孫攀旭 楊紅 趙雯桐 劉慶林
摘? ?要:復(fù)阻尼模型的時(shí)域計(jì)算結(jié)果不能穩(wěn)定收斂. 遲滯阻尼模型存在能量耗散與實(shí)際不符以及非線性的缺陷. 針對(duì)復(fù)阻尼模型和遲滯阻尼模型的缺陷,本文依據(jù)頻域轉(zhuǎn)化原則得到了頻率相關(guān)黏性阻尼模型. 為實(shí)現(xiàn)結(jié)構(gòu)體系的時(shí)程計(jì)算,基于加速度與位移的關(guān)系假定,進(jìn)一步得到了改進(jìn)頻率相關(guān)黏性阻尼模型.改進(jìn)頻率相關(guān)黏性模型保留了結(jié)構(gòu)每周期耗散能量與外激勵(lì)頻率無關(guān)的優(yōu)點(diǎn),同時(shí)克服了遲滯阻尼模型中能量耗散與實(shí)際不符的缺陷,還保證了單一振動(dòng)頻率下單自由度結(jié)構(gòu)的線性特征.假定時(shí)間步長內(nèi)結(jié)構(gòu)處于單一頻率的簡(jiǎn)諧振動(dòng),引入常平均加速度法,提出了單自由度體系的時(shí)程計(jì)算方法. 在此基礎(chǔ)上,結(jié)合模態(tài)疊加法,推導(dǎo)了多自由度體系的時(shí)程計(jì)算公式. 算例結(jié)果表明,改進(jìn)頻率相關(guān)黏性阻尼模型可克服復(fù)阻尼模型頻域法的缺陷,同時(shí)有效避免復(fù)阻尼模型時(shí)域法計(jì)算結(jié)果的發(fā)散現(xiàn)象.
關(guān)鍵詞:復(fù)阻尼;頻率相關(guān)黏性阻尼;時(shí)程計(jì)算;穩(wěn)定收斂;線性特征
中圖分類號(hào):TU311.3? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674—2974(2020)09—0113—07
Abstract:There is divergent phenomenon existing in time-domain calculation results based on complex damping model. Hysteretic damping model has the shortcomings that energy dissipation is not consistent with the practical case and a defect of nonlinearity in linear elastic stage. To overcome the above shortcomings of complex damping model and hysteretic damping model, a frequency dependent viscous damping model is obtained based on the principles of frequency domain transformation in this paper. For the realization of structural time-history calculation method, an improved frequency dependent viscous damping model is obtained based on the assumption of the relationship? between acceleration and displacement. The improved frequency dependent viscous damping model has the advantage that energy consumption is? independent of external excitation frequencies. At the same time, the energy consumption in? the proposed model is consistent with the practical case, and it maintains linear characteristic of single-degree-of-freedom structure with a single vibration frequency. It is assumed that structural response is harmonic vibration response in every time step. It contains the single frequency. By introducing the constant average acceleration method, a time-history calculation method of single degree of freedom system can be put forward. On this basis, combined with the modal superposition method, the time-history calculation formulas of multi-degree of freedom system are obtained. The analysis results of the cases show that improved frequency viscous damping model can overcome the shortcoming of the frequency-domain method based on complex damping model. It can also avoid the divergent phenomenon in calculation results of time-domain method based on the complex damping model.
Key words:complex damping;frequency dependent viscous damping;time-history calculation;stable convergence;linear characteristic
目前應(yīng)用最為廣泛的阻尼模型是黏性阻尼模型,黏性阻尼模型由于其數(shù)學(xué)處理上的簡(jiǎn)易性,在結(jié)構(gòu)動(dòng)力計(jì)算中得到了廣泛應(yīng)用,但其存在每周期耗散能量與外激勵(lì)頻率相關(guān)的特點(diǎn)[1-4],這與大部分材料在實(shí)驗(yàn)中每周期耗散能量與外頻率無關(guān)的現(xiàn)象不一致[5].
能夠更真實(shí)地描述實(shí)驗(yàn)現(xiàn)象的復(fù)阻尼模型具有體系每周期耗散能量與外激勵(lì)頻率無關(guān)的優(yōu)點(diǎn)[6],但其自由振動(dòng)運(yùn)動(dòng)方程的通解中存在發(fā)散項(xiàng),造成復(fù)阻尼模型時(shí)程迭代計(jì)算結(jié)果不收斂[7]. 潘玉華等[8]提出了復(fù)阻尼運(yùn)動(dòng)方程的高斯精細(xì)積分法,吳澤玉等[9]提出了復(fù)阻尼運(yùn)動(dòng)方程的增維精細(xì)積分法,Yuan等[10]提出了復(fù)阻尼模型的迭代更新法,但上述方法均無法避免復(fù)阻尼模型的時(shí)域發(fā)散現(xiàn)象.針對(duì)復(fù)阻尼模型的缺陷,周正華等[11]依據(jù)線彈性體的時(shí)域本構(gòu)關(guān)系,采用最小二乘法使其近似等于頻域內(nèi)的復(fù)阻尼本構(gòu)關(guān)系,得到一種時(shí)域復(fù)阻尼本構(gòu)方程,但該方程僅適用于給定的頻率范圍,且用于多自由體系計(jì)算時(shí),其誤差有待進(jìn)一步分析. Reggio等[12]采用Maxwell-Wiechert本構(gòu)模型,在頻域范圍內(nèi)近似等效于復(fù)阻尼本構(gòu)模型,得到在時(shí)域內(nèi)穩(wěn)定收斂的運(yùn)動(dòng)方程,但計(jì)算過程過于復(fù)雜. Wang[13]在頻域內(nèi)采用Rayleigh阻尼矩陣等效復(fù)阻尼矩陣,進(jìn)而避免發(fā)散現(xiàn)象,但存在計(jì)算結(jié)果不唯一、合理性不易判定的缺點(diǎn).
假定阻尼力與結(jié)構(gòu)體系的位移成正比,且與速度的方向相反,可進(jìn)一步得到遲滯阻尼模型[14,15]. 遲滯阻尼模型保留了耗散能量與外激勵(lì)頻率無關(guān)的優(yōu)點(diǎn),同時(shí)時(shí)域計(jì)算結(jié)果穩(wěn)定收斂,但其對(duì)應(yīng)的阻尼體系在線彈性階段具有非線性的缺陷[16,17].
如何解決上述阻尼模型的缺點(diǎn),是提高結(jié)構(gòu)動(dòng)力計(jì)算結(jié)果可靠性的難點(diǎn)之一. 針對(duì)復(fù)阻尼模型,本文采用頻域轉(zhuǎn)化原則得到頻率相關(guān)黏性阻尼模型,同時(shí)基于加速度與位移的關(guān)系假定,進(jìn)一步將其改進(jìn)為適用于迭代計(jì)算的改進(jìn)頻率相關(guān)黏性阻尼模型.在此基礎(chǔ)上,結(jié)合常平均加速度法和模態(tài)疊加法,提出了基于改進(jìn)頻率相關(guān)黏性阻尼模型的多自由度體系時(shí)程計(jì)算方法.
1? ?基于加速度與位移關(guān)系的改進(jìn)頻率相關(guān)黏
性阻尼模型
1.1? ?運(yùn)動(dòng)方程的構(gòu)建
單自由度體系的復(fù)阻尼運(yùn)動(dòng)方程為
方程(10)為改進(jìn)頻率相關(guān)黏性阻尼模型的時(shí)域運(yùn)動(dòng)方程.
1.2? ?不同阻尼模型的對(duì)比分析
遲滯阻尼模型[14,15](以下稱PVS)可克服復(fù)阻尼模型的時(shí)域發(fā)散現(xiàn)象,其阻尼力為
由式(12)可知,PVS具有阻尼力每周期耗散的能量與外激勵(lì)頻率無關(guān)的優(yōu)點(diǎn),但穩(wěn)態(tài)反應(yīng)時(shí)一個(gè)周期內(nèi)阻尼力做功與實(shí)際耗散能量不相等,PVS存在阻尼力消耗能量與實(shí)際耗散能量不符的缺陷.
改進(jìn)頻率相關(guān)黏性阻尼模型(以下稱PVJ)下,由方程(10)可得阻尼力為
由式(14)可知,PVJ在穩(wěn)態(tài)反應(yīng)時(shí),阻尼力每周期耗散的能量與外激勵(lì)頻率無關(guān),且一個(gè)周期內(nèi)阻尼力消耗能量與實(shí)際耗散能量相等.因此PVJ可有效克服PVS阻尼力消耗能量與實(shí)際耗散能量不符的缺陷.
當(dāng)結(jié)構(gòu)處于簡(jiǎn)諧振動(dòng)時(shí),其位移響應(yīng)如式(6)所示,可計(jì)算出兩種阻尼模型下阻尼力與位移響應(yīng)的變化關(guān)系如圖1所示. PVS中阻尼力與位移的關(guān)系呈現(xiàn)非連續(xù)變化(圖1(a)),結(jié)構(gòu)體系具有非線性特點(diǎn);PVJ中阻尼力隨位移連續(xù)變化(圖1(b)),結(jié)構(gòu)體系具有線性特點(diǎn). 線彈性狀態(tài)下,單一振動(dòng)頻率的單自由度結(jié)構(gòu)具有線性特征[19],但僅PVJ呈現(xiàn)出線性特點(diǎn),PVS則存在理論誤差.
綜上,PVJ不僅克服了PVS中阻尼力消耗能量與實(shí)際不符的缺陷,還保證了單一振動(dòng)頻率下單自由度結(jié)構(gòu)的線性特征.
2? ?基于改進(jìn)頻率相關(guān)黏性阻尼模型的時(shí)程計(jì)算方法
2.1? ?單自由度體系的時(shí)程計(jì)算方法
按照時(shí)間步長Δt對(duì)時(shí)間進(jìn)行離散,任意時(shí)刻可表示為tk = kΔt(k = 0,1,2…). 時(shí)間步長較小時(shí),假定tk時(shí)刻到tk + 1時(shí)刻體系振動(dòng)為簡(jiǎn)諧振動(dòng),位移響應(yīng)為
式中:I(t)為瞬時(shí)振幅,θk為tk時(shí)刻到tk + 1時(shí)刻的瞬時(shí)頻率,φk為tk時(shí)刻的瞬時(shí)相位.
2.1.1? ?單自由度體系運(yùn)動(dòng)方程初值
假定初始時(shí)刻t0時(shí),體系的振動(dòng)頻率為有阻尼自由振動(dòng)頻率,初值的確定需要首先計(jì)算結(jié)構(gòu)的有阻尼自由振動(dòng)頻率.
頻率相關(guān)黏性阻尼模型下單自由度體系運(yùn)動(dòng)方程對(duì)應(yīng)的特征方程為
2.1.2? ?基于常平均加速度法的時(shí)程計(jì)算方法
2.2? ?多自由度體系的時(shí)程計(jì)算方法
2.2.1? ?基于模態(tài)疊加法的時(shí)程計(jì)算方法
多自由度體系的PVJ運(yùn)動(dòng)方程為
對(duì)于單一材料體系,ηK為比例矩陣,滿足經(jīng)典阻尼條件,方程(26)可直接采用模態(tài)疊加法[21]進(jìn)行計(jì)算.
2.2.2? ?多自由度體系運(yùn)動(dòng)方程初值的確定
3? ?算例分析
3.1? ?單自由度體系
由式(18)可知,頻率相關(guān)黏性阻尼運(yùn)動(dòng)方程兩個(gè)特征根的實(shí)部均為負(fù)實(shí)數(shù),因此其通解中僅含衰減項(xiàng),而沒有發(fā)散項(xiàng),自由振動(dòng)過程將是穩(wěn)定收斂的.
以質(zhì)量為1 000 kg,剛度為16 000 N/m,損耗因子為0.1的單自由體系為例,其初始位移為5 cm,初始速度為8 cm/s,采用PVJ計(jì)算體系的自由振動(dòng)響應(yīng),所得結(jié)果如圖2所示,該算例計(jì)算結(jié)果表明PVJ計(jì)算的位移響應(yīng)穩(wěn)定收斂,可有效解決復(fù)阻尼模型不能計(jì)算結(jié)構(gòu)自由振動(dòng)響應(yīng)的問題.
體系初始時(shí)刻處于靜止?fàn)顟B(tài),分別采用PVJ和復(fù)阻尼模型時(shí)域計(jì)算方法(FZ)計(jì)算在遷安波地震作用下的位移響應(yīng)時(shí)程,并與復(fù)阻尼模型的頻域計(jì)算方法(FFZ)的計(jì)算結(jié)果進(jìn)行對(duì)比(如圖3所示),其中FFZ的計(jì)算結(jié)果可視為精確解[8]. 當(dāng)?shù)卣鹱饔贸掷m(xù)時(shí)間大于15 s時(shí),F(xiàn)Z計(jì)算的位移響應(yīng)開始明顯發(fā)散,因此基于復(fù)阻尼模型的時(shí)域計(jì)算方法僅能適用于地震作用持續(xù)時(shí)間較小的情況.當(dāng)?shù)卣鹱饔贸掷m(xù)時(shí)間小于12 s時(shí),PVJ、FZ和FFZ計(jì)算的位移響應(yīng)近似相等.整個(gè)時(shí)程過程中,PVJ計(jì)算的位移響應(yīng)不受地震持時(shí)的限制,位移響應(yīng)一直穩(wěn)定收斂.PVJ的位移在8.15 s處達(dá)到最大值,F(xiàn)FZ的位移在8.18 s處達(dá)到最大值,且相對(duì)誤差為6.25%(見表1).因此,PVJ與FFZ的計(jì)算結(jié)果近似相等,證明了PVJ的正確性.
FFZ為頻域計(jì)算方法,僅能計(jì)算初始時(shí)刻為靜止?fàn)顟B(tài)的結(jié)構(gòu)動(dòng)力響應(yīng).相比FFZ,PVJ為時(shí)域計(jì)算方法,可計(jì)算結(jié)構(gòu)自由振動(dòng)響應(yīng)和地震作用下非靜止初始狀態(tài)的結(jié)構(gòu)動(dòng)力響應(yīng),克服了FFZ的缺陷.
3.2? ?多自由度體系
如圖4所示,以3層剪切型鋼筋混凝土框架結(jié)構(gòu)為例,其損耗因子為0.1.
框架結(jié)構(gòu)的初始處于靜止?fàn)顟B(tài),分別采用PVJ、FZ和FFZ計(jì)算結(jié)構(gòu)在El Centro波和天津波作用下的地震反應(yīng),所得位移時(shí)程如圖5所示. 在圖5(a)、圖5(b)中,當(dāng)?shù)卣鹱饔贸掷m(xù)時(shí)間分別小于12 s、15 s時(shí),PVJ的計(jì)算結(jié)果與FZ的計(jì)算結(jié)果一致.但是,隨著地震作用持時(shí)增加,F(xiàn)Z的數(shù)值計(jì)算結(jié)果出現(xiàn)發(fā)散現(xiàn)象,這是復(fù)阻尼模型自由振動(dòng)方程通解中包含發(fā)散解所引起的.相比之下,PVJ一直具有穩(wěn)定收斂的優(yōu)點(diǎn). El Centro波作用下,PVJ和FFZ的位移均在4.2 s處達(dá)到最大值,且相對(duì)誤差為6.60%;PVJ的位移在8.77 s處達(dá)到最大值,F(xiàn)FZ的位移在8.79 s處達(dá)到最大值,且相對(duì)誤差為5.20%(見表2). PVJ與FFZ的計(jì)算結(jié)果近似相等,進(jìn)一步證明了本文提出的改進(jìn)頻率相關(guān)黏性阻尼時(shí)程計(jì)算方法的正確性.
4? ?結(jié)? ?論
經(jīng)理論推導(dǎo)和算例分析,得到以下結(jié)論:
1)引入加速度與位移關(guān)系假定,提出了基于復(fù)阻尼模型的改進(jìn)頻率相關(guān)黏性阻尼模型,可有效克服黏性阻尼模型中耗散能量與外激勵(lì)頻率相關(guān)的缺陷.
2)與遲滯阻尼模型相比,基于加速度和位移關(guān)系的改進(jìn)頻率相關(guān)黏性阻尼模型克服了遲滯阻尼模型中能量耗散與實(shí)際不符的缺陷,還保證了單一振動(dòng)頻率下單自由度結(jié)構(gòu)的線性特征.
3)結(jié)合常平均加速度法和模態(tài)疊加法,推導(dǎo)了改進(jìn)頻率相關(guān)黏性阻尼運(yùn)動(dòng)方程時(shí)程計(jì)算的相關(guān)公式,算例分析表明,改進(jìn)頻率相關(guān)黏性阻尼模型可克服復(fù)阻尼模型頻域法的缺陷,同時(shí)有效避免復(fù)阻尼模型時(shí)域法計(jì)算結(jié)果的發(fā)散現(xiàn)象.
參考文獻(xiàn)
[1]? ? FERIANI A,PEROTTI F. The formation of viscous damping matrices for the dynamic analysis of MDOF systems [J]. Earthquake Engineering and Structural Dynamics,1996,25(7):689—709.
[2]? ? MASTRODDI F,EUGENI F,ERBA F. On the modal diagonalization of viscoelastic mechanical systems[J]. Mechanical Systems and Signal Processing,2017,96:159—175.
[3]? ? 朱鏡清. 結(jié)構(gòu)抗震分析原理 [M]. 北京:地震出版社,2002:62—66.
ZHU J Q. Seismic analysis of structures[M]. Beijing:Earthquake Press,2002:62—66. (In Chinese)
[4]? ? 董云,樓夢(mèng)麟. 基于結(jié)構(gòu)基頻確定Rayleigh阻尼系數(shù)的優(yōu)化方法及其討論 [J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(2):8—13.
DONG Y,LOU M L. An optimization solution for Rayleigh damping coefficients based on the fundamental frequency of structure [J]. Journal of Hunan University(Natural Sciences),2014,41(2):8—13. (In Chinese)
[5]? ? BERT C W. Material damping:an introductory review of mathematic measures and experimental technique [J]. Journal of Sound and Vibration,1973,29(2):129—153.
[6]? ? 張輝東,王元豐. 復(fù)阻尼模型結(jié)構(gòu)地震時(shí)程響應(yīng)研究[J]. 工程力學(xué),2010,27(1):109—115.
ZHANG H D,WANG Y F. Study on seismic time-history response of structures with complex damping [J]. Engineering Mechanics,2010,27(1):109—115. (In Chinese)
[7]? ? 朱敏,朱鏡清. 逐步積分法求解復(fù)阻尼結(jié)構(gòu)運(yùn)動(dòng)方程的穩(wěn)定性問題[J]. 地震工程與工程振動(dòng),2001,21(4):59—62.
ZHU M,ZHU J Q. Studies on stability of step-by-step methods under complex damping conditions [J]. Earthquake Engineering and Engineering Vibration,2001,21(4):59—62. (In Chinese)
[8]? ? 潘玉華,王元豐. 復(fù)阻尼結(jié)構(gòu)動(dòng)力方程的高斯精細(xì)時(shí)程積分法[J]. 工程力學(xué),2012,29(2):16—20.
PAN Y H,WANG Y F. Gauss precise time-integration of complex damping vibration systems [J]. Engineering Mechanics,2012,29(2):16—20. (In Chinese)
[9]? ? 吳澤玉,王東煒,李玉河. 復(fù)阻尼結(jié)構(gòu)動(dòng)力方程的增維精細(xì)積分法[J]. 振動(dòng)與沖擊,2017,36(2):107—110.
WU Z Y,WANG D W,LI Y H. Magnified dimension precise integration method for the dynamic equations of complex damped structures [J]. Journal of vibration and Shock,2017,36(2):107—110. (In Chinese)
[10]? YUAN Y G,ZUO K Z,ZHANG T Z. An efficient iterative updating method for hysteretic damping models [J]. Applied Mathematics and Computation,2017,320:86—98.
[11]? 周正華,廖振鵬,丁海平. 一種時(shí)域復(fù)阻尼本構(gòu)方程[J]. 地震工程與工程振動(dòng),1999,19(2):37—44.
ZHOU Z H,LIAO Z P,DING H P. A time-domain complex-damping constitutive equation [J]. Earthquake Engineering and Engineering Vibration,1999,19(2):37—44. (In Chinese)
[12]? REGGIO A,ANGELIS M D. Modelling and identification of structures with rate-independent linear damping [J]. Meccanica,2015,50(3):617—632.
[13]? WANG J. Rayleigh coefficients for series infrastructure systems with multiple damping properties [J]. Journal of Vibration and Control,2015,21(6):1234—1248.
[14]? CLOUGH R W,PENZIEN J. 結(jié)構(gòu)動(dòng)力學(xué)[M]. 王光遠(yuǎn),譯. 北京:科學(xué)出版社,1983:27—46.
CLOUGH R W,PENZIEN J. Dynamics of Structures[M]. WANG G Y (trans). Beijing:Science Press,1983:27—46. (In Chinese)
[15]? CHEN L Y,CHEN J T,CHEN C H,et al. Free vibration of a SDOF system with hysteretic damping[J]. Mechanics Research Communications,1994,21(6):599—604.
[16]? INAUDI J A,KELLY J M. Linear hysteretic damping and Hilbert transform[J]. Journal of Engineering Mechanics,1995,121(5):626—632.
[17]? 孫靖雅,華宏星,肖鋒,等. 非線性遲滯阻尼對(duì)隔振系統(tǒng)力傳遞特性影響[J]. 振動(dòng)與沖擊,2014,33(10):131—136.
SUN J Y,HUA H X,XIAO F,et al. Influence of nonlinear hysteretic damping on force transmissibility of a vibration isolation system[J]. Journal of Vibration and Shock,2014,33(10):131—136. (In Chinese)
[18]? 朱鏡清. 頻率相關(guān)黏性阻尼理論及有關(guān)問題的解[J]. 振動(dòng)與沖擊,1992,11(4):1—7.
ZHU J Q. Frequency dependant viscous damping theory and some related problems [J]. Journal of Vibration and Shock,1992,11(4):1—7. (In Chinese)
[19]? 劉晶波,杜修力. 結(jié)構(gòu)動(dòng)力學(xué)[M].北京:機(jī)械工業(yè)出版社,2005: 1—9.
LIU J B,DU X L. Dynamics of structures [M]. Beijing:China Machine Press,2005:1—9. (In Chinese)
[20]? 李鴻晶,王通,廖旭. 關(guān)于 法機(jī)理的一種解釋[J]. 地震工程與工程振動(dòng),2011,31(2):55—62.
LI H J,WANG T,LIAO X. An interpretation on Newmark beta methods in mechanism of numerical analysis [J]. Journal of Earthquake Engineering and Engineering Vibration,2011,31(2):55—62. (In Chinese)
[21]? CAUGHEY T K. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics,1960,27(3):269—271.