• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    求解連續(xù)優(yōu)化問題的多策略動(dòng)態(tài)果蠅優(yōu)化算法

    2020-10-15 01:50:44石建平李培生劉國平
    關(guān)鍵詞:南昌大學(xué)建平果蠅

    石建平,李培生,劉國平,劉 鵬

    (1. 南昌大學(xué)機(jī)電工程學(xué)院 南昌 330031;2. 貴陽學(xué)院電子與通信工程學(xué)院 貴陽 550005;3. 河北地質(zhì)大學(xué)寶石與材料工藝學(xué)院 石家莊 050031)

    Optimization problems are often encountered in the fields of scientific research, engineering t echnology, and management decision. How to obtain the optimal solution or suboptimal solution of these problems at the minimum cost has been one of the hot topics for researchers. In recent years, swarm intelligent optimization algorithms, such as the genetic algorithm[1], the particle swarm optimization[2], the ant colony algorithm[3], the differential evolution algorithm[4], and the artificial bee colony algorithm[5]are widely used to solve the above-mentioned optimization problems. In most cases, the swarm intelligence optimization algorithm can achieve more satisfactory results than traditional optimization methods, so it has attracted more and more attention from scholars.

    Inspired by the foraging behavior of fruit flies,Ref.[6] proposed a novel swarm intelligence-based meta-heuristic algorithm, namely the fruit fly optimization algorithm (FOA). Compared with other swarm intelligence-based algorithms, FOA has a simple algorithmic framework with a few tuned parameters, which makes it easily understood and implemented. As a novel method for finding global optimum, FOA technique has been obtained much attention and widely applied in real-world problems,such as the financial distress model solving[6], the multidimensional knapsack problem[7], neural network training[8], continuous mathematical function optimization problems[9], power loads forecasting[10-11],PID controller parameters tuning[12-13], semiconductor final testing[14], joint replenishment problems[15-16], as well as many other problems in scientific and engineering fields[17-21].

    However, FOA also has its own shortcomings.Particularly, the taste concentration judgment value cannot be taken a negative value, so FOA cannot deal with the optimization problem with negative decision variables. In addition, with the iteration of algorithm,the diversity of the swarm is rapidly lost, making the algorithm easy to fall into local optimum.Furthermore, the weak local search ability of FOA leads to low convergence accuracy of the FOA algorithm. To improve the convergence performance of FOA, a series of improvement studies have been carried out by many scholars at home and abroad.Ref.[22] proposed an improved FOA by adding an escaping parameter to the taste concentration judgment value, and the fruit fly individual in this algorithm is searched in three-dimensional space. Ref.[23] used a linear generation mechanism to generate candidate solutions, instead of nonlinear generation mechanism in basic FOA, and a new improved fruit fly algorithm based on a linear mechanism was proposed. Ref.[24]presented a novel multi-swarm fruit fly optimization algorithm, and the performance of the algorithm was greatly improved by employing the multi-swarm behavior. By introducing a new control parameter and an effective solution generating method, Ref.[9] also proposed an improved fruit fly optimization algorithm for solving continuous optimization problems.Ref.[25] introduced a novel parameter integrated with chaos into the basic FOA and put forward a chaotic fruit fly algorithm. Ref.[26] modified the expression of the smell concentration judgment value in FOA, and a differential vector was introduced to replace the stochastic search mechanism. Ref.[27] proposed an improved fruit fly optimization algorithm based on selecting evolutionary direction intelligently. Ref.[28]introduced a multi-scale cooperative mutation mechanism and proposed a multi-scale cooperative mutation fruit fly optimization algorithm. Ref.[29]added two sign parameters into the original FOA for dealing with not only the positive side of the search space, but also the whole. In order to better balance the global search and local search abilities, Ref.[30]proposed an improved FOA based on the hybrid location information exchange mechanism. By embedding the trend search strategy into the original FOA and combining with the co-evolution mechanism,Ref.[31] developed a novel fruit fly optimization algorithm. Ref.[16] proposed an improved fruit fly optimization algorithm with a level probability policy and a new mutation parameter aiming at expanding search space and skipping local optima. Ref.[32]introduced a normal cloud model into fruit fly osphresis foraging and proposed a normal cloud model based FOA. According to historical memory and elite strategy mechanism, Ref.[33] proposed an adaptive fruit fly optimization algorithm.

    The afore-mentioned variants of FOA are all based on a single evolutionary strategy. However, this single evolutionary model often lacks an effective mechanism for maintaining diversity of the swarm,and it is difficult to reasonably balance the global exploration and local exploitation of the algorithm, so the optimization process is prone to fall into premature convergence. In addition, according to the foraging behavior of the actual fruit fly swarm, the visual foraging behavior of each individual fruit fly should follow its olfactory foraging behavior. In order to overcome the shortcomings mentioned above, this article presents an improved FOA based on multistrategy evolution and dynamic updating of swarm optimal information (MDFOA). The MDFOA is applied to various standard optimization problems and compared with the original FOA, six variants of the FOA, and two state-of-the-art algorithms.

    The rest of the paper is organized as follows. In Section 1, the basic FOA is introduced. The MDFOA is described in detail in Section 2. Experimental design and comparisons are illustrated in Section 3. Finally,Section 4 gives the concluding remarks.

    1 Basic FOA

    The basic FOA is a swarm intelligence-based meta-heuristic algorithm inspired by the foraging behavior of fruit flies. The fruit fly itself is superior to other species in osphresis and vision. The osphresis organs of fruit flies can sense odors floating in the air even 40 km far away from them. During hunting for food, they use their olfactory sense and find direction to the food source. Then, after they get close to the food location, they fly toward the food source by using their visual senses. The procedure of basic FOA can be described as follows[6]:

    1) Initialize relate parameters, including population size, the maximum number of iterations,and the location of fruit fly swarm (X_axis, Y_axis).

    2) For each fly in the swarm, a random fly direction and distance are provided, and the new location is generated by using Eq. (1):

    where i is the ith fly in the swarm. RandomValue represents the fly range parameter.

    3) Given the unknown food source, calculate the distance between each fly and the origin by using Eq.(2). Calculate the smell concentration judgment value by using Eq. (3):

    4) Substitute the smell concentration judgment value ( Si) into smell concentration judgment function(or called fitness function) and the smell concentration value is calculated by using Eq. (4):

    5) Identify the best smell concentration value in the fruit fly swarm (finding the minimum value) by using Eq. (5):

    6) Keep the best smell concentration value and the corresponding X and Y coordinates, and at this moment, the fruit fly swarm moves toward the location by using their vision:

    7) Repeat step 2)~6). Stop when the iterative number reaches the maximum iterative number.

    2 Improved FOA

    Due to its simple evolutionary mechanism, FOA is unable to effectively balance the global search and local search abilities of the algorithm, which makes it difficult to achieve the ideal optimization results in dealing with complex optimization problems. Inspired by other state-of-the-art swarm intelligence-based algorithms, such as particle swarm optimization algorithm (PSO)[34-35]and differential evolution algorithm (DE)[36], an improved version of FOA(MDFOA) is developed in this study. We detail the MDFOA as follows.

    2.1 Multi-Strategy Evolution

    Multi-strategy evolution refers to selecting one strategy from a strategy base as an iterative equation for the current individual olfactory search of fruit flies.Different fly individuals of the same generation may have different evolutionary strategies, so that the diversity of the swarm is improved, and the global search ability of the algorithm is also enhanced. The selection of strategies is a key factor that affects the optimization performance of algorithm. The more strategies in the strategy base, the more powerful the algorithm is in solving complex optimization problems. With fewer strategies in the strategy base, it may be difficult for the algorithm to achieve the expected convergence quality. After repeated numerical simulation experiments, the strategy base consists of the following strategies in this study:

    2.2 A New Parameter and Dynamic Updating Mechanism

    In the basic FOA, the search radius is fixed and cannot be changed during iterations. This leads to a low convergence speed and a tendency to fall into a local optimal solution. In the early iterations, the fruit fly swarm location is usually far from the optimal solution, so the perturbation component should be valued in a larger range to find a promising region. In the final generations, the swarm location is close to the optimal solution, and the perturbation component should be taken in a small scope to further improve the convergence accuracy of the algorithm. Therefore, the parameter ω in the above evolutionary strategies is changed dynamically with iterations as the following:

    where α and β are two adjustment coefficients. For the sake of simplicity, we take the same value in this paper, that is, α=β. Iteration is the iteration number.Iterationmaxis the maximum iteration number.

    In the basic FOA, the visual search of fly is based on the premise that the olfactory search of the fruit fly swarm has been completed, which lags the update of the optimal position information of the swarm, thus reducing the convergence speed of the algorithm. To solve this problem, we propose a mechanism of realtime dynamic updating in this paper, that is, after the fly completes the olfactory search, the new position is immediately evaluated. If the new position is better than the current optimal position of swarm, the optimal location and its corresponding information will be updated, so the purpose of updating swarm information in real time can be achieved.

    2.3 Implement of MDFOA

    The detailed steps of implementing the MDFOA are described as follows.

    1) Initialize relate parameters, including population size ps, the maximum number of iterations Iterationmax, and adjustment coefficients α and β. The position of each fruit fly is randomly generated and evaluated, and the optimal position is selected as the current optimal position of the swarm.

    2) For the ith fly, a strategy selected from equations (7)~(11) is used as an evolutionary strategy for its olfactory search, and the value of parameter ω is calculated by using Eq.(12).

    3) According to Eq.(13) and Eq.(14), the best historical position of the fly individual and the best historical position of the fruit fly swarm are updated in real time, respectively. Here, we abandon the calculation of the distance Disti, and directly take the position vector Xias the smell concentration judgment value, i.e., Si=Xi, which solves the shortcoming that Sicannot take a negative value in the basic FOA:

    4) If all flies of the current generation complete the evolution operation, the next step is executed;otherwise return to step 2).

    5) If the iterative number reaches the maximum iterative number, the algorithm ends; otherwise return to step 2).

    3 Experiments and Comparisons

    For the purpose of verifying the performance of MDFOA, 29 well-known benchmark functions are considered in this test. For a detailed description of these benchmark functions, please refer to ref.[9].Among these test functions, the first 15 problems are unimodal functions and the remaining 14 problems are multimodal functions. The effectiveness of the algorithm is evaluated on these benchmark functions with varying dimensions as 30, 60, 100, 200, 300, and 400. The results of the MDFOA are compared with those of the basic FOA, LGMS-FOA[23], AE-LGMSFOA[19], MFOA[22], IFFO[9], SFOA[29], IFOA[15], PSO and DE. All the proposed algorithms are coded in MATLAB R2013a. The computation is conducted on a personal computer (PC) with Intel (R) Core(TM) i7-7700, 3.6 GHz CPU, 16 GB RAM, and Windows 10 Operational System.

    3.1 Parameter Setting

    The experimental parameters of the other nine algorithm are set according to the corresponding papers. The parameters setting of different algorithms are described below.

    In LGMS-FOA, we set ω0=1, α=0.95, and n=0.005. The parameters of AE-LGMS-FOA are p=0.005, ω0=1, and n=10, and 80% of the best population are used to generate XAv. For FOA and MFOA, the random initialization fruit fly swarm location zone is [0,10], the random direction and distance of iterative fruit fly food searching is [?1,1].The parameters of IFFO are λmax=(UB?LB)/2 and λmin=10?5, where UB and LB are the upper and lower bounds of independent variables, respectively. In IFOA, 50% of the individuals in a swarm fly toward local optimal solution and the others fly randomly, and the perturbation amplification factor ( ω) is 0.3. For PSO, ωmax=0.9, ωmin=0.4, c1=c2=2, and vmaxis set to be 20% of xmax. The mutation operator of DE is best/1, and the differentiation factor(F) and crossover probability (Cr) are 0.5, 0.5, respectively. The parameters of MDFOA are α=β=6. The population size of each algorithm is set to 50, and the number of iterations is set to 500 times.

    3.2 Comparison of MDFOA with Other Algorithms

    In this section, we present the optimization results of different algorithms.

    In order to show the reliability, stability, and robustness of the results, each function is optimized over 30 independent runs, and the mean value (Mean)and standard deviation (Std) are reported in Tables 1 and 2 for all functions with dimensions equal to 30 and 60, respectively. The average convergence curves of the optimization processes for some typical functions by different algorithms are illustrated in Fig.1 and Fig.2 (To facilitate evaluate and observation, the fitness of the objective function in the graph is a logarithm with the base of 10).

    Fig.1 Average convergence curves on some 30-dimensional functions

    From Table 1 and 2, we can find that MDFOA outperforms other algorithms in many respects:

    1) For unimodal functions (F1-F15), MDFOA obtains almost all the best mean results (except F5). In terms of algorithm stability, MDFOA gets 13 best results (except for F2, F5). For F2 with dimensions equal to 30, AE-LGMS-FOA gets the smallest standard deviation. While for F2 with dimensions equal to 60, SFOA gets the smallest standard deviation. For F5 with dimensions equal to 30 and 60,IFOA obtains the best mean result and the smallest standard deviation, followed by MDFOA. Eight algorithms including LGMS-FOA, AE-LGMS-FOA,MFOA, IFFO, SFOA, IFOA, DE and DMDFOA can converge to the theoretical optimal value of function F11 with dimensions equal to 30. When the dimensions are increased to 60, six algorithms including LGMS-FOA, AE-LGMS-FOA, MFOA,SFOA, IFOA and DMDFOA can converge to the theoretical optimal value of function F11.

    Fig.2 Average convergence curves on some 60-dimensional functions

    2) For multimodal functions (F16-F29), MDFOA obtains all the best mean results. In terms of algorithm stability, MDFOA also gets 13 best results (except F23). For F23 with dimensions equal to 30 and 60,SFOA obtains the smallest standard deviation.

    3) The increment of the problem dimension has little effect on the convergence performance of MDFOA. While the convergence performance of other algorithms decreases obviously with an increase in the dimension of the problem.

    Table 1 Comparison with other algorithms on 30-dimensional functions

    Continued

    Table 2 Comparison with other algorithms on 60-dimensional functions

    Continued

    4) For most of the 29 complex benchmark functions, MDFOA can converge to the theoretical optimal value, which shows that MDFOA has strong global search and local search abilities, as well as strong algorithm stability.

    From Fig.1 and Fig.2, it can be observed that the evolution curves of the MDFOA descend much faster and reach lower level than that of other nine algorithms, indicating that MDFOA has the advantages of fast convergence speed and high convergence accuracy. The results in Fig.1 and Fig.2 also show that several other algorithms are easy to be trapped to the local optimal.

    3.3 Analysis of High-Dimensional Functions

    To test the ability of MDFOA of dealing with high-dimensional complex optimization problems, the dimensions of the benchmark functions increase to 100, 200, 300, and 400, respectively. The parameter setting and operating environment of MDFOA are kept the same as described above. The mean value and standard deviation are calculated based on the 30 independent replications, and the results are shown in Table 3. The average convergence curves of the optimization processes for some typical functions by MDFOA are illustrated in Fig.3.

    From Table 3, we can find that MDFOA is still highly effective and reliable in solving highdimensional complex problems. The change in the dimension of the problems has little effect on the optimization performance of MDFOA. Among the 29 100-dimensional benchmark functions, MDFOA can converge to the theoretical optimal value of 23 functions. The same conclusion is reached when the dimensions increased to 200, 300, and 400. MDFOA also shows high convergence accuracy and excellent algorithm stability for benchmark functions that fail to converge to the theoretical optimal value. The above results are further verified by Fig.3. It should be noted that with an increase in the scale of the problem, the running time of the algorithm also increases.

    Table 3 High-dimensional benchmark functions optimization results of MDFOA

    Continued

    Fig.3 Average convergence curves on some high-dimensional functions

    4 Conclusions and Future Research

    In order to overcome the shortcomings of the basic FOA, such as low convergence accuracy and easy to fall into local optimum, we propose a novel improved fruit fly optimization algorithm, namely multi-strategy dynamic fruit fly optimization algorithm. A strategy randomly selected from the strategy base is used as the current evolution operator of each fruit fly individual, and different evolutionary strategies complement each other to effectively improve the overall optimization performance of the algorithm. To further improve the convergence speed of the algorithm, the algorithm employs a mechanism of dynamically updating the swarm information in real time, thus the non-evolutionary individuals of current generation can obtain the latest global optimal information in time. Tests on 29 benchmark functions indicate that the proposed MDFOA can perform better than FOA, LGMS-FOA, AE-LGMS-FOA, MFOA,IFFO, SFOA, IFOA, PSO and DE in terms of convergence accuracy, convergence speed and convergence stability. MDFOA also shows good performance in solving high-dimensional function optimization problems.

    In this paper, we choose an evolutionary strategy from the strategy base by random selection. Adaptive strategy selection may be a better choice, and it will be one of the research contents in the future. In addition,the parameters α and β in Eq. (12) are two key parameters that affect the convergence performance of the algorithm, and their reasonable settings also need to be further studied in the future work.

    猜你喜歡
    南昌大學(xué)建平果蠅
    果蠅也會(huì)“觸景傷身”
    小果蠅大貢獻(xiàn)
    《南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    果蠅遇到危險(xiǎn)時(shí)會(huì)心跳加速
    《南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)稿約》
    《南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)稿約》
    小果蠅助力治療孤獨(dú)癥
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    综合色av麻豆| 伦精品一区二区三区| 久久精品影院6| 波野结衣二区三区在线| 国产亚洲av片在线观看秒播厂 | 国内少妇人妻偷人精品xxx网站| 色视频www国产| 亚洲国产精品成人综合色| 超碰av人人做人人爽久久| 少妇的逼好多水| 国产av在哪里看| 变态另类成人亚洲欧美熟女| 免费人成在线观看视频色| 久久久色成人| 精品免费久久久久久久清纯| 日本免费a在线| 精品久久国产蜜桃| 免费av毛片视频| 成人亚洲欧美一区二区av| 欧美xxxx性猛交bbbb| 国产精品精品国产色婷婷| 日韩三级伦理在线观看| 波多野结衣高清无吗| 亚洲人与动物交配视频| 久久久久久大精品| 国产成人福利小说| 成人国产麻豆网| 五月伊人婷婷丁香| 亚洲精品乱码久久久久久按摩| 日韩国内少妇激情av| 免费一级毛片在线播放高清视频| 日本在线视频免费播放| 在线免费观看不下载黄p国产| 亚洲五月天丁香| 亚洲自偷自拍三级| 免费看a级黄色片| 日本免费一区二区三区高清不卡| 亚洲成av人片在线播放无| 成人亚洲精品av一区二区| 亚州av有码| av福利片在线观看| 亚洲欧美精品综合久久99| 亚洲人与动物交配视频| 少妇猛男粗大的猛烈进出视频 | 啦啦啦观看免费观看视频高清| 成人二区视频| 日日干狠狠操夜夜爽| 长腿黑丝高跟| 亚洲国产精品sss在线观看| 国产极品天堂在线| 神马国产精品三级电影在线观看| 久久久欧美国产精品| 中文字幕制服av| 麻豆成人午夜福利视频| 观看美女的网站| 国产精品,欧美在线| 久久欧美精品欧美久久欧美| 免费无遮挡裸体视频| 国产高清三级在线| 久久草成人影院| 久久人人爽人人片av| 最近手机中文字幕大全| а√天堂www在线а√下载| 五月玫瑰六月丁香| 少妇丰满av| 国产午夜精品久久久久久一区二区三区| 精品人妻偷拍中文字幕| 国产极品精品免费视频能看的| 九草在线视频观看| 亚洲人成网站在线播放欧美日韩| 国产女主播在线喷水免费视频网站 | 在线免费十八禁| 久久久精品欧美日韩精品| 国产精品av视频在线免费观看| 国产精品无大码| 大型黄色视频在线免费观看| 网址你懂的国产日韩在线| 天堂av国产一区二区熟女人妻| 蜜桃亚洲精品一区二区三区| 国产成人aa在线观看| 高清毛片免费观看视频网站| 一区二区三区免费毛片| 中文字幕熟女人妻在线| 亚洲一级一片aⅴ在线观看| 亚洲国产精品sss在线观看| 国产精品综合久久久久久久免费| 欧美三级亚洲精品| 人人妻人人澡人人爽人人夜夜 | 日韩av不卡免费在线播放| 亚洲电影在线观看av| 亚洲欧美精品自产自拍| 永久网站在线| 成人特级黄色片久久久久久久| 国产伦在线观看视频一区| 国产探花在线观看一区二区| 国产精品永久免费网站| 日韩 亚洲 欧美在线| 嫩草影院入口| 狂野欧美激情性xxxx在线观看| 3wmmmm亚洲av在线观看| 精华霜和精华液先用哪个| 日本色播在线视频| 欧美又色又爽又黄视频| 一个人看视频在线观看www免费| 亚洲欧美日韩高清在线视频| 老女人水多毛片| 午夜精品国产一区二区电影 | 麻豆久久精品国产亚洲av| 特级一级黄色大片| 亚洲国产日韩欧美精品在线观看| 国内久久婷婷六月综合欲色啪| 99久国产av精品国产电影| av卡一久久| 18禁在线播放成人免费| 国产成人福利小说| 激情 狠狠 欧美| 亚洲精品国产成人久久av| 男女边吃奶边做爰视频| 色综合亚洲欧美另类图片| 久久精品国产亚洲av香蕉五月| 寂寞人妻少妇视频99o| 国产精品国产高清国产av| 国产伦一二天堂av在线观看| 精品久久久久久久人妻蜜臀av| 小蜜桃在线观看免费完整版高清| 国产午夜精品一二区理论片| 亚洲精品乱码久久久v下载方式| 人妻少妇偷人精品九色| 在线免费观看不下载黄p国产| 一级黄片播放器| 久久精品夜色国产| 99热6这里只有精品| 日韩 亚洲 欧美在线| 美女 人体艺术 gogo| av女优亚洲男人天堂| 乱系列少妇在线播放| 久久久国产成人免费| 少妇人妻精品综合一区二区 | 亚洲精品影视一区二区三区av| 一级毛片电影观看 | 国内精品久久久久精免费| 午夜久久久久精精品| 99热精品在线国产| 亚洲欧美成人精品一区二区| 亚洲av成人精品一区久久| 十八禁国产超污无遮挡网站| 级片在线观看| 直男gayav资源| 国产 一区 欧美 日韩| 亚洲久久久久久中文字幕| 精品久久久久久成人av| 日韩大尺度精品在线看网址| 高清在线视频一区二区三区 | 一本精品99久久精品77| 麻豆国产av国片精品| 亚洲七黄色美女视频| 18禁裸乳无遮挡免费网站照片| 国产真实乱freesex| 99热全是精品| 欧美成人免费av一区二区三区| 久久99热6这里只有精品| 国产69精品久久久久777片| 久久草成人影院| 亚洲美女搞黄在线观看| 精品久久久噜噜| 国产色爽女视频免费观看| 成人午夜精彩视频在线观看| 天堂中文最新版在线下载 | 国产精品不卡视频一区二区| 久久久久久久久中文| 色5月婷婷丁香| 大香蕉久久网| 欧美区成人在线视频| 不卡一级毛片| 亚洲一区二区三区色噜噜| 欧美日韩一区二区视频在线观看视频在线 | 最新中文字幕久久久久| 国产蜜桃级精品一区二区三区| 在线免费观看的www视频| 激情 狠狠 欧美| 一级毛片我不卡| 日韩亚洲欧美综合| 午夜激情欧美在线| 直男gayav资源| 日本一本二区三区精品| 久久亚洲国产成人精品v| 国产精品一区二区三区四区免费观看| 赤兔流量卡办理| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 国产伦精品一区二区三区四那| 国产免费男女视频| 日本成人三级电影网站| 1000部很黄的大片| 大型黄色视频在线免费观看| 久久久成人免费电影| 美女黄网站色视频| 亚洲最大成人av| 国产高清有码在线观看视频| 日韩高清综合在线| 精品人妻熟女av久视频| 国内久久婷婷六月综合欲色啪| 大又大粗又爽又黄少妇毛片口| 国产免费男女视频| 日本-黄色视频高清免费观看| 成人毛片a级毛片在线播放| 久久人人精品亚洲av| 亚洲精品成人久久久久久| 久久久久久久久大av| 一边亲一边摸免费视频| 六月丁香七月| 国产精华一区二区三区| 韩国av在线不卡| 国产黄色视频一区二区在线观看 | 97超视频在线观看视频| 欧美一区二区国产精品久久精品| or卡值多少钱| 久久6这里有精品| 高清毛片免费观看视频网站| 在线免费十八禁| 国产精品久久电影中文字幕| 内地一区二区视频在线| av在线老鸭窝| 国产伦理片在线播放av一区 | 在线天堂最新版资源| 又粗又爽又猛毛片免费看| 日本与韩国留学比较| 久久这里只有精品中国| 日本爱情动作片www.在线观看| 亚洲成人久久爱视频| 日本一本二区三区精品| 波野结衣二区三区在线| www日本黄色视频网| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 国产在视频线在精品| 搞女人的毛片| 人妻夜夜爽99麻豆av| 国产精品av视频在线免费观看| 淫秽高清视频在线观看| 春色校园在线视频观看| 久久精品国产鲁丝片午夜精品| 九草在线视频观看| 日日啪夜夜撸| 长腿黑丝高跟| 午夜福利在线观看吧| 日本黄色片子视频| 国产色爽女视频免费观看| 一个人看的www免费观看视频| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 卡戴珊不雅视频在线播放| 老司机亚洲免费影院| 精品人妻熟女av久视频| 内地一区二区视频在线| 久久毛片免费看一区二区三区| 国产av码专区亚洲av| 亚洲精品日韩av片在线观看| 久久人人爽人人爽人人片va| 亚洲成人手机| 韩国高清视频一区二区三区| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 国产一区亚洲一区在线观看| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 黄色欧美视频在线观看| 午夜福利网站1000一区二区三区| 精品国产一区二区久久| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线 | 精品一区二区免费观看| 9色porny在线观看| 国产黄色视频一区二区在线观看| 亚洲少妇的诱惑av| 国产在线视频一区二区| 欧美日韩在线观看h| 欧美精品国产亚洲| 卡戴珊不雅视频在线播放| 欧美丝袜亚洲另类| 成人午夜精彩视频在线观看| 夜夜看夜夜爽夜夜摸| 99热国产这里只有精品6| 欧美性感艳星| 日韩 亚洲 欧美在线| 国产又色又爽无遮挡免| 久久久久久久久久久久大奶| 亚洲欧美成人综合另类久久久| 99九九线精品视频在线观看视频| 一本一本综合久久| 国产深夜福利视频在线观看| 亚洲在久久综合| 全区人妻精品视频| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 国产精品一二三区在线看| 男人添女人高潮全过程视频| 大陆偷拍与自拍| 观看av在线不卡| 亚洲av电影在线观看一区二区三区| 一区二区三区四区激情视频| 水蜜桃什么品种好| 免费黄频网站在线观看国产| 午夜福利,免费看| 交换朋友夫妻互换小说| a级毛片免费高清观看在线播放| 一本一本综合久久| 亚洲精品一二三| 亚洲av成人精品一二三区| 中文字幕av电影在线播放| 中文字幕制服av| 国产av精品麻豆| av免费在线看不卡| 2021少妇久久久久久久久久久| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 99久久人妻综合| 五月开心婷婷网| 最新中文字幕久久久久| av国产精品久久久久影院| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看| 午夜福利网站1000一区二区三区| 亚洲精品乱久久久久久| 日韩亚洲欧美综合| 日韩精品免费视频一区二区三区 | 免费观看的影片在线观看| 老女人水多毛片| 肉色欧美久久久久久久蜜桃| 国产国语露脸激情在线看| 午夜久久久在线观看| 午夜福利影视在线免费观看| 99久久精品国产国产毛片| tube8黄色片| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| 99久久中文字幕三级久久日本| 久久国产亚洲av麻豆专区| 亚洲人与动物交配视频| 蜜桃在线观看..| 免费人妻精品一区二区三区视频| 中文字幕最新亚洲高清| 水蜜桃什么品种好| 国产成人精品一,二区| 色网站视频免费| 亚洲怡红院男人天堂| 日日爽夜夜爽网站| 国产 精品1| 欧美97在线视频| 高清黄色对白视频在线免费看| 国国产精品蜜臀av免费| 日本欧美国产在线视频| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| av黄色大香蕉| 免费高清在线观看视频在线观看| 中文字幕最新亚洲高清| 日本黄色片子视频| 国产成人精品在线电影| 日本午夜av视频| av在线播放精品| 欧美日韩亚洲高清精品| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 免费观看无遮挡的男女| 亚洲少妇的诱惑av| 国产成人精品久久久久久| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩av久久| kizo精华| 精品国产乱码久久久久久小说| 久久青草综合色| 国产一区有黄有色的免费视频| 久久久久久伊人网av| 国产成人av激情在线播放 | 久久精品国产亚洲网站| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕 | 免费高清在线观看视频在线观看| av一本久久久久| 久久精品国产亚洲网站| 色5月婷婷丁香| 少妇人妻 视频| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 亚洲精品日韩av片在线观看| av国产久精品久网站免费入址| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 女人精品久久久久毛片| 精品一区二区三区视频在线| 午夜福利,免费看| 久久精品国产自在天天线| 嫩草影院入口| 晚上一个人看的免费电影| videosex国产| 色吧在线观看| 免费黄色在线免费观看| 岛国毛片在线播放| 日日撸夜夜添| 亚洲精品成人av观看孕妇| 亚洲无线观看免费| 少妇人妻 视频| 精品少妇内射三级| 精品一品国产午夜福利视频| 看非洲黑人一级黄片| 一本一本综合久久| 国产成人午夜福利电影在线观看| 69精品国产乱码久久久| 午夜老司机福利剧场| 中文字幕久久专区| 国产精品成人在线| 午夜福利视频精品| 亚洲三级黄色毛片| av在线观看视频网站免费| 啦啦啦视频在线资源免费观看| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 一本大道久久a久久精品| 99国产综合亚洲精品| 国产综合精华液| 精品亚洲成国产av| 男女免费视频国产| 最近中文字幕高清免费大全6| 欧美3d第一页| 欧美+日韩+精品| av免费在线看不卡| 一级黄片播放器| 波野结衣二区三区在线| 激情五月婷婷亚洲| 亚洲av综合色区一区| 全区人妻精品视频| 9色porny在线观看| 国产在线一区二区三区精| 国产永久视频网站| 美女福利国产在线| 久久狼人影院| 日本av免费视频播放| 美女内射精品一级片tv| 日韩成人伦理影院| 自拍欧美九色日韩亚洲蝌蚪91| 性色av一级| 精品熟女少妇av免费看| 国产成人av激情在线播放 | 国产高清三级在线| 两个人的视频大全免费| 视频中文字幕在线观看| 久久国产精品男人的天堂亚洲 | 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 国产高清三级在线| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 亚洲综合精品二区| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 久久久久网色| 99热这里只有是精品在线观看| 国产成人精品在线电影| 精品一区在线观看国产| 自线自在国产av| 国产精品一国产av| 国产 精品1| 免费观看在线日韩| 日韩三级伦理在线观看| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 国产高清不卡午夜福利| 9色porny在线观看| 日韩视频在线欧美| 久久99蜜桃精品久久| 一本久久精品| 亚洲,欧美,日韩| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 少妇人妻久久综合中文| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 性色avwww在线观看| 99国产精品免费福利视频| 日韩中文字幕视频在线看片| 中文字幕亚洲精品专区| 高清黄色对白视频在线免费看| 久久韩国三级中文字幕| 99re6热这里在线精品视频| 精品久久久久久久久av| 91成人精品电影| 美女主播在线视频| 欧美日韩av久久| 高清午夜精品一区二区三区| av天堂久久9| 日本欧美视频一区| av福利片在线| 少妇熟女欧美另类| 三级国产精品欧美在线观看| 久久 成人 亚洲| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 精品久久久久久电影网| 久久人人爽人人片av| 高清黄色对白视频在线免费看| 精品少妇内射三级| 国产成人freesex在线| 高清av免费在线| 免费少妇av软件| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 亚洲精品乱码久久久久久按摩| av不卡在线播放| 国产在线免费精品| 色视频在线一区二区三区| 国产不卡av网站在线观看| 成人国产av品久久久| 亚洲欧美成人精品一区二区| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 少妇的逼好多水| 国产色婷婷99| 五月玫瑰六月丁香| 高清在线视频一区二区三区| 日韩中字成人| 最近的中文字幕免费完整| 国产免费一级a男人的天堂| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 狂野欧美白嫩少妇大欣赏| 亚洲欧美一区二区三区黑人 | 国产色婷婷99| 国产成人91sexporn| 蜜桃国产av成人99| 国产黄频视频在线观看| 久久精品国产亚洲网站| 91久久精品电影网| av电影中文网址| 国产免费现黄频在线看| 18禁在线播放成人免费| 日韩视频在线欧美| 色吧在线观看| 亚洲国产精品国产精品| 亚洲综合色惰| 中文字幕亚洲精品专区| 国产午夜精品久久久久久一区二区三区| 久久久久国产精品人妻一区二区| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 永久网站在线| 在线 av 中文字幕| 天天操日日干夜夜撸| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩另类电影网站| 蜜臀久久99精品久久宅男| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| 寂寞人妻少妇视频99o| 精品人妻熟女av久视频| 91久久精品电影网| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 久久久久网色| 我的老师免费观看完整版| 精品一区二区三区视频在线| 伊人亚洲综合成人网| 丝袜脚勾引网站| 这个男人来自地球电影免费观看 | 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 老司机亚洲免费影院| 母亲3免费完整高清在线观看 | 考比视频在线观看| 久久影院123| 国产不卡av网站在线观看| 丰满迷人的少妇在线观看| 欧美+日韩+精品| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 美女福利国产在线| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 亚洲精品亚洲一区二区| 999精品在线视频| 日韩不卡一区二区三区视频在线| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 中文字幕久久专区| 中文字幕最新亚洲高清| 一个人看视频在线观看www免费| 日日爽夜夜爽网站| 国产av精品麻豆|