• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of availability and reliability among differentcombined-GNSS/RNSS precise point positioning①

    2020-10-09 09:01:36ChenJianYueDongjieZhuShaolinLiuZhiqiangDaiJianbiao
    High Technology Letters 2020年3期

    Chen Jian (陳 健), Yue Dongjie②, Zhu Shaolin, Liu Zhiqiang, Dai Jianbiao

    (School of Earth Science and Engineering, Hohai University, Nanjing 211100, P.R.China)

    Abstract

    Key words: precise point positioning (PPP), positioning accuracy, convergence rate, multiple global and regional navigation satellite systems (multi-GNSS/RNSS), reliability and availability

    0 Introduction

    Precise point positioning (PPP) on the basis of global positioning system (GPS) has such advantages as absence of ground reference station, independence of baseline length, and high precision of coordinates[1], which endow it with wide applications like satellite geometric orbit determination[2], monitoring of bridge[3], earthquake monitoring and warning[4], etc. At present, positioning accuracy at centimeter and decimeter level can be achieved for static and kinematic PPP of single-system GPS. However, its intolerable convergence time that impedes the achievement of high positioning accuracy exists as a major drawback. On such basis, the multiple global navigation satellite system (GNSS) integration is considered a valid measure to improve convergence speed and reduce consequently the time needed for convergence.

    Following the modernization of American GPS, the restoration of Russian Global Navigation Satellite System (GLONASS), and also developments of Chinese BeiDou Navigation Satellite System (BDS), European Galileo Satellite Navigation System (Galileo), and Japanese Quasi-Zenith Satellite System (QZSS), the positioning stability, reliability, and availability of PPP solution are all much enhanced by multiple global and regional navigation satellite systems (multi-GNSS/RNSS) especially in challenging environments like urban areas and ravines[5-7].Therefore, the multi-GNSS/RNSS PPP will become the developing trend of GNSS precise positioning in the future. The combination PPP research is originally established on the combined dual-system of GPS/GLONASS. Functional and stochastic models of the integrated GPS/GLONASS PPP have been deduced based on the ionosphere-free observation model. The test results suggested that in spited of an enhanced convergence speed, the combined PPP still showed equal positioning accuracy as that of the single-system GPS PPP[8]. On the other hand, improvements in both positioning accuracy and convergence time of PPP under challenging conditions (limited GPS satellites) could be realized by integration of GLONASS and GPS[9]. Meanwhile, the integrated dual-system GPS/GLONASS PPP could enhance the accuracy of initial ambiguity solution and then shorten the ambiguity fixed timing for PPP[10,11]. Since December 27, 2012, the Chinese BDS has been servicing the Asia-Pacific region for positioning, navigation, and timing. Slight deterioration has been observed in the combined GPS/BDS PPP compared with single GPS system, resulting probably from the multipath of BDS GEO satellites[12]. PPP of the combined three-system GPS/GLONASS/BDS possesses better convergence time than single-system GPS or single-system GLONASS does, but no apparent enhancement for positioning accuracy has been observed using the processed daily data[13]. But gratifyingly, PPP solution of the combined four-system GPS/GLONASS/BDS/Galileo can realize enhanced reliability and availability in challenging environments relative to the single-system GPS PPP[14-16]. Recently, QZSS has attracted more research attentions thanks to its increasing development and application. Its signal design and orbit characteristics and signal design has been introduced[17], while its noise, signal to noise ratio as well as the multipath error are evaluated according to the measurement data in international GNSS service (IGS). QZSS performance in China region has been analyzed from 3 aspects, i.e. signal accuracy, availability, and kinematic PPP[18]. For the moment, many studies are mainly focused on single-system QZSS, dual-system GPS/GLONASS, dual-system GPS/BDS, and three-system GPS/GLONASS/BDS. Further evaluation on the performance of the latest five-system GPS/GLONASS/BDS/Galileo/QZSS PPP is still in need.

    In this contribution, the observation model and data processing strategy of PPP in the five-system GPS/GLONASS/BDS/Galileo/QZSS are expounded subsequently in Section 1. Afterwards, the kinematic and static multi-GNSS/RNSS PPP solution is mainly evaluated via data from 6 MGEX reference stations in Section 2, with respect to the accuracy of positioning and timespan needed for convergence. Finally, important conclusions accompanied by experimental results are summarized briefly in Section 3.

    1 Multi-GNSS/RNSS PPP model

    1.1 Multi-GNSS/RNSS PPP observation model

    In PPP, the first-order ionospheric delay is usually eliminated by the ionosphere-free (IF) pseudo-range and phase observation. The equation is as follows.

    (1)

    Considering the inter-system bias (ISB) of different systems, the observation model of multi-GNSS PPP can be obtained.

    (2)

    1.2 Data processing strategy

    In this contribution, the IF model, together with an extended Kalman filter, is applied to estimate parameters including receiver position, wet tropospheric delay, receiver clock error, ambiguities, and ISB. The phase center offset (PCO) and phase center variation (PCV) of GPS and GLONASS can refer to the ANTEX file released by IGS[22]. The satellite end PCO of BDS, Galileo, and QZSS is provided by the ANTEX file, while PCV at the satellite ends as well as PCO and PCV at the receiver ends can be found nowhere and thus not considered herein[23]. The observation, error correction, and estimation parameters are collected in Table 1.

    Table 1 Processing strategy of static and kinematic PPP for the multi-GNSS/RNSS

    2 Multi-GNSS/RNSS PPP performance analysis

    The GNSS observations are recorded in 30 s intervals from 6 MGEX reference stations using date of October 20, 2016. The information of 6 MGEX stations are presented in Table 2.Performance evaluation and comparison of the single-GNSS and multi-GNSS/RNSS static and kinematic PPP solutions are established on data processing performed in the following 9 different GNSS combinations: single-system GPS PPP, single-system GLONASS PPP, single-system BDS PPP, single-system Galileo PPP, dual-system GPS/GLONASS PPP, dual-system GPS/BDS PPP, dual-system GPS/Galileo PPP, dual-system GPS/QZSS PPP, and five-system GPS/GLONASS/BDS/Galileo/QZSS PPP.

    2.1 Availability of GNSS satellites

    Observation data from the GMSD station on October 20, 2016 are selected for availability analysis of the single-system GPS and multi-GNSS/RNSS. Fig.1 describes the visible satellite number, position dilution of precision (PDOP) values, horizontal dilution of precision (HDOP) values, and vertical dilution of precision (VDOP) values at elevation cutoff 10 °. The PDOP, HDOP, and VDOP values reflect the geometric distribution of satellites. Fig.1 points out the following characteristics of GNSS satellites at the present stage.

    1) For elevation cutoff of 10 °, the amount of visible satellites in GPS/GLONASS/BDS/Galileo/QZSS system is up to 30. Multiple constellations can provide abundant observation data, which improves the positioning accuracy consequently.

    2) Statistics suggest that at least 7 GPS satellites, 6 GLONASS satellites, 8 BDS satellites, and 4 Galileo satellites are present in each epoch at the GMSD station.

    3) The averages of PDOP, HDOP, and VDOP values are 1.90, 0.99, and 1.62, respectively, for the single-system GPS, while decrease to 1.01, 0.53, and 0.87, respectively, for the combined GPS/GLONASS/BDS/Galileo/QZSS system, i.e. improvements of 46.8%, 46.5%, and 46.3%, respectively. Thus, the geometric strength of the positioning model is significantly enhanced by multi-GNSS/RNSS.

    Table 2 Station information

    (a) The number of satellites

    (b) PDOP value

    (c) HDOP value

    (d) VDOP value

    2.2 Static PPP

    In this subsection, static PPP is processed with daily data of the 6 MGEX stations, followed by the analysis of positioning error and convergence time. Positioning error refers to the difference between positioning solution and IGS weekly solution. Subsequently, filtering convergence is defined when the positioning errors between the North and East components are less than 10 cm. Filtering is considered as converging at an epoch if the errors of positioning during the last 20 epochs remain within the limit. Fig.2 demonstrates the static PPP solutions of single-system models and a combined GPS/GLONASS/BDS/Galileo/QZSS model at GMSD station. To compare the convergence time of PPP in single systems and the combined system, only results during the first 2 h are presented. Fig.3 gives the positioning errors of the static PPP in the single-system and five-system models at different observation lengths (10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, and 12 h).

    According to Fig.2, the timespan needed for convergence in the single-system GPS and GLONASS is 6.5 min and 9.5 min, respectively, which is shorter than the single-system BDS and Galileo at GMSD station. The convergence speed of the combined five-system GPS/GLONASS/BDS/Galileo/QZSS is the fastest, only 5.5 min, and the stability of the positioning solutions is improved. As shown in Fig.3, higher positioning accuracy can be obtained by combined PPP with shorter time. For example, the positioning errors of static PPP reach 0.022 m, 0.026 m, 0.062 m with observation length of 10 min in the combined five-system GPS/GLONASS/BDS/Galileo/QZSS mode. Furthermore, the positioning error can converge to 1 cm in horizontal component and 5 cm in Up component within approximate 30 min, which is better than the results in single-systems. Since there is only one QZSS satellite, the positioning result is not given here.

    Fig.2 Static PPP solutions of single-system and five-system models at GMSD station

    Fig.3 Positioning errors of static PPP solutions with varied observation spans in single-system and five-system models

    To further evaluate the positioning error and convergence speed of the multi-GNSS/RNSS, daily solutions of 6 stations are statistically analyzed. Table 3 gathers the static PPP convergence time for the single and combined systems in each station, and Table 4 lists the corresponding positioning accuracy after daily data processing.

    Table 3 indicates that PPP of single-system GPS and GLONASS shares equal average convergence time of about 18 min. At present, the clock and orbit products of BDS satellite hold relatively low precision, along with uncorrectable errors in PCO and PCV, which results in longer convergence time of BDS PPP, about 56 min. Single-system Galileo PPP gives convergence time of 62.5 min due to its poor geometric distribution. In comparison, the combined five-system GPS/GLONASS/BDS/Galileo/QZSS PPP wins out with the shortest average convergence time at about 10.5 min.The multi-GNSS/RNSS can provide users with plenty of available satellites and has a specific contribution to the improvement of single-GNSS positioning.

    Table 3 Static PPP convergence time of each station

    Table 4 Static PPP positioning accuracy of each station (cm)

    According to Table 4, the single-system GPS and GLONASS PPP solutions exhibit positioning errors better than 1.5 cm for horizontal components and better than 4 cm in the Up components.However, PPP solution in BDS gives inferior accuracy of positioning owing to less MEO satellites and lower precision of orbit and clock products. The positioning errors of the single-system BDS PPP solution are better than 4 cm for horizontal components and 5 cm in the Up component. Single-system Galileo PPP solution possesses the same positioning errors for horizontal components as BDS but errors better than 8 cm in the Up component due to its limited amount of available satellites at this stage. The average positioning errors of 0.4 cm, 0.6 cm, and 2.5 cm in North, East, and Up components are obtained by the combined five-system GPS/GLONASS/BDS/Galileo/QZSS PPP, respectively.

    2.3 Kinematic PPP

    The data processing strategy described in Section 2.2 is adopted to investigate kinematic PPP at every station, the calculated root mean square (RMS) values of kinematic PPP solutions in various models are plotted in Fig.4.

    According to Fig.4, RMS of kinematic PPP solutions in the combined system are superior to those in the single-system GPS. As for combined dual-system, GPS/GLONASS shows better RMS values than GPS/BDS does mainly attributed to the inferior accuracy in BDS precise products to that in GLONASS precise products plus the uncorrectable PCO and PCV. However, GPS/BDS exhibits superior RMS values compared with GPS/Galileo and GPS/QZSS because there are fewer satellites in Galileo and QZSS systems. PPP results of the combined system can improve the positioning accuracy, especially for the five-system combination. Since single-system GNSS has already achieved high positioning accuracy (elevation cutoff of 10 °), the improvement of horizontal direction is limited, but accuracy at vertical direction can be enhanced significantly by combined systems.

    Furthermore, the single-system GPS and multi-GNSS/RNSS PPP at different elevation cutoffs are processed for the purpose of simulating the challenging environments like urban areas. Kinematic PPP solutions obtained from single-system model and five-system model at GMSD station are compared at 2 different elevation cutoffs, as shown in Fig.5.

    Fig.5 suggests that the influence of elevation cutoff on single-system GPS positioning is larger than on multi-GNSS, for the combined five-system GPS/GLONASS/BDS/Galileo/QZSS can still obtain high-accuracy positioning at elevation cutoff of 40 °. Moreover, the combined system owns higher stability than the single system does. Fig.6 and Fig.1(a) point out a dramatic decrease in the number of visible satellites for single system with increased elevation cutoff but more than 10 satellites in combined five-system GPS/GLONASS/BDS/Galileo/QZSS remained in every epoch under elevation cutoff from 10 °to 40 °. This is the reason why the reliability, availability, and accuracy of the multi-GNSS/RNSS positioning are better than those of the single system.

    Fig.4 Daily RMS values of single-system, dual-system, four-system, and five-system kinematic PPP solutions

    Fig.5 Comparisons of PPP results in single-system and multi-GNSS/RNSS modes under elevation cutoff at GMSD station

    Fig.6 The number of satellites under the 40 °elevation cutoff

    3 Conclusions

    Multi-GNSS/RNSS not only enriches the humdrum observation, but also enhances the geometrical strength of satellites, which is conducive to improving the positioning performance. The single system and combined GNSS static PPP experiments are carried out referring to the data obtained from MGEX reference stations, with primary focuses on the accuracy of positioning and the timespan needed for convergence. It is known that reliability,availability, and stability of GPS positioning drop sharply in complicated or bleak situations such as urban areas and valleys, as fewer satellites remain visible in these areas. Thus, the five-system PPP solutions under different elevation cutoffs are analyzed to demonstrate comprehensively the performance of multi-GNSS/RNSS positioning.Acquired experimental results are summarized below.

    In comparison to the single-system GPS, PDOP, HDOP, and VDOP values obtained for the multi-GNSS/RNSS are improved by 46.8%, 46.5%, and 46.3%, respectively. In view of the obtained results, and convergence time and positioning accuracy of static PPP as well as kinematic PPP will be greatly improved when the single system holds a poor geometric configuration. At the GMSD station, it takes single-system GPS about 6.5 min to achieve the horizontal positioning accuracy of 10 cm, while the multi-GNSS/RNSS only spends 5.5 min. The positioning performance is associated closely with the elevation cutoff of the satellite, the single-system GPS of which deteriorates rapidly with increasing elevation cutoff. Differently, multi-GNSS/RNSS kinematic PPP is able to keep a centimeter-level positioning even at elevation cutoff of 40 ° with more stable solutions. This is of great practical significance for applications in mountainous areas or extremely sheltered areas.

    av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 99久久精品一区二区三区| 国产精品一区二区在线观看99 | 亚洲av男天堂| 久久精品综合一区二区三区| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲网站| 国产色爽女视频免费观看| 黄色日韩在线| 美女黄网站色视频| 一本久久精品| 国产免费又黄又爽又色| .国产精品久久| 国产一区二区在线观看日韩| 免费观看无遮挡的男女| 精品久久久久久成人av| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一二三区| 综合色丁香网| 看十八女毛片水多多多| 久久久久久九九精品二区国产| 免费电影在线观看免费观看| 国内精品宾馆在线| a级一级毛片免费在线观看| 在线天堂最新版资源| 99久久精品热视频| 禁无遮挡网站| 亚洲在线自拍视频| 欧美精品一区二区大全| 国产亚洲5aaaaa淫片| 色吧在线观看| 嫩草影院新地址| 美女cb高潮喷水在线观看| 国产在线一区二区三区精| 伦理电影大哥的女人| 美女大奶头视频| 青青草视频在线视频观看| 97精品久久久久久久久久精品| 可以在线观看毛片的网站| av在线蜜桃| 777米奇影视久久| 日本爱情动作片www.在线观看| 亚洲国产精品成人综合色| 日日干狠狠操夜夜爽| 啦啦啦中文免费视频观看日本| 青春草亚洲视频在线观看| 国产精品人妻久久久影院| 一级片'在线观看视频| 最近最新中文字幕免费大全7| 我的女老师完整版在线观看| 最近最新中文字幕免费大全7| 亚洲精品色激情综合| 久久久久久伊人网av| 亚洲成人中文字幕在线播放| 久久精品国产自在天天线| 精华霜和精华液先用哪个| 久久久国产一区二区| 97热精品久久久久久| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 国产乱人视频| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 亚洲性久久影院| 黄片无遮挡物在线观看| av卡一久久| 高清毛片免费看| 黄色日韩在线| 一边亲一边摸免费视频| 免费黄色在线免费观看| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 日韩强制内射视频| 国产精品蜜桃在线观看| 国产毛片a区久久久久| 欧美bdsm另类| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 国产有黄有色有爽视频| 日韩av免费高清视频| 国产淫片久久久久久久久| 国产成人a区在线观看| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 99久久人妻综合| 在线a可以看的网站| 久久这里只有精品中国| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 九九在线视频观看精品| 一级片'在线观看视频| 久久久久精品性色| 亚洲精品一二三| av播播在线观看一区| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 色网站视频免费| 国产一区亚洲一区在线观看| 久久久久精品性色| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 一个人观看的视频www高清免费观看| 日本三级黄在线观看| 成人亚洲欧美一区二区av| 国产成人91sexporn| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区 | 大话2 男鬼变身卡| 国产黄色小视频在线观看| 亚洲精品国产av蜜桃| 亚洲成色77777| 日韩大片免费观看网站| 亚洲人与动物交配视频| 少妇高潮的动态图| 欧美精品国产亚洲| 国产乱来视频区| 亚洲在久久综合| 久久这里只有精品中国| 国产人妻一区二区三区在| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 国产大屁股一区二区在线视频| 免费观看av网站的网址| 欧美另类一区| 国产91av在线免费观看| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 高清毛片免费看| 欧美xxⅹ黑人| 一级二级三级毛片免费看| 欧美日韩亚洲高清精品| 永久免费av网站大全| 激情 狠狠 欧美| 晚上一个人看的免费电影| av天堂中文字幕网| 国产视频首页在线观看| 尤物成人国产欧美一区二区三区| 亚洲精品亚洲一区二区| 亚洲国产最新在线播放| 18+在线观看网站| 婷婷色综合大香蕉| 在线 av 中文字幕| 黄色配什么色好看| 国产精品嫩草影院av在线观看| 精品国内亚洲2022精品成人| 久久99精品国语久久久| 色播亚洲综合网| 国产 一区 欧美 日韩| 国产高潮美女av| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| 久久久久久久久久人人人人人人| 欧美另类一区| av黄色大香蕉| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 国产久久久一区二区三区| 成人毛片60女人毛片免费| 欧美性感艳星| 午夜久久久久精精品| 91午夜精品亚洲一区二区三区| 日本免费a在线| 国产在线一区二区三区精| 欧美精品一区二区大全| 日本爱情动作片www.在线观看| 国产亚洲av片在线观看秒播厂 | 成人无遮挡网站| 国产大屁股一区二区在线视频| 欧美最新免费一区二区三区| 人人妻人人澡欧美一区二区| 亚洲美女视频黄频| 亚洲av男天堂| 69av精品久久久久久| 精品久久久精品久久久| 亚洲人成网站在线播| 精品一区二区三卡| 免费看光身美女| 午夜福利在线观看免费完整高清在| 五月伊人婷婷丁香| 亚洲国产欧美在线一区| 卡戴珊不雅视频在线播放| 久久人人爽人人片av| 亚洲av在线观看美女高潮| 特级一级黄色大片| 国产乱人视频| 丰满人妻一区二区三区视频av| 女人十人毛片免费观看3o分钟| 如何舔出高潮| 99视频精品全部免费 在线| 夫妻午夜视频| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 日本av手机在线免费观看| 亚洲不卡免费看| 免费观看av网站的网址| 在线观看免费高清a一片| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 水蜜桃什么品种好| 在线天堂最新版资源| av在线天堂中文字幕| videos熟女内射| 日日啪夜夜撸| 六月丁香七月| 麻豆成人av视频| 亚洲精品色激情综合| 又爽又黄无遮挡网站| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 亚洲国产色片| 精品不卡国产一区二区三区| 日本免费a在线| 午夜精品一区二区三区免费看| 美女大奶头视频| 五月天丁香电影| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 国产三级在线视频| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 在线观看人妻少妇| 日韩伦理黄色片| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看| 免费大片18禁| 午夜视频国产福利| 精品午夜福利在线看| 极品教师在线视频| 亚洲精品,欧美精品| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 久久久国产一区二区| 欧美高清性xxxxhd video| 午夜日本视频在线| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 一级片'在线观看视频| 内地一区二区视频在线| 国产精品无大码| 午夜精品在线福利| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美高清性xxxxhd video| 男人舔奶头视频| 午夜福利视频1000在线观看| av福利片在线观看| 免费观看无遮挡的男女| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 免费少妇av软件| 久久精品国产自在天天线| 99热6这里只有精品| 欧美三级亚洲精品| 一级毛片我不卡| 搞女人的毛片| 偷拍熟女少妇极品色| 国产日韩欧美在线精品| 国产不卡一卡二| 午夜激情福利司机影院| 成年女人看的毛片在线观看| 插阴视频在线观看视频| h日本视频在线播放| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 少妇丰满av| 日韩一区二区三区影片| 亚洲精品自拍成人| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 国产精品精品国产色婷婷| 夜夜爽夜夜爽视频| 丰满人妻一区二区三区视频av| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 国产老妇女一区| 日日干狠狠操夜夜爽| 日韩在线高清观看一区二区三区| 一级a做视频免费观看| 真实男女啪啪啪动态图| 七月丁香在线播放| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 麻豆av噜噜一区二区三区| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| av福利片在线观看| 久久午夜福利片| 欧美激情国产日韩精品一区| 国产精品女同一区二区软件| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 观看免费一级毛片| 久久久久久久久久久免费av| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 少妇的逼水好多| 国产精品人妻久久久影院| 高清在线视频一区二区三区| 国产精品久久久久久精品电影| 午夜福利成人在线免费观看| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看| 国产亚洲91精品色在线| 亚洲国产成人一精品久久久| 亚洲av中文av极速乱| 国产精品一区www在线观看| 免费观看在线日韩| 国产精品熟女久久久久浪| 国内精品一区二区在线观看| 一区二区三区四区激情视频| 国内精品一区二区在线观看| 一二三四中文在线观看免费高清| 大香蕉久久网| 久久6这里有精品| 伦精品一区二区三区| 日韩强制内射视频| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 国产成人精品一,二区| 久久久久久伊人网av| 丝瓜视频免费看黄片| 少妇丰满av| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 哪个播放器可以免费观看大片| 国产视频首页在线观看| 亚洲人成网站在线播| 欧美最新免费一区二区三区| 亚洲精品色激情综合| 大片免费播放器 马上看| 建设人人有责人人尽责人人享有的 | 日本免费在线观看一区| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 婷婷色av中文字幕| 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 性插视频无遮挡在线免费观看| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 激情五月婷婷亚洲| 99久国产av精品| 肉色欧美久久久久久久蜜桃 | 2018国产大陆天天弄谢| 成人综合一区亚洲| 日韩av免费高清视频| 免费观看精品视频网站| 久久久久久久午夜电影| 国产成人午夜福利电影在线观看| 乱人视频在线观看| 尾随美女入室| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 欧美激情在线99| 九草在线视频观看| 亚洲精品影视一区二区三区av| 成人亚洲精品一区在线观看 | 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 亚洲国产精品专区欧美| 国产综合懂色| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 床上黄色一级片| 成人一区二区视频在线观看| 一级毛片电影观看| 伦精品一区二区三区| 天美传媒精品一区二区| 久久久久国产网址| videossex国产| 美女脱内裤让男人舔精品视频| 插阴视频在线观看视频| 成人毛片60女人毛片免费| 简卡轻食公司| 亚洲av中文av极速乱| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 久热久热在线精品观看| 日韩制服骚丝袜av| 成人美女网站在线观看视频| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 免费观看性生交大片5| 黄色配什么色好看| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 久久久色成人| 日韩av不卡免费在线播放| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 亚洲精品456在线播放app| 美女主播在线视频| 99久久人妻综合| 日韩欧美三级三区| 国产欧美日韩精品一区二区| 18禁在线播放成人免费| 伦理电影大哥的女人| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 免费看a级黄色片| 91精品国产九色| 热99在线观看视频| 男女那种视频在线观看| 有码 亚洲区| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 女人久久www免费人成看片| 美女内射精品一级片tv| 日本黄大片高清| 狂野欧美白嫩少妇大欣赏| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 五月伊人婷婷丁香| 在线观看人妻少妇| 欧美另类一区| 天天一区二区日本电影三级| 午夜老司机福利剧场| 国产有黄有色有爽视频| 美女内射精品一级片tv| 天天一区二区日本电影三级| 久久久久久久午夜电影| 啦啦啦啦在线视频资源| 亚洲av二区三区四区| 床上黄色一级片| 国产v大片淫在线免费观看| 1000部很黄的大片| 一级毛片我不卡| a级一级毛片免费在线观看| 美女黄网站色视频| 日本黄色片子视频| 你懂的网址亚洲精品在线观看| 国精品久久久久久国模美| 18+在线观看网站| 又粗又硬又长又爽又黄的视频| 国产乱人偷精品视频| 只有这里有精品99| 成人av在线播放网站| 成人亚洲欧美一区二区av| 青青草视频在线视频观看| 18+在线观看网站| 亚洲av成人av| 九九爱精品视频在线观看| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 免费观看在线日韩| 日韩欧美精品免费久久| 亚洲国产精品成人综合色| 亚洲经典国产精华液单| 一本一本综合久久| 人人妻人人澡欧美一区二区| 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 尾随美女入室| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 韩国av在线不卡| 欧美bdsm另类| 天堂网av新在线| 青春草亚洲视频在线观看| 欧美激情久久久久久爽电影| 亚洲欧美清纯卡通| freevideosex欧美| 亚洲图色成人| 少妇的逼好多水| 国产伦理片在线播放av一区| 久久午夜福利片| 91久久精品电影网| 欧美 日韩 精品 国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 成人午夜高清在线视频| 永久网站在线| 秋霞在线观看毛片| 国产精品av视频在线免费观看| 乱码一卡2卡4卡精品| 国产精品日韩av在线免费观看| 亚洲欧美日韩东京热| 国产免费视频播放在线视频 | 国产精品国产三级国产专区5o| 免费播放大片免费观看视频在线观看| 国产探花在线观看一区二区| 久久精品久久精品一区二区三区| 国产一级毛片七仙女欲春2| 麻豆乱淫一区二区| 亚洲美女视频黄频| 国产激情偷乱视频一区二区| 一二三四中文在线观看免费高清| 国产女主播在线喷水免费视频网站 | 国产精品一区二区性色av| 少妇熟女欧美另类| 亚洲成人精品中文字幕电影| 国产综合懂色| 一级二级三级毛片免费看| 亚洲成人av在线免费| 亚洲国产色片| 永久免费av网站大全| 春色校园在线视频观看| 三级男女做爰猛烈吃奶摸视频| 久久6这里有精品| 99久久九九国产精品国产免费| 久久综合国产亚洲精品| 国产激情偷乱视频一区二区| 天堂√8在线中文| 国产免费又黄又爽又色| 国产成年人精品一区二区| 国产成人精品一,二区| 777米奇影视久久| 啦啦啦韩国在线观看视频| 国产av不卡久久| av专区在线播放| a级毛片免费高清观看在线播放| 日韩在线高清观看一区二区三区| 国产综合精华液| 久久久久国产网址| 国产精品久久视频播放| 国产午夜精品一二区理论片| 1000部很黄的大片| 精品欧美国产一区二区三| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 两个人的视频大全免费| 欧美日韩国产mv在线观看视频 | 久久久久久久久久黄片| 丝袜喷水一区| 久久人人爽人人爽人人片va| kizo精华| 在线观看一区二区三区| 亚洲欧美一区二区三区国产| 国产真实伦视频高清在线观看| 熟妇人妻不卡中文字幕| 色吧在线观看| 成人综合一区亚洲| 亚洲av一区综合| 日本熟妇午夜| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 成人鲁丝片一二三区免费| 亚洲av成人精品一二三区| 精品一区二区三卡| 美女xxoo啪啪120秒动态图| 精品酒店卫生间| 99久久精品国产国产毛片| 亚洲精品亚洲一区二区| 18禁动态无遮挡网站| 丰满人妻一区二区三区视频av| 欧美潮喷喷水| 最近视频中文字幕2019在线8| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 亚洲av电影在线观看一区二区三区 | 国产成人aa在线观看| av在线观看视频网站免费| 欧美成人精品欧美一级黄| www.色视频.com| 成人欧美大片| 视频中文字幕在线观看| 国产精品1区2区在线观看.| 日本欧美国产在线视频| 日韩av不卡免费在线播放| 女人被狂操c到高潮| 亚洲av.av天堂| 青春草视频在线免费观看| or卡值多少钱| 岛国毛片在线播放| 午夜福利视频1000在线观看| 日韩av不卡免费在线播放| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 成人综合一区亚洲| 成人漫画全彩无遮挡| 国产精品一区二区三区四区免费观看| 国产在视频线精品| 亚洲精品亚洲一区二区| 特大巨黑吊av在线直播| 最近最新中文字幕免费大全7| 久久这里有精品视频免费| 日本免费a在线| 老司机影院毛片| 乱系列少妇在线播放| 美女大奶头视频| 老师上课跳d突然被开到最大视频| 床上黄色一级片| 伦精品一区二区三区| 成人午夜高清在线视频| 国产有黄有色有爽视频| 六月丁香七月| 极品教师在线视频| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 又粗又硬又长又爽又黄的视频| 天堂av国产一区二区熟女人妻| 舔av片在线| h日本视频在线播放| 亚洲最大成人手机在线| 亚洲精品自拍成人| 18禁动态无遮挡网站| 亚州av有码|