• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Health status assessment of axial piston pump under variable speed①

    2020-10-09 09:02:08GuoRuiLiHuchengZhaoZhiqianZhangRongbingZhaoJingyiGaoDianrong
    High Technology Letters 2020年3期

    Guo Rui(郭 銳)②, Li Hucheng, Zhao Zhiqian, Zhang Rongbing, Zhao Jingyi, Gao Dianrong

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University, Qinhuangdao 066004, P.R.China) (* *State key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, P.R.China) (* * *Key Laboratory of Advanced Forging & Stamping Technology and Science,Yanshan University, Qinhuangdao 066004, P.R.China) (* * * *Hebei Key Laboratory of Special Delivery Equipment Yanshan University, Qinhuangdao 066004, P.R.China)

    Abstract

    Key words: axial piston pump, variable speed condition, order ratio variational mode decomposition (VMD) in angle domain, health status assessment

    0 Introduction

    The axial piston pump is suitable for high pressure, large flow, high power and flow regulation needs, and has been widely used in modern industry. The port plate is one of the most critical friction sub-assemblies of the axial piston pump. It must not only function as a port but also support the cylinder to maintain the force balance of the cylinder[1]. The health of the port plate can have a major impact on the life of the plunger pump and the reliability of the entire hydraulic system. Therefore, it is very important to evaluate the reliability of the axial piston pump port plate.

    The prognostic and health management (PHM) technology has become a hot topic in research, and there is also some research progress in the field of hydraulic power components. Tian et al.[2]established a prediction model combining wavelet packet decomposition and support vector machine (SVM), and effective fault prediction for axial piston pump. Lin et al.[3]proposed a piston pump fault prediction method based on fuzzy comprehensive evaluation and analytic hierarchy process for the problem that the axial piston pump fault was difficult to predict accurately. Li et al.[4]carried out time domain analysis and wavelet packet analysis of the vibration signal of the axial piston pump, extracted the characteristic parameters used for fault prediction, and established the fault prediction model. Du et al.[5]proposed a fault diagnosis method for the vibration signal of axial piston pump, and verified the effectiveness and accuracy of the method. Tang et al.[6]fused the vibration signal and the pressure signal to obtain a more accurate fault diagnosis method than using a single signal. Kou et al.[7]proposed a fault diagnosis method based on cosine neighboring coefficients (CNC) noise reduction and ensemble empirical mode decomposition (EMMD) for the vibration signal of axial piston pump casing. Jiang et al.[8,9]proposed an evaluation method based on kurtosis, power and standard deviation to diagnose the fault of the axial piston pump.Aiming at the difficulty in extracting fault signature signals under variable speed conditions, a diagnostic method based on order tracking technology was proposed. He et al.[10]used the time-varying state transition hidden semi-Markov model to predict the remaining service life of the axial piston pump.

    In recent years, modal decomposition technology has been applied in many fields. Tang et al.[11]used the variational mode decomposition (VMD) method to process the bearing fault data and extracted the characteristic frequency to make the result more accurate. Xie et al.[12]adaptively decomposed the rolling bearing by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method, obtained fault feature information, and introduced SVM classification algorithm to realize intelligent diagnosis. Ren et al.[13]combined the CEEMDAN algorithm with the Teager energy operator, and the accuracy of the calculation results was improved compared with the EEMD algorithm.

    Axial piston pumps are often in a variable speed condition. It is very important to find an effective vibration signal analysis method under this condition. Aiming at the difficulty of selecting the intrinsic mode function (IMF) component of the vibration signal degradation characteristic sensitivity information, a method based on CEEMDAN fast spectrum kurtosis diagram and energy spectrum is proposed. Aiming at the VMD method which is not suitable for dealing with large-scale fluctuation of the rotational speed, the method of extracting the degraded feature of the angular domain signal by VMD is proposed, and the characteristic index containing the sensitive information of the degraded feature is accurately extracted. The hydraulic pump with Weibull port as the reference port actively monitors the proportional failure rate model, which provides a new idea for the evaluation of the health status of the axial piston pump.

    1 Algorithm introduction and theoretical analysis

    1.1 Order ratio analysis method based on angle domain

    The order ratio analysis is an effective method to analyze the rotating mechanical signals under variable speed conditions. The key of the order ratio analysis is to find out the relationship between the original vibration signal and the speed signal, realize the equal angle sampling, eliminate the influence of the speed, and convert the unsteady signal in the time domain into the angular stationary signal.

    The essence of VMD is the process of solving the variational problem[14], and the VMD algorithm is as follows.

    (1)

    (2)

    (3) Updateλ;

    (3)

    (4) For a given discriminant accuracy, the loop ends until the stop iteration condition (Eq.(4)) is met, resulting in a narrowband IMF component, otherwise returning to Step (2) continues.

    (4)

    1.2 Establishment of Weibull proportional failure rate model

    The proportional failure rate model establishes the relationship between the state indicator and the reliability, and can effectively use the data that has not completely failed, obtain the degradation rate of the current state, and then evaluate the reliability. This model has been widely used in the field of mechanical equipment reliability analysis[15], which is defined as follows.

    h(t:Z)=h0(t)exp(γZ)

    (5)

    where,h0(t) is the rate of time-dependent basic failure;Zis the covariate and affects the factor variable;γis the regression coefficient vector and is affected by the failure rate caused by the factor variables.

    The Weibull proportional failure rate model is an effective model in practical applications, enabling accurate analysis of product reliability[16]. The Weibull proportional failure rate reliability model is

    R(t:Z)=exp(-H(t:Z))

    (6)

    The kurtosis and peak indicators are effective indicators for analyzing vibration signals. As the degree of wear increases, the kurtosis value will increase accordingly, and the peak indicators will rise to a certain peak and then show a downward trend. In this paper, the kurtosis and peak indicators of the hydraulic pump angle domain signal are used. To reflect the covariateZ1k,Z2CFof its operating state and apply it to the Weibull proportional failure rate model, the above equation can be expressed as

    R(t:Z)=exp(-H(t:Z))

    (7)

    2 Simulation experiment and signal processing of the health state of the port plate under variable speed

    2.1 Construction and data acquisition of simulated vibration signal test bench

    The experiment will simulate 5 working health states of the hydraulic pump port plate, which are normal state (δ=0 mm), wear state 1 (δ=0.0432 mm), wear state 2 (δ=0.00477 mm), wear state 3 (δ=0.1248 mm), wear state 4 (δ=0.4661 mm).

    The calculation of the volumetric efficiency is used to analyze whether the hydraulic pump fails during its design life, and the durability parameters of the pump are obtained. The volumetric efficiency of the pump in the 5 cases is 91.95%, 89.83%, 88.44%, 87.68%, and 84.11%, respectively. According to the volumetric efficiency value, the degree of wear of the port plate is classified into normal state, slight wear, moderate wear, heavy wear, and complete failure.

    The schematic diagram of the experimental system is shown in Fig.1. The test bench can collect vibration signal data during the acceleration and deceleration of the hydraulic pump. Manually adjust the working pressure of the relief valve to 10 MPa, run the control program, when the pressure is stable at 10 MPa, click the data acquisition button, adjust the potentiometer at the same time, change the parameters of the inverter, and then change the speed of the motor from 1 500 r/min to 900 r/min (50-30 Hz), the data acquisition card monitors the change of the speed through the panel of the speed monitor, and collects the characteristic signals in the process. Fig.2 is a site photograph of the test platform.

    1. Fuel tank 2. Suction filter 3. Vane pump 4. Oil supply motor 5. Globe valve 6. Liquid temperature gauge 7. Return oil filter 8. Pressure gauge switch 9. Flowmeter 10. Pump to be tested 11. Drive motor 12. Vibration sensor 13. Pressure gauge 14. Check valve 15. Two-position three-way electromagnetic reversing valve 16. High pressure filter 17. Pilot proportional relief valve 18. Pilot operated relief valve 19. Direct acting relief valve

    Fig.2 Test platform site

    2.2 Signal processing analysis of vibration test of different health status of hydraulic pump port plate

    In this work, the CY-type axial piston pump is taken as the research object, and the rated speed of the motor is 1 500 r/min. Set the sampling frequency to 20 kHz and collect the vibration signal of the pump cover. The initial pressure of the test is set to 10 MPa, and the data of the 4 s time period is selected for analysis. The main goal is to determine the degree of damage of the port parts of the key components of the hydraulic pump. Therefore, the peak and kurtosis values are selected as diagnostic indicators. Perform CEEMDAN decomposition to obtain a series of IMF components, as shown in Fig.3 (only the first 4 orders are listed).

    Taking the original signal in the normal state of the port plate as an example, using the fast spectral kurtosis principle and the energy spectrum principle, the energy values of the first 4 order IMF components and the fast spectral kurtosis diagrams of the original signal and the first 4 order IMF components are calculated.The fast spectrum kurtosis diagram and the first 4 orders of IMF component energy spectrum in normal state are shown in Fig.4. And the fast spectral kurtosis parameters under normal conditions are shown in Table 1. The frequency band at which the maximum spectral kurtosis is located is a rectangular area (6 667, 10 000) Hz pointed by the arrow, and the frequency band range of the fast spectrum kurtosis diagram under the original signal of the normal state of the port plate is selected. According to the figure, where, only the maximum amplitude of the IMF1 spectral kurtosis is (6 667, 10 000) Hz, the characteristic frequency band interval is subordinate to the original signal band interval of the port plate normal state, and is in the same as the original signal. The decomposition level isk=1.5, and the maximum amplitude of the other IMF component spectral kurtosis is not in the entire frequency band. Therefore, IMF1 is the sensitive IMF, and the energy value of IMF1 is the largest in the energy spectrum. IMF1 is selected as the sensitive factor. In the same way, according to the above method, without reference, sensitive IMF screening for mild wear state, moderate wear state, severe wear state, and complete failure state are all IMF1 components.

    Fig.3 The first 4 order IMF components of CEEMDAN decomposition of 5 healthy states of the port plate

    Fig.4 Fast spectrum kurtosis diagram and energy spectrum diagram of the first 4 orders of IMF component under normal conditions

    Table 1 Fast spectral kurtosis parameters under normal conditions

    The Hilbert envelope demodulation is performed on the IMF1 order components of the 6 states of the port plate to obtain the corresponding envelope demodulation signal. The sampling frequency of the envelope demodulated signal is reduced to 2 kHz, and then the instantaneous frequency is obtained by performing wavelet cluster band pass filtering on the down sampled signal. Set the sampling frequency to 100 Hz to perform angular equal-angle resampling of the signal, whereΔθ=2π/100 is obtained. Obtaining an equal-angle resampled phase-detection time-scale sequence and resampling the signal to obtain a resampled signal, and obtaining a resampled angle domain signal. The VMD decomposition is performed on the angle domain signal, and the first-order component is selected as the degenerated feature component of the feature extraction, as shown in Fig.5.

    3 Hydraulic pump health status assessment based on Weibull proportional failure rate model

    The average data of the first-order characteristic sensitive component of the obtained angular domain signal VMD is divided into 75 segments, the average value of each small segment is calculated, and the discrete point fitting is performed to obtain a smooth straight line, which is convenient for observing the trend. The kurtosis index is obtained, as shown in Fig.6.

    It can be seen from Fig. 6 that in each of the wear state kurtosis value decomposition maps, as the hydraulic pump speed gradually decreases, the kurtosis value also shows an overall downward trend. In the normal state, the kurtosis index of more than 50% of the 75 time series values is around 3. When it is slightly worn, most of the indicators are around 4. As the degree deepens, the overall value of the kurtosis becomes larger and larger. A maximum of 5.2 is reached when it fails completely.

    The peak index of the first-order characteristic sensitive component of the angle domain signal VMD is obtained, as shown in Fig.7. It can be seen from Fig.7 that in each wear state peak factorization diagram, as the hydraulic pump speed is gradually decreased, the peak factor also shows an overall downward trend. As the damage degree of the port plate is deepened, the peak factor tends to increase gradually. In the case of heavy wear, the peak factor value is greater than 4, reaching a maximum of 4.2, but it drops to 3.65 when it fails completely. In order to verify the effect of the proposed Weibull proportional failure model, the health status is evaluated from the data collection collected in the hydraulic pump port plate failure simulation experiment system. Under the condition that the other parts of the pump are kept in a normal state and the only variable of the port plate, the data of the hydraulic pump port plate is collected in 5 different degrees of damage. The Weibull proportional failure rate model is constructed by combining 2 indicators of kurtosis and crest factor, and the reliability value is calculated. The discrete reliability curve and fitting reliability are shown in Fig.8. The reliability value is also sequentially decreased, which indicates that the health state also shows a downward trend.

    Fig.5 Angle domain signal VMD processing first-order sensitive component

    Fig.6 Kurtosis value index of different wear degree of the port plate

    Fig.7 Pivot factor indicator of different wear degree of the port plate

    Fig.8 Discrete reliability curve and fitting reliability curve for different wear levels of the port plate

    The degree of reliability is shown in Table 2. Calculate the reliability of the equipment, quantitatively analyze the current operational health status of the equipment according to the reliability division in the table, so as to master the operation status, determine whether to repair in advance, and prevent serious failures.

    Table 2 Reliability classification table

    When the failure value is completely fluctuated, the reliability value fluctuates around 0.4. According to Table 2, it is known that it is in an unsatisfactory category, which is consistent with the actual health state of the axial piston pump, thus verifying the validity of the proportional model.

    4 Conclusion

    Using the combination of CEEMDAN energy spectrum and fast spectral kurtosis principle, the signals of various working states of hydraulic pump port plate under variable speed are processed to accurately extract the IMF component containing the sensitive information of degraded features.

    Using the angular domain signal VMD degeneration feature extraction method, the influence of the rotational speed fluctuation caused by the variable rotation speed on the vibration signal can be effectively eliminated, and the characteristic index containing the degraded characteristic sensitive information can be accurately extracted.

    Combining the Weibull proportional failure rate model with the sensitive feature extraction of the real-time degraded vibration signal of the hydraulic pump provides a new idea for effectively solving the problem of hydraulic pump health assessment.

    成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 久久女婷五月综合色啪小说| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 国产精品欧美亚洲77777| 巨乳人妻的诱惑在线观看| 女人久久www免费人成看片| 丝袜喷水一区| 人人妻,人人澡人人爽秒播 | 午夜福利免费观看在线| 亚洲久久久国产精品| 五月开心婷婷网| 日韩av在线免费看完整版不卡| 七月丁香在线播放| 99久国产av精品国产电影| 亚洲国产精品国产精品| 肉色欧美久久久久久久蜜桃| 精品一区二区三区四区五区乱码 | h视频一区二区三区| 久久亚洲国产成人精品v| 日韩av在线免费看完整版不卡| 美女扒开内裤让男人捅视频| a 毛片基地| 精品一区二区三卡| 一级片免费观看大全| 国产精品亚洲av一区麻豆 | 五月开心婷婷网| 亚洲国产精品一区二区三区在线| av.在线天堂| 最近中文字幕2019免费版| 99精国产麻豆久久婷婷| 在线天堂最新版资源| 成年美女黄网站色视频大全免费| 欧美激情高清一区二区三区 | 色播在线永久视频| 亚洲欧美清纯卡通| 悠悠久久av| 国产成人一区二区在线| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图| 黄色视频在线播放观看不卡| 欧美老熟妇乱子伦牲交| 观看av在线不卡| 久久97久久精品| 老司机靠b影院| 久久av网站| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 综合色丁香网| 久久精品久久精品一区二区三区| 天堂8中文在线网| 人妻人人澡人人爽人人| 黄网站色视频无遮挡免费观看| 日韩电影二区| 91精品三级在线观看| 看免费成人av毛片| 免费观看人在逋| 色精品久久人妻99蜜桃| 青草久久国产| 精品一区二区免费观看| 久久久久国产一级毛片高清牌| 大片电影免费在线观看免费| 国产一区二区在线观看av| 中国三级夫妇交换| 亚洲av成人精品一二三区| av一本久久久久| 久久午夜综合久久蜜桃| 午夜激情久久久久久久| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一二三区| 各种免费的搞黄视频| 多毛熟女@视频| 一区二区三区四区激情视频| 999久久久国产精品视频| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 午夜影院在线不卡| 丝袜人妻中文字幕| 高清不卡的av网站| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 精品久久久久久电影网| 亚洲av电影在线进入| 亚洲,欧美,日韩| 国产午夜精品一二区理论片| 国产在线视频一区二区| 国产成人精品久久久久久| 十八禁人妻一区二区| 亚洲欧美精品自产自拍| 国产黄色免费在线视频| bbb黄色大片| 国产精品一区二区在线不卡| 韩国av在线不卡| 黄片小视频在线播放| 青草久久国产| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 一级毛片黄色毛片免费观看视频| 亚洲成国产人片在线观看| 高清欧美精品videossex| 国产精品香港三级国产av潘金莲 | 亚洲熟女精品中文字幕| 中文字幕高清在线视频| 欧美在线黄色| 国产精品无大码| 久久青草综合色| 亚洲图色成人| 电影成人av| 搡老乐熟女国产| 另类精品久久| 国产一区二区激情短视频 | 如日韩欧美国产精品一区二区三区| 观看美女的网站| 国产成人av激情在线播放| 999精品在线视频| 国产免费现黄频在线看| 日本猛色少妇xxxxx猛交久久| 国产精品99久久99久久久不卡 | 久久精品国产综合久久久| 精品亚洲成国产av| 一级,二级,三级黄色视频| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 人人妻人人澡人人爽人人夜夜| 国产成人免费观看mmmm| 日韩一区二区三区影片| 黄色视频不卡| e午夜精品久久久久久久| 五月天丁香电影| 亚洲国产看品久久| 99香蕉大伊视频| 9191精品国产免费久久| 人妻 亚洲 视频| 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 国产又色又爽无遮挡免| 极品人妻少妇av视频| www日本在线高清视频| av视频免费观看在线观看| 国产 一区精品| 99九九在线精品视频| 午夜影院在线不卡| 亚洲人成电影观看| 丰满少妇做爰视频| 午夜福利,免费看| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 久久毛片免费看一区二区三区| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 精品视频人人做人人爽| 亚洲成人av在线免费| 久久免费观看电影| 久久久精品国产亚洲av高清涩受| 国产片内射在线| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 99国产精品免费福利视频| 午夜福利一区二区在线看| 国产精品一区二区在线观看99| 高清黄色对白视频在线免费看| 99精品久久久久人妻精品| www.精华液| 免费日韩欧美在线观看| 欧美精品高潮呻吟av久久| 亚洲av中文av极速乱| av国产精品久久久久影院| 欧美av亚洲av综合av国产av | 国产爽快片一区二区三区| 狠狠婷婷综合久久久久久88av| 欧美另类一区| videos熟女内射| a级毛片在线看网站| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 国产成人欧美| av网站免费在线观看视频| 久久青草综合色| 天天影视国产精品| 日韩精品有码人妻一区| 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 久久影院123| 新久久久久国产一级毛片| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 91精品国产国语对白视频| 欧美精品高潮呻吟av久久| 久久性视频一级片| 99九九在线精品视频| 两个人免费观看高清视频| 免费在线观看黄色视频的| 亚洲国产精品成人久久小说| 波野结衣二区三区在线| 国产一区二区 视频在线| 人人妻,人人澡人人爽秒播 | 国产成人欧美在线观看 | 久久鲁丝午夜福利片| 亚洲精品乱久久久久久| 九九爱精品视频在线观看| 一级片免费观看大全| 午夜福利视频精品| 蜜桃在线观看..| 精品久久久久久电影网| 国产精品久久久久久久久免| 中文天堂在线官网| av国产久精品久网站免费入址| 久久精品aⅴ一区二区三区四区| 久久久久精品久久久久真实原创| 欧美成人午夜精品| 天天操日日干夜夜撸| av国产精品久久久久影院| 男女无遮挡免费网站观看| 国产欧美日韩综合在线一区二区| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 成人国语在线视频| 婷婷成人精品国产| 色精品久久人妻99蜜桃| 在现免费观看毛片| 岛国毛片在线播放| 综合色丁香网| 亚洲精品一二三| 桃花免费在线播放| 国产爽快片一区二区三区| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 啦啦啦 在线观看视频| www.精华液| 亚洲国产精品国产精品| 91国产中文字幕| 不卡av一区二区三区| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 国产一区二区三区av在线| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 国产成人欧美在线观看 | 老鸭窝网址在线观看| 精品国产乱码久久久久久小说| 中文字幕高清在线视频| 亚洲av在线观看美女高潮| 精品国产露脸久久av麻豆| 国产男女内射视频| 男人爽女人下面视频在线观看| 91成人精品电影| 99国产综合亚洲精品| 桃花免费在线播放| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 麻豆av在线久日| 综合色丁香网| 国产深夜福利视频在线观看| 精品酒店卫生间| 大香蕉久久成人网| 亚洲av电影在线观看一区二区三区| 日韩一区二区三区影片| 日韩精品免费视频一区二区三区| 秋霞伦理黄片| 黄色视频不卡| av福利片在线| av国产精品久久久久影院| 飞空精品影院首页| 欧美老熟妇乱子伦牲交| 午夜av观看不卡| 久久 成人 亚洲| www.自偷自拍.com| 制服丝袜香蕉在线| 嫩草影院入口| 黄色一级大片看看| xxxhd国产人妻xxx| 深夜精品福利| 制服人妻中文乱码| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 老司机靠b影院| 18在线观看网站| 在现免费观看毛片| 男女之事视频高清在线观看 | 精品国产国语对白av| 捣出白浆h1v1| 免费观看性生交大片5| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av | 久久婷婷青草| 亚洲精品乱久久久久久| 日本91视频免费播放| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影 | 国产精品久久久人人做人人爽| 中文字幕色久视频| 精品亚洲成国产av| 亚洲av成人精品一二三区| 国产精品久久久久久精品古装| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 99九九在线精品视频| 啦啦啦 在线观看视频| 久久热在线av| 欧美黑人欧美精品刺激| 国产一区二区 视频在线| av视频免费观看在线观看| 大码成人一级视频| 国产成人系列免费观看| 久久久久精品久久久久真实原创| a级毛片黄视频| 日韩精品免费视频一区二区三区| 综合色丁香网| 精品人妻一区二区三区麻豆| 国产伦人伦偷精品视频| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 男女免费视频国产| 国产免费视频播放在线视频| 国产精品香港三级国产av潘金莲 | 精品福利永久在线观看| 最近中文字幕高清免费大全6| 日韩一区二区三区影片| 亚洲欧美精品综合一区二区三区| www.av在线官网国产| 欧美精品av麻豆av| 男女午夜视频在线观看| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 美女午夜性视频免费| 日韩人妻精品一区2区三区| 日韩成人av中文字幕在线观看| 一个人免费看片子| 人成视频在线观看免费观看| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频| 满18在线观看网站| 9色porny在线观看| 久久久国产欧美日韩av| 久久99精品国语久久久| 亚洲精品国产av成人精品| 亚洲,欧美精品.| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| av免费观看日本| 亚洲国产欧美日韩在线播放| 国产欧美日韩综合在线一区二区| 韩国精品一区二区三区| 亚洲伊人久久精品综合| 丝袜喷水一区| 观看av在线不卡| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 亚洲,欧美精品.| 日韩伦理黄色片| 国产 精品1| 看十八女毛片水多多多| 欧美日韩福利视频一区二区| 可以免费在线观看a视频的电影网站 | 亚洲欧美精品综合一区二区三区| h视频一区二区三区| 七月丁香在线播放| 亚洲精品第二区| 天天添夜夜摸| 2018国产大陆天天弄谢| 如何舔出高潮| 最近最新中文字幕大全免费视频 | 色播在线永久视频| 欧美老熟妇乱子伦牲交| 中文天堂在线官网| 最新的欧美精品一区二区| 国产成人a∨麻豆精品| 欧美黑人精品巨大| 亚洲欧洲国产日韩| 久热爱精品视频在线9| 精品国产露脸久久av麻豆| 久久久久人妻精品一区果冻| 欧美日韩亚洲高清精品| 久久精品国产亚洲av高清一级| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 亚洲av中文av极速乱| 大片免费播放器 马上看| 赤兔流量卡办理| 日本wwww免费看| 韩国高清视频一区二区三区| 51午夜福利影视在线观看| 久久青草综合色| h视频一区二区三区| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 日韩一本色道免费dvd| 久久久久网色| 日韩人妻精品一区2区三区| 中文乱码字字幕精品一区二区三区| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 99香蕉大伊视频| 免费黄网站久久成人精品| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品| 欧美中文综合在线视频| 黄片小视频在线播放| 欧美日韩视频高清一区二区三区二| 久久久久精品人妻al黑| av国产久精品久网站免费入址| 成人免费观看视频高清| 婷婷色综合www| 男女免费视频国产| 欧美成人午夜精品| 国产 一区精品| 超碰97精品在线观看| 青草久久国产| 老熟女久久久| 亚洲综合色网址| 考比视频在线观看| av国产精品久久久久影院| 夫妻性生交免费视频一级片| 热99国产精品久久久久久7| 天天操日日干夜夜撸| 麻豆乱淫一区二区| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久 | 老汉色av国产亚洲站长工具| 精品少妇内射三级| 国产福利在线免费观看视频| 青春草国产在线视频| 婷婷色综合大香蕉| 一个人免费看片子| 久久久久精品国产欧美久久久 | 久久久久久久国产电影| 久久久久视频综合| 亚洲精华国产精华液的使用体验| 丁香六月欧美| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| 日本午夜av视频| 国产在线一区二区三区精| 精品久久蜜臀av无| 热99久久久久精品小说推荐| 日日摸夜夜添夜夜爱| 亚洲av电影在线进入| 老司机亚洲免费影院| 最新的欧美精品一区二区| 中文字幕制服av| 国产精品亚洲av一区麻豆 | 久久 成人 亚洲| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 日本色播在线视频| 波多野结衣av一区二区av| svipshipincom国产片| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 亚洲av成人不卡在线观看播放网 | 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 青春草亚洲视频在线观看| 五月开心婷婷网| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 久久久久国产一级毛片高清牌| 久久毛片免费看一区二区三区| av国产精品久久久久影院| 欧美日韩一区二区视频在线观看视频在线| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 国产一区二区 视频在线| 人人妻人人澡人人爽人人夜夜| 国产老妇伦熟女老妇高清| 久久性视频一级片| videos熟女内射| 国产精品免费大片| www.av在线官网国产| 国产精品久久久久成人av| 伊人亚洲综合成人网| 亚洲精品在线美女| 免费不卡黄色视频| 免费看不卡的av| av卡一久久| 精品福利永久在线观看| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 亚洲久久久国产精品| 99久久综合免费| 久久久久久久久久久久大奶| 如何舔出高潮| 啦啦啦在线观看免费高清www| 熟女av电影| 好男人视频免费观看在线| 中文天堂在线官网| 亚洲精品国产av蜜桃| 又粗又硬又长又爽又黄的视频| 男女床上黄色一级片免费看| 天天躁日日躁夜夜躁夜夜| 日韩av不卡免费在线播放| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看 | 搡老岳熟女国产| 久久影院123| 大陆偷拍与自拍| 亚洲欧美日韩另类电影网站| 日韩制服骚丝袜av| 人妻 亚洲 视频| 在线观看免费高清a一片| 亚洲av欧美aⅴ国产| 纯流量卡能插随身wifi吗| 一边亲一边摸免费视频| 精品酒店卫生间| 老司机在亚洲福利影院| 视频区图区小说| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 国产亚洲欧美精品永久| 亚洲精品美女久久av网站| www日本在线高清视频| 日本色播在线视频| 精品国产一区二区三区四区第35| 久久97久久精品| 人成视频在线观看免费观看| 男人舔女人的私密视频| 久久久精品94久久精品| 老司机影院毛片| 97精品久久久久久久久久精品| 亚洲国产av新网站| 亚洲欧美成人精品一区二区| 午夜91福利影院| 亚洲精品,欧美精品| tube8黄色片| 国产成人av激情在线播放| 免费观看av网站的网址| 欧美 日韩 精品 国产| av网站在线播放免费| 黄色一级大片看看| 亚洲欧美一区二区三区国产| 日本vs欧美在线观看视频| 欧美老熟妇乱子伦牲交| 国产精品久久久久成人av| 一区在线观看完整版| 日韩精品免费视频一区二区三区| 午夜福利视频精品| 日韩大码丰满熟妇| 少妇精品久久久久久久| 成人漫画全彩无遮挡| 天天添夜夜摸| 啦啦啦啦在线视频资源| av网站在线播放免费| 女人久久www免费人成看片| 97精品久久久久久久久久精品| 色婷婷av一区二区三区视频| 深夜精品福利| 美女国产高潮福利片在线看| 少妇人妻 视频| 18禁国产床啪视频网站| 2021少妇久久久久久久久久久| 两性夫妻黄色片| 精品国产一区二区三区四区第35| 美女福利国产在线| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久av美女十八| 日日爽夜夜爽网站| 色精品久久人妻99蜜桃| 丁香六月天网| av在线播放精品| 男女边摸边吃奶| videos熟女内射| 久久青草综合色| 久久精品国产亚洲av高清一级| 999久久久国产精品视频| 久久ye,这里只有精品| av.在线天堂| 中文字幕亚洲精品专区| 欧美精品av麻豆av| 精品免费久久久久久久清纯 | 久久女婷五月综合色啪小说| 建设人人有责人人尽责人人享有的| 777米奇影视久久| videosex国产| 在线观看www视频免费| 国产男女内射视频| 欧美黄色片欧美黄色片| 精品少妇内射三级| 欧美精品一区二区大全| 日韩中文字幕欧美一区二区 | 香蕉国产在线看| 人人妻,人人澡人人爽秒播 | 美女主播在线视频| 一个人免费看片子| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美精品综合一区二区三区| 哪个播放器可以免费观看大片| 亚洲少妇的诱惑av| 777米奇影视久久| 黄片小视频在线播放| 久久 成人 亚洲| 大话2 男鬼变身卡| 亚洲欧美日韩另类电影网站|