Y, Chui DH (2008) Protective e ff ect of Xylocoside G on Aβ25-35-induced neurotoxicity in PC12 cells. Zhongguo Yaoxue Zazhi 18:21-26.

    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the puri fi cation and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885-890.

    Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T (2013) Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front Aging Neurosci 5:98.

    Hansson EM, Lendahl U, Chapman G (2004) Notch signaling in development and disease. Semin Cancer Biol 14:320-328.

    Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154-159.

    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184-185.

    Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ (2003) Notch signaling in development and disease. Clin Genet 64:461-472.

    Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1-16.

    Lasky JL, Wu H (2005) Notch signaling, brain development, and human disease. Pediatr Res 57:104R-109R.

    Levine H (1993) Thio fl avine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci 2:404-410.

    Li Q, Yu S, Wu J, Zou Y, Zhao Y (2013) Sul fi redoxin-1 protects PC12 cells against oxidative stress induced by hydrogen peroxide. J Neurosci Res 91:861-870.

    Liao YF, Tang YC, Chang MY, Wang BJ, Hu MK (2014) Discovery of small molecular (d)-leucinamides as potent, Notch-sparing γ-secretase modulators. Eur J Med Chem 79:143-151.

    Marcus DL, Thomas C, Rodriguez C, Simberko ff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40-44.

    McKee TD, Loureiro R, Dumin JA, Zarayskiy V, Tate B (2013) An improved cell-based method for determining the γ-secretase enzyme activity against both Notch and APP substrates. J Neurosci Methods 213:14-21.

    Mitani Y, Akashiba H, Saita K, Yarimizu J, Uchino H, Okabe M, Asai M, Yamasaki S, Nozawa T, Ishikawa N, Shitaka Y, Ni K, Matsuoka N (2014) Pharmacological characterization of the novel γ-secretase modulator AS2715348, a potential therapy for Alzheimer’s disease, in rodents and nonhuman primates. Neuropharmacology 79:412-419.

    Newman M, Wilson L, Verdile G, Lim A, Khan I, Nik SHM, Pursglove S, Chapman G, Martins RN, Lardelli M (2014) Di ff erential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease. Hum Mol Genet 23:602-617.

    Oikawa N, Goto M, Ikeda K, Taguchi R, Yanagisawa K (2012) The γ-secretase inhibitor DAPT increases the levels of gangliosides at neuritic terminals of di ff erentiating PC12 cells. Neurosci Lett 525:49-53.

    Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of β-amyloid peptides: contributions of the β25-35region to aggregation and neurotoxicity. J Neurochem 64:253-265.

    Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D’Hooge R, Stroobants S, Ahmed T, Balschun D, Willem M, Lammich S, Isbrandt D, Schweizer M, Horré K, De Strooper B, Saftig P (2013) Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning de fi cits, altered spine morphology, and defective synaptic functions. J Neurosci 33:12915-12928.

    Redmond L, Ghosh A (2001) The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol 11:111-117.

    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487-498.

    Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489-517.

    Selkoe DJ (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci U S A 98:11039-11041.

    Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a speci fi c, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A 91:1470-1474.

    Shen J (2013) Function and dysfunction of presenilin. Neurodegener Dis 13:61-63.

    Singh A, Zapata MC, Choi YS, Yoon SO (2013) GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle 13:157-166.

    Sisodia SS, St George-Hyslop PH (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fi t in? Nat Rev Neurosci 3:281-290.

    Terzi E, Hoelzemann G, Seelig J (1994) Reversible random coil-betasheet transition of the Alzheimer beta-amyloid fragment (25-35). Biochemistry 33:1345-1350.

    Tomita T (2011) Development of Alzheimer’s disease treatment based on the molecular mechanism of γ-secretase activity. Rinsho Shinkeigaku 52:1165-1167.

    Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648-1649.

    Wagner SL, Zhang C, Cheng S, Nguyen P, Zhang X, Rynearson KD, Wang R, Li Y, Sisodia SS, Mobley WC, Tanzi RE (2014) Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species. Biochemistry 53:702-713.

    Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, Furukawa K (2004) Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 101:9458-9462.

    Wang YL, Cai ZY, Luo Y, Gong JM (2008) In fl uence of edaravone on Notch1 and nuclear factor-kappaB in rats with cerebral ischemia/ reperfusion injury. Neural Regen Res 3:1342-1347.

    Woo HN, Park JS, Gwon A, Arumugam TV, Jo DG (2009) Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 390:1093-1097.

    Xiao XQ, Zhang HY, Tang XC (2002) Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 67:30-36.

    Xiao YG, Wang W, Gong D, Mao ZF (2014) γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling. Lab Invest 94:654-662.

    Xie Z, Dong Y, Maeda U, Xia W, Tanzi RE (2012) RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing. Transl Neurodegener 1:8.

    Yan FL, Han GL, Wu GJ (2013) Cytotoxic role of advanced glycation end-products in PC12 cells treated with β-amyloid peptide. Mol Med Rep 8:367-372.

    Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407:48-54.

    Copyedited by Croxford L, Norman C, Yu J, Yang Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.137577

    Jiyu Lou, Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China, zzuljy12856@126.com. Huimin Liang, M.D., Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China; Huaihe Hospital of Henan University, Kaifeng 475000, Henan

    Province, China, luciasyl@163.com.

    http://www.nrronline.org/

    Accepted: 2014-05-19

    精品久久久久久久毛片微露脸| 欧美日韩黄片免| 国产精品欧美亚洲77777| 最近最新中文字幕大全免费视频| 国产又色又爽无遮挡免费看| 亚洲精品成人av观看孕妇| 色尼玛亚洲综合影院| 色精品久久人妻99蜜桃| 99热只有精品国产| 老熟妇仑乱视频hdxx| 国产1区2区3区精品| 嫁个100分男人电影在线观看| 国产一区二区三区综合在线观看| 亚洲国产欧美日韩在线播放| 亚洲欧美日韩高清在线视频| 99久久国产精品久久久| 久久精品国产亚洲av高清一级| 精品国产一区二区三区四区第35| 777久久人妻少妇嫩草av网站| av天堂久久9| 国产成人av教育| 欧美日韩亚洲综合一区二区三区_| 国产精品影院久久| 国产精品国产高清国产av | 飞空精品影院首页| 王馨瑶露胸无遮挡在线观看| 十分钟在线观看高清视频www| 亚洲黑人精品在线| 精品视频人人做人人爽| 国产精品98久久久久久宅男小说| 黑人欧美特级aaaaaa片| 亚洲人成电影免费在线| 91av网站免费观看| 亚洲国产看品久久| 国产99白浆流出| 天天躁日日躁夜夜躁夜夜| 国产精品 欧美亚洲| 国产精华一区二区三区| 一个人免费在线观看的高清视频| 亚洲国产看品久久| 热re99久久精品国产66热6| 啦啦啦在线免费观看视频4| 国产精品亚洲av一区麻豆| 大香蕉久久成人网| 一个人免费在线观看的高清视频| 天天影视国产精品| 天堂俺去俺来也www色官网| 午夜91福利影院| www.熟女人妻精品国产| 欧美色视频一区免费| 亚洲九九香蕉| 天天影视国产精品| 国产亚洲av高清不卡| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕在线视频| 亚洲一区二区三区不卡视频| 欧美另类亚洲清纯唯美| 久久午夜亚洲精品久久| 国产伦人伦偷精品视频| 亚洲av美国av| 婷婷精品国产亚洲av在线 | 久久精品人人爽人人爽视色| 一a级毛片在线观看| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一出视频| 丰满迷人的少妇在线观看| 国产区一区二久久| 中文欧美无线码| 亚洲久久久国产精品| 亚洲国产毛片av蜜桃av| 老司机深夜福利视频在线观看| 亚洲综合色网址| 欧美人与性动交α欧美精品济南到| 亚洲五月婷婷丁香| 欧美成人午夜精品| 妹子高潮喷水视频| a级片在线免费高清观看视频| 天天添夜夜摸| 啪啪无遮挡十八禁网站| 午夜老司机福利片| 丁香六月欧美| 国产99白浆流出| videos熟女内射| 十八禁网站免费在线| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 美女福利国产在线| 久久久国产欧美日韩av| 日韩欧美免费精品| 国产国语露脸激情在线看| 久久青草综合色| 热re99久久精品国产66热6| 国产蜜桃级精品一区二区三区 | 色综合婷婷激情| 999精品在线视频| 十八禁人妻一区二区| 少妇的丰满在线观看| 丁香六月欧美| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 亚洲精品国产一区二区精华液| 老司机亚洲免费影院| 精品电影一区二区在线| 女性生殖器流出的白浆| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区 | 亚洲av电影在线进入| 三级毛片av免费| 一区二区三区国产精品乱码| 欧美精品高潮呻吟av久久| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 中文字幕高清在线视频| 在线观看一区二区三区激情| 在线观看午夜福利视频| 一级片'在线观看视频| 女性被躁到高潮视频| 在线观看一区二区三区激情| 日韩大码丰满熟妇| 亚洲精品久久午夜乱码| www.自偷自拍.com| 久久99一区二区三区| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 中出人妻视频一区二区| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 老鸭窝网址在线观看| 国产亚洲欧美98| 一本大道久久a久久精品| 色在线成人网| 91av网站免费观看| 久久影院123| 午夜两性在线视频| 国产一区二区激情短视频| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 国产不卡一卡二| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕 | 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 久久精品亚洲精品国产色婷小说| 国产蜜桃级精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 久久99一区二区三区| 日韩欧美在线二视频 | 久99久视频精品免费| 王馨瑶露胸无遮挡在线观看| 精品一品国产午夜福利视频| 欧美人与性动交α欧美精品济南到| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 亚洲黑人精品在线| 怎么达到女性高潮| tube8黄色片| 午夜福利视频在线观看免费| 丝袜美足系列| 99re在线观看精品视频| av超薄肉色丝袜交足视频| 丰满迷人的少妇在线观看| 12—13女人毛片做爰片一| 色94色欧美一区二区| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影| 久久精品熟女亚洲av麻豆精品| 视频在线观看一区二区三区| 国产精品一区二区免费欧美| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 大码成人一级视频| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 19禁男女啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 成年动漫av网址| 中文欧美无线码| 日日摸夜夜添夜夜添小说| av天堂在线播放| 国产成人精品久久二区二区91| 国内久久婷婷六月综合欲色啪| 国产亚洲一区二区精品| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| e午夜精品久久久久久久| 欧美日韩精品网址| videosex国产| 久久ye,这里只有精品| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av | 国产又爽黄色视频| 一区在线观看完整版| 午夜日韩欧美国产| avwww免费| tocl精华| 亚洲国产欧美网| avwww免费| 欧美色视频一区免费| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 黄色视频,在线免费观看| 伦理电影免费视频| 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 亚洲色图综合在线观看| 国产av一区二区精品久久| 国产欧美日韩综合在线一区二区| 女同久久另类99精品国产91| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区| 69av精品久久久久久| 99精品久久久久人妻精品| 18禁裸乳无遮挡免费网站照片 | 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 中国美女看黄片| 99久久99久久久精品蜜桃| 日韩欧美一区二区三区在线观看 | 精品国产超薄肉色丝袜足j| 亚洲九九香蕉| 久久人妻av系列| 涩涩av久久男人的天堂| 久9热在线精品视频| 欧美日韩瑟瑟在线播放| 精品久久久久久久毛片微露脸| 国产精品欧美亚洲77777| 悠悠久久av| 久久亚洲真实| 国产在线精品亚洲第一网站| 国产精品免费视频内射| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 久久性视频一级片| 国产成人av激情在线播放| 在线观看免费视频日本深夜| 国产成人精品在线电影| 高清av免费在线| 女同久久另类99精品国产91| 亚洲av成人av| 中文字幕人妻熟女乱码| 久久精品亚洲精品国产色婷小说| 午夜免费成人在线视频| 麻豆国产av国片精品| 在线国产一区二区在线| 精品国产美女av久久久久小说| 在线av久久热| 美女国产高潮福利片在线看| 亚洲精品美女久久av网站| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 精品一品国产午夜福利视频| 午夜精品久久久久久毛片777| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 俄罗斯特黄特色一大片| 可以免费在线观看a视频的电影网站| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸| 亚洲欧美日韩高清在线视频| 天天影视国产精品| av福利片在线| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 天天影视国产精品| 欧美成狂野欧美在线观看| 黑人操中国人逼视频| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 亚洲精品一卡2卡三卡4卡5卡| 日本黄色日本黄色录像| 首页视频小说图片口味搜索| av线在线观看网站| 又大又爽又粗| 9色porny在线观看| 久久久久国产一级毛片高清牌| 人妻久久中文字幕网| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 国产国语露脸激情在线看| 身体一侧抽搐| 亚洲av熟女| 久久人妻av系列| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 免费观看人在逋| 正在播放国产对白刺激| av不卡在线播放| 91精品三级在线观看| 久久久国产成人精品二区 | 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 精品少妇久久久久久888优播| 国产成人av激情在线播放| 国产精品影院久久| 91国产中文字幕| 在线观看66精品国产| 午夜福利免费观看在线| 亚洲成国产人片在线观看| 丝袜美足系列| 免费黄频网站在线观看国产| 国产av又大| 香蕉久久夜色| 在线天堂中文资源库| 中国美女看黄片| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 国产深夜福利视频在线观看| 五月开心婷婷网| 性少妇av在线| 黑人欧美特级aaaaaa片| 欧美日韩黄片免| 国产伦人伦偷精品视频| 看片在线看免费视频| 亚洲欧美色中文字幕在线| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 精品亚洲成a人片在线观看| 视频在线观看一区二区三区| 亚洲成人免费电影在线观看| cao死你这个sao货| 亚洲午夜理论影院| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 美女午夜性视频免费| 大码成人一级视频| 999久久久国产精品视频| 久久精品国产亚洲av高清一级| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区激情| 国产成人一区二区三区免费视频网站| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 久久ye,这里只有精品| 91成人精品电影| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 亚洲成人免费av在线播放| 日本wwww免费看| 国产亚洲av高清不卡| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 99在线人妻在线中文字幕 | 伊人久久大香线蕉亚洲五| 69精品国产乱码久久久| 一边摸一边抽搐一进一出视频| 成人免费观看视频高清| 欧美丝袜亚洲另类 | 一本大道久久a久久精品| 亚洲,欧美精品.| 久久国产精品人妻蜜桃| 亚洲精品久久成人aⅴ小说| 亚洲免费av在线视频| 国产男靠女视频免费网站| 高清毛片免费观看视频网站 | 久久久久精品国产欧美久久久| 自线自在国产av| 国产麻豆69| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 久久精品成人免费网站| 色老头精品视频在线观看| 亚洲成人国产一区在线观看| 免费在线观看日本一区| 亚洲,欧美精品.| 黄色怎么调成土黄色| 亚洲片人在线观看| 夫妻午夜视频| 日本欧美视频一区| 国内久久婷婷六月综合欲色啪| 精品亚洲成国产av| 久久性视频一级片| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说 | 欧美激情极品国产一区二区三区| 脱女人内裤的视频| 日韩成人在线观看一区二区三区| bbb黄色大片| 色婷婷久久久亚洲欧美| 久久精品国产清高在天天线| 国产精品免费大片| 精品久久久久久,| 18禁裸乳无遮挡免费网站照片 | av免费在线观看网站| 久久久久久久午夜电影 | 又黄又爽又免费观看的视频| 久久久久精品人妻al黑| 我的亚洲天堂| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 黄色视频不卡| 国产精品一区二区在线不卡| 深夜精品福利| 精品久久久久久久久久免费视频 | 久久久久精品人妻al黑| 亚洲av成人一区二区三| 满18在线观看网站| 午夜两性在线视频| 18禁黄网站禁片午夜丰满| av天堂在线播放| 91麻豆av在线| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 欧美精品一区二区免费开放| 婷婷精品国产亚洲av在线 | 一本一本久久a久久精品综合妖精| 人妻丰满熟妇av一区二区三区 | 国产av又大| 热re99久久国产66热| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| 久久久久久久午夜电影 | 老司机福利观看| 国产精品香港三级国产av潘金莲| 欧美激情 高清一区二区三区| 午夜激情av网站| 午夜福利一区二区在线看| xxx96com| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 一进一出抽搐动态| 色在线成人网| 中文字幕色久视频| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 亚洲av成人av| 精品国内亚洲2022精品成人 | 日本一区二区免费在线视频| 亚洲综合色网址| 午夜激情av网站| 亚洲av第一区精品v没综合| 一级作爱视频免费观看| 国产精品影院久久| svipshipincom国产片| 一本一本久久a久久精品综合妖精| 成人黄色视频免费在线看| 免费看a级黄色片| 无人区码免费观看不卡| 日韩制服丝袜自拍偷拍| 女警被强在线播放| av线在线观看网站| 欧美乱妇无乱码| 国产精品亚洲一级av第二区| 国产成人精品无人区| 不卡av一区二区三区| 亚洲精品粉嫩美女一区| www.精华液| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 久久精品aⅴ一区二区三区四区| 美女 人体艺术 gogo| 一本综合久久免费| 国产淫语在线视频| 日本撒尿小便嘘嘘汇集6| 涩涩av久久男人的天堂| 久久香蕉激情| 欧美成人午夜精品| 在线观看午夜福利视频| 欧美人与性动交α欧美软件| 成人亚洲精品一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 成人国产一区最新在线观看| 香蕉丝袜av| 欧美中文综合在线视频| 午夜福利乱码中文字幕| 亚洲精品美女久久av网站| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 成人国产一区最新在线观看| 免费女性裸体啪啪无遮挡网站| 欧美中文综合在线视频| 精品人妻在线不人妻| 国产精品美女特级片免费视频播放器 | 人人妻,人人澡人人爽秒播| 亚洲熟女精品中文字幕| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区 | 国产高清激情床上av| 亚洲色图av天堂| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月 | 国产在线精品亚洲第一网站| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 国产无遮挡羞羞视频在线观看| 欧美日韩乱码在线| 国产免费男女视频| 91精品三级在线观看| 精品无人区乱码1区二区| 99精国产麻豆久久婷婷| 十八禁高潮呻吟视频| 久久久国产精品麻豆| 午夜久久久在线观看| 欧美+亚洲+日韩+国产| 国产区一区二久久| 妹子高潮喷水视频| 51午夜福利影视在线观看| 下体分泌物呈黄色| 91av网站免费观看| 亚洲在线自拍视频| www.999成人在线观看| 啪啪无遮挡十八禁网站| 看片在线看免费视频| 露出奶头的视频| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 成年人免费黄色播放视频| 日本黄色日本黄色录像| 99热网站在线观看| 夜夜躁狠狠躁天天躁| 久久国产精品男人的天堂亚洲| 国产成人av教育| 黄色 视频免费看| 制服诱惑二区| 国产精品乱码一区二三区的特点 | 大香蕉久久网| 国产精品 欧美亚洲| 精品国产乱子伦一区二区三区| 精品国产乱子伦一区二区三区| 久久久久久久国产电影| 国产精品自产拍在线观看55亚洲 | 国产不卡一卡二| 亚洲欧美激情综合另类| 老司机亚洲免费影院| 日韩 欧美 亚洲 中文字幕| 在线观看免费午夜福利视频| 一本综合久久免费| 亚洲熟妇中文字幕五十中出 | 久久天堂一区二区三区四区| 国产麻豆69| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一码二码三码区别大吗| 国产1区2区3区精品| 欧美激情 高清一区二区三区| 大片电影免费在线观看免费| 欧美+亚洲+日韩+国产| 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| 露出奶头的视频| 窝窝影院91人妻| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 在线免费观看的www视频| 国产不卡av网站在线观看| 亚洲熟妇中文字幕五十中出 | 99香蕉大伊视频| 少妇 在线观看| 国产色视频综合| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| av免费在线观看网站| 国产精品自产拍在线观看55亚洲 | 久久亚洲精品不卡| 欧美日韩视频精品一区| 手机成人av网站| 中文欧美无线码| 亚洲专区中文字幕在线| 国产精华一区二区三区| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 熟女少妇亚洲综合色aaa.| 欧美午夜高清在线| 色综合婷婷激情| 亚洲国产欧美一区二区综合| 悠悠久久av| 久久久国产成人精品二区 | 精品电影一区二区在线|