杜宇笑 李鑫格 王 雪 劉小軍 田永超 朱 艷 曹衛(wèi)星 曹 強(qiáng)
不同產(chǎn)量水平稻茬小麥氮素需求特征研究
杜宇笑 李鑫格 王 雪 劉小軍 田永超 朱 艷 曹衛(wèi)星 曹 強(qiáng)*
南京農(nóng)業(yè)大學(xué)國家信息農(nóng)業(yè)工程技術(shù)中心 / 智慧農(nóng)業(yè)教育部工程研究中心 / 農(nóng)業(yè)農(nóng)村部農(nóng)作物系統(tǒng)分析與決策重點(diǎn)實(shí)驗(yàn)室 / 江蘇省信息農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室, 江蘇南京 210095
明確長江中下游地區(qū)不同產(chǎn)量水平稻茬小麥氮素需求特征, 可為小麥?zhǔn)┓使芾硖峁├碚撘罁?jù)。本研究通過在江蘇開展的多年多點(diǎn)不同品種、氮肥水平以及播期播量的小麥試驗(yàn), 構(gòu)建不同產(chǎn)量水平的實(shí)測數(shù)據(jù)集, 分析不同產(chǎn)量水平下單位籽粒需氮量、干物質(zhì)積累量、植株氮積累量、氮濃度(植株氮濃度、秸稈氮濃度、籽粒氮濃度)、收獲指數(shù)、氮收獲指數(shù)和氮營養(yǎng)指數(shù)的變化規(guī)律。結(jié)果表明, 不同產(chǎn)量水平下單位籽粒需氮量無顯著差異, 中低產(chǎn)的單位籽粒需氮量最高, 其值為27.8 kg t–1; 低產(chǎn)水平最低, 其值為24.8 kg t–1。隨著產(chǎn)量水平的提高, 成熟期干物質(zhì)積累量、植株氮積累量、植株氮濃度均呈上升趨勢, 不同產(chǎn)量水平間差異顯著。小麥產(chǎn)量與植株氮積累量呈顯著正相關(guān), 播種期—拔節(jié)期、拔節(jié)期—開花期和開花期—成熟期的干物質(zhì)積累量和氮積累量均隨著產(chǎn)量的提高而提高, 但不同生育階段的植株干物質(zhì)積累和氮積累占比呈現(xiàn)不同變化趨勢。秸稈和籽粒氮濃度均隨產(chǎn)量水平的提高而提高, 高產(chǎn)水平下的秸稈氮濃度與中產(chǎn)無顯著差異, 但顯著高于中低產(chǎn)和低產(chǎn)水平; 而對(duì)于籽粒氮濃度, 除中產(chǎn)和中低產(chǎn)水平外均存在顯著差異。收獲指數(shù)隨產(chǎn)量水平的提高而逐漸提高, 其變化范圍為0.39~0.49, 其中低產(chǎn)和中低產(chǎn)顯著低于中產(chǎn)和高產(chǎn); 而不同產(chǎn)量水平間氮收獲指數(shù)無顯著差異, 其變化范圍為0.60~0.96。氮營養(yǎng)指數(shù)隨著產(chǎn)量水平的提高逐漸提高, 且在不同產(chǎn)量水平間差異顯著, 高產(chǎn)水平的氮營養(yǎng)指數(shù)較高, 部分值大于1, 表明有的試驗(yàn)氮肥供應(yīng)過量。隨著產(chǎn)量水平的提高, 單位籽粒需氮量呈現(xiàn)先增加后下降趨勢, 而干物質(zhì)積累量、植株氮積累量、植株氮濃度、秸稈氮濃度和籽粒氮濃度均逐漸提高, 其中秸稈氮濃度增幅高于籽粒氮濃度, 田間施肥應(yīng)注意避免小麥對(duì)氮素的奢侈吸收。收獲指數(shù)和氮收獲指數(shù)的變化范圍與前人研究一致, 生長后期較高的干物質(zhì)積累量和植株氮積累量是小麥獲得高產(chǎn)的主要原因, 利用氮營養(yǎng)指數(shù)可以對(duì)小麥田間氮肥管理起到較好的指導(dǎo)作用。
產(chǎn)量水平; 單位籽粒需氮量; 收獲指數(shù); 氮營養(yǎng)指數(shù)
小麥?zhǔn)俏覈匾募Z食作物之一, 隨著人們對(duì)糧食需求的不斷增加, 提高小麥產(chǎn)量與品質(zhì)對(duì)于保障國家糧食安全具有極其重要的意義。氮素對(duì)小麥產(chǎn)量和品質(zhì)的形成至關(guān)重要。然而, 農(nóng)民習(xí)慣施氮量遠(yuǎn)高于小麥實(shí)際氮素需求量, 造成作物需求與氮素供給不匹配, 氮肥利用效率降低, 且增施氮肥對(duì)小麥的增產(chǎn)作用明顯減小, 不能充分發(fā)揮作物產(chǎn)量潛力[1], 而農(nóng)業(yè)環(huán)境問題卻日漸突出。如何在確保作物高產(chǎn)優(yōu)質(zhì)的同時(shí)提高資源利用效率并降低對(duì)環(huán)境的影響, 是目前迫切需要解決的重點(diǎn)和難點(diǎn)[2-3]。
小麥的氮素需求規(guī)律受作物遺傳特征、農(nóng)田氣候環(huán)境、土壤理化特性以及田間管理技術(shù)等因素的綜合影響[4]。前人研究表明, 不同產(chǎn)量水平的小麥氮積累量具有顯著差異[5-6]。于振文等[7]研究發(fā)現(xiàn), 黃淮麥區(qū)小麥單位籽粒需氮量為23.7~34.0 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍為6.3~9.8 t hm–2。而當(dāng)產(chǎn)量高于9 t hm–2, 其單位籽粒需氮量為26.3~31.3 kg t–1, 在超高產(chǎn)條件下小麥需氮量呈先增加后降低趨勢[8]。氮肥施用量影響小麥植株氮素累積, 高氮條件下的植株氮積累量高于低氮, 施氮量過高易造成小麥氮素奢侈吸收, 反之, 氮肥虧缺會(huì)限制小麥氮素累積[9-11]。有不少研究表明, 籽粒氮濃度與產(chǎn)量間具有較強(qiáng)的負(fù)相關(guān)關(guān)系, 隨著產(chǎn)量的提高, 單位籽粒需氮量會(huì)逐漸下降。如何平衡小麥產(chǎn)量與氮素吸收之間的關(guān)系, 是獲得高產(chǎn)優(yōu)質(zhì)小麥的重要研究方向[11-13]。不同產(chǎn)量水平小麥的氮濃度、收獲指數(shù)和氮收獲指數(shù)等均有較大差異, 也對(duì)小麥的養(yǎng)分吸收產(chǎn)生重要影響[14]。前人對(duì)如何診斷小麥田間氮素營養(yǎng)狀況的研究較多, 多數(shù)研究者認(rèn)為氮營養(yǎng)指數(shù)是快速準(zhǔn)確診斷小麥植株氮素營養(yǎng)狀況的優(yōu)良指標(biāo), 對(duì)田間氮肥的施用具有指導(dǎo)作用[15-17]。小麥氮素需求特征的研究主要集中在北方旱茬麥區(qū), 對(duì)長江中下游的稻茬小麥研究較少。因此, 明確長江中下游地區(qū)不同產(chǎn)量水平稻茬小麥的氮素需求, 闡明各氮素指標(biāo)變化特征, 對(duì)小麥?zhǔn)┓使芾砑氨U限r(nóng)田生態(tài)環(huán)境具有重要意義[18]。
本研究所用數(shù)據(jù)來源于2010—2019年在江蘇省開展的多年多點(diǎn)不同品種、氮肥水平以及播期播量的小麥田間試驗(yàn), 共有171個(gè)數(shù)據(jù)。試驗(yàn)前茬作物均為水稻, 供試品種均為江蘇省主栽小麥品種。氮肥基追比為5∶5, 追肥時(shí)期為拔節(jié)期。鉀肥和磷肥作為基肥在播種前全部施用。其余栽培管理同一般高產(chǎn)田。所用數(shù)據(jù)的相關(guān)試驗(yàn)詳情如表1和表2所示。
表1 各試驗(yàn)設(shè)計(jì)與產(chǎn)量范圍
表2 小麥生育期降雨量和試驗(yàn)田塊土壤基礎(chǔ)理化指標(biāo)
小麥植株干物質(zhì)積累量: 在小麥起身期、拔節(jié)期、開花期、成熟期等關(guān)鍵生育期進(jìn)行破壞性取樣, 每個(gè)小區(qū)內(nèi)隨機(jī)取20株, 去掉根, 將莖葉穗等器官分開裝袋, 于105℃殺青30 min, 80℃烘至恒重后稱重, 計(jì)算出單位土地面積的地上部干物質(zhì)積累量。
各器官干物重(t hm–2) = 干物重(g)/單莖數(shù)×分蘗數(shù)(m–2)/100
植株干物重(t hm–2) = 莖干物重(t hm–2)+葉干物重(t hm–2)+穗干物重(t hm–2)
植株氮濃度: 將稱完重的樣品用磨樣機(jī)粉碎, 用萬分之一天平稱取磨好的小麥樣品0.1500 g, 在消煮爐中進(jìn)行消煮, 之后通過流動(dòng)分析儀, 使用凱氏定氮法測定小麥莖、葉、穗的氮素含量。氮濃度計(jì)算公式為:
氮濃度(%) = N-measured×定容體積/0.1500 g×100
植株氮濃度(%) = [(莖干物重(t hm–2)×莖氮濃度(%)+葉干物重(t hm–2)×葉氮濃度(%)+穗干物重(t hm–2)×穗氮濃度(%)]/[(莖干物重(t hm–2)+葉干物重(t hm–2)+穗干物重(t hm–2)]
其中, N-measured指流動(dòng)分析儀測得的結(jié)果, 定容體積為0.1 L。
植株氮積累量: 獲得的地上部各器官干物質(zhì)積累量與植株各器官氮含量的乘積即氮積累量。各器官的氮積累量之和為植株氮積累量。計(jì)算公式為:
氮積累量(kg hm–2) = 氮濃度(%)×干物重(t hm–2)×10
植株氮積累量(kg hm–2) = 莖氮積累量(kg hm–2)+葉氮積累量(kg hm–2)+穗氮積累量(kg hm–2)
收獲指數(shù): 籽粒干重與地上部干物重的比值。計(jì)算公式為:
收獲指數(shù)= 籽粒產(chǎn)量(t hm–2)/成熟期干物質(zhì)積累量(t hm–2)
氮收獲指數(shù): 籽粒中的氮積累量與地上部植株氮積累總量的比值。計(jì)算公式為:
氮收獲指數(shù)=籽粒氮積累量(kg hm–2) /成熟期植株氮積累量(kg hm–2)
單位籽粒需氮量: 生產(chǎn)1 t籽粒產(chǎn)量, 小麥植株的氮素積累量。計(jì)算公式為:
單位籽粒需氮量(kg t–1) = 植株氮積累量(kg hm–2) /籽粒產(chǎn)量(t hm–2)
臨界氮濃度: 達(dá)到地上部生物量所需的最小氮濃度[19], 根據(jù)趙犇等[15]提出的公式進(jìn)行計(jì)算:
NC= 4.33×PDM–0.45
Nc代表臨界氮濃度, PDM代表植株干物重。
氮營養(yǎng)指數(shù)(NNI)是實(shí)際氮濃度(Na)與臨界氮濃度(Nc)的比值, 根據(jù)Lemair等[17]提出的公式進(jìn)行計(jì)算:
NNI = Na/Nc
NNI=1代表氮營養(yǎng)處于最佳狀態(tài), NNI<1表明氮營養(yǎng)供應(yīng)不足, NNI>1表明氮營養(yǎng)供應(yīng)充足甚至過量。
本研究的樣本數(shù)據(jù)分為4個(gè)產(chǎn)量水平: 低產(chǎn)水平<4.5 t hm–2, 4.5 t hm–2≤中低產(chǎn)水平<6.0 t hm–2, 6.0 t hm–2≤中產(chǎn)水平<7.5 t hm–2, 高產(chǎn)水平≥7.5 t hm–2。用Origin 2018進(jìn)行數(shù)據(jù)分析和作圖, 用IBM SPSS Statistic 25統(tǒng)計(jì)軟件進(jìn)行單因素方差分析。
本研究中稻茬小麥產(chǎn)量變化范圍為2.7~9.1 t hm–2, 平均產(chǎn)量為6.4 t hm–2(表3)。比2017年我國小麥平均產(chǎn)量(5.5 t hm–2)高16.4%, 比2017年世界小麥平均產(chǎn)量(3.5 t hm–2)高82.9%。
小麥植株氮積累量與籽粒產(chǎn)量呈顯著線性正相關(guān),= 26.60? 7.44。69%的小麥籽粒產(chǎn)量的提高歸因于植株氮積累量的增加(圖1-A)。本研究中, 低產(chǎn)、中低產(chǎn)、中產(chǎn)和高產(chǎn)的單位籽粒需氮量分別為24.8、27.8、25.5和25.7 kg t–1(圖1-B), 不同產(chǎn)量水平間無顯著差異。
表3 不同產(chǎn)量水平樣本描述性統(tǒng)計(jì)分析
圖1 籽粒產(chǎn)量與植株氮積累量的關(guān)系(A)和不同產(chǎn)量水平單位籽粒需氮量(B)
圖(A)中實(shí)線表示擬合曲線,***顯著性為< 0.001; 圖(B)中實(shí)線表示平均值, 虛線表示中值, 箱型邊界表示75%和25%的四分位數(shù), 上下邊緣表示90和10百分位數(shù), 圓點(diǎn)表示最大值和最小值, ns代表不同產(chǎn)量水平間無顯著差異(< 0.05)。
The solid lines in Fig. A represent the fitting curve,***indicates significantly difference at< 0.001; the solid and dashed lines indicate mean and median, respectively in Fig. B. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, and the ns represents that there was no significant difference among different yield levels (< 0.05).
不同產(chǎn)量水平小麥植株干物質(zhì)積累量、氮積累量和氮濃度, 隨著產(chǎn)量水平的提高呈增加趨勢(圖2)。收獲期, 不同產(chǎn)量水平的干物質(zhì)積累量分別為9.1、13.2、14.5和17.2 t hm–2, 植株氮積累量分別為85.9、148.4、174.3和210.3 kg hm–2, 植株氮濃度分別為0.90%、1.08%、1.18%和1.25%, 且不同產(chǎn)量水平間均有顯著差異。通過分析不同生育階段植株干物質(zhì)積累量和氮積累量占成熟期總積累量的比例(圖3)可知, 從低產(chǎn)到中產(chǎn)播種—拔節(jié)期和拔節(jié)—開花期階段的干物質(zhì)積累占比逐漸降低, 而在開花—成熟期階段的占比逐漸上升, 而中產(chǎn)到高產(chǎn)則呈相反趨勢。對(duì)于氮積累量而言, 從低產(chǎn)到高產(chǎn)播種—拔節(jié)期階段的占比逐漸降低, 拔節(jié)—開花期階段的占比逐漸提高; 而開花—成熟期階段的占比呈先提高后降低趨勢。不同階段的干物質(zhì)積累量和氮積累量逐漸增加。
不同產(chǎn)量水平的氮收獲指數(shù)均值分別為0.82、0.83、0.85和0.84, 且不同產(chǎn)量水平間差異不顯著(圖4)。不同產(chǎn)量水平的收獲指數(shù)分別為0.39、0.42、0.49和0.49, 呈現(xiàn)逐漸上升趨勢, 且中產(chǎn)和高產(chǎn)的收獲指數(shù)顯著高于低產(chǎn)和中低產(chǎn)。隨著產(chǎn)量水平的提高, 秸稈氮濃度和籽粒氮濃度均逐漸提高, 秸稈氮濃度分別為0.32%、0.39%、0.41%和0.46%, 且除中產(chǎn)外, 其余產(chǎn)量水平間均有顯著差異。不同產(chǎn)量水平的籽粒氮濃度分別為1.44%、1.66%、1.72%和1.87%, 中產(chǎn)和中低產(chǎn)間無顯著差異, 其余產(chǎn)量水平均有顯著差異, 即高產(chǎn)水平顯著高于中產(chǎn)和中低產(chǎn), 中產(chǎn)和中低產(chǎn)顯著高于低產(chǎn)的籽粒氮濃度。
圖2 不同產(chǎn)量水平下干物質(zhì)積累量(A)、植株氮積累量(B)和植株氮濃度(C)的變化規(guī)律
圖中實(shí)線表示平均值, 虛線表示中值, 箱型邊界表示75%和25%的四分位數(shù), 上下邊緣表示90和10百分位數(shù), 圓點(diǎn)表示最大值和最小值, 同一圖片中的不同小字母(a, b, c, d)表示產(chǎn)量水平間有顯著差異(< 0.05)。
The solid and dashed lines indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, different small letters (a, b, c, d) in the same figure represent that there was significant difference in different yield levels (< 0.05).
圖3 不同產(chǎn)量水平不同生育階段干物質(zhì)積累量(A)和氮積累量(B)占成熟期總積累量的百分比
圖中GS0代表播種期, GS31代表拔節(jié)期, GS65代表開花期, GS100代表成熟期。
GS0 indicates sowing stage, GS31 indicates jointing stage, GS65 indicates flowering stage, and GS100 indicates maturity stage.
圖4 不同產(chǎn)量水平下氮收獲指數(shù)(A)、收獲指數(shù)(B)、秸稈氮濃度(C)和籽粒氮濃度(D)的變化規(guī)律
圖中實(shí)線表示平均值, 虛線表示中值, 箱型邊界表示75%和25%的四分位數(shù), 上下邊緣表示90和10百分位數(shù), 圓點(diǎn)表示最大值和最小值, 同一圖片中的不同小字母(a, b, c, d)表示產(chǎn)量水平間顯著差異, ns表示4個(gè)產(chǎn)量水平間無顯著差異(< 0.05)。
The solid and dashed lines indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, different small letters (a, b, c, d) in the same figure represent that there was significant difference in different yield levels, and the ns represent that there was no significant difference among different yield levels (< 0.05).
本研究基于趙犇等[15]建立的小麥臨界氮濃度稀釋曲線計(jì)算得出氮營養(yǎng)指數(shù)。由圖5可知, 產(chǎn)量與氮營養(yǎng)指數(shù)呈線性正相關(guān)關(guān)系(2= 0.71), 不同產(chǎn)量水平的氮營養(yǎng)指數(shù)分別為0.53、0.76、0.86和0.98, 即隨產(chǎn)量水平的提高而提高, 且不同產(chǎn)量水平間差異顯著。
氮肥是小麥獲得高產(chǎn)的重要因素, 有研究指出,隨著產(chǎn)量的提高植株氮積累量也逐漸提高, 且兩者呈顯著冪函數(shù)關(guān)系[14], 李瑞珂等[4]也認(rèn)為, 高產(chǎn)水平的氮積累量顯著高于低產(chǎn)水平。近年來對(duì)小麥氮素積累的研究不斷深入, 單位籽粒需氮量成為指導(dǎo)小麥田間施肥的重要指標(biāo), 該指標(biāo)對(duì)確定小麥?zhǔn)┑烤哂兄匾饔肹14]。本研究中稻茬小麥單位籽粒需氮量變化范圍為10.3~51.0 kg t–1, 均值為25.9 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍為2.7~9.1 t hm–2。1985—1995年中國小麥單位籽粒需氮量為15.1~50.5 kg t–1, 均值為24.6 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍0.4~8.7 t hm–2[20]。2000—2011年中國小麥單位籽粒需氮量為10.9~88.7 kg t–1, 均值為26.4 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍為0.2~12.0 t hm–2[21]。華北地區(qū)旱地小麥的單位籽粒需氮量變化范圍為14.4~37.5 kg t–1, 均值為23.7 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍1.6~11.8 t hm–2[11]。而英法等國小麥在高氮條件下, 單位籽粒需氮量均值為31.1 kg t–1, 對(duì)應(yīng)產(chǎn)量范圍5.49~9.65 t hm–2; 而低氮條件下均值為14.4 kg t–1,對(duì)應(yīng)產(chǎn)量范圍為3.87~6.86 t hm–2[9]。其中, 本研究稻茬小麥的單位籽粒需氮量高于1985—1995年中國小麥的單位籽粒需氮量, 但低于2000—2011年中國小麥和英法等國小麥的單位籽粒需氮量, 與華北地區(qū)旱地小麥單位籽粒需氮量相近。本研究稻茬小麥單位籽粒需氮量隨著產(chǎn)量水平的提高呈現(xiàn)先提高后降低趨勢, 但4個(gè)產(chǎn)量水平間無顯著差異。岳善超[11]研究表明, 華北地區(qū)旱地小麥在適宜施氮條件下, 隨著產(chǎn)量水平的提高, 單位籽粒需氮量逐漸下降; 但在不同施氮條件下, 單位籽粒需氮量與2000—2011中國小麥的變化趨勢一致, 呈現(xiàn)隨施氮量提高而逐漸提高的趨勢。出現(xiàn)該差異主要是不同年份小麥品種、種植模式以及生態(tài)條件不同造成的。
圖5 不同產(chǎn)量水平小麥氮營養(yǎng)指數(shù)變化規(guī)律(A)及其與籽粒產(chǎn)量的相關(guān)關(guān)系(B)
圖(A)中實(shí)線表示平均值, 虛線表示中值, 箱型邊界表示75%和25%的四分位數(shù), 上下邊緣表示90和10百分位數(shù), 圓點(diǎn)表示最大值和最小值, 不同小字母(a, b, c, d)表示產(chǎn)量水平間有顯著差異(< 0.05); 圖(B)中實(shí)線表示擬合曲線,***顯著性為< 0.001。
The solid and dashed lines in Fig. A indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, and different small letters (a, b, c, d) represent that there was significant difference in different yield levels (< 0.05); the solid line in Fig. B represents the relationship,***indicates significantly difference at< 0.001.
有不少研究者認(rèn)為, 小麥成熟期植株干物質(zhì)積累量、氮積累量和氮濃度均隨產(chǎn)量的提高而提高, 且植株氮積累量和干物質(zhì)積累量的提高同步, 高產(chǎn)小麥具有更高的養(yǎng)分吸收能力[14,22-23]。不同產(chǎn)量水平小麥在不同生育階段的干物質(zhì)積累量和氮積累量具有顯著差異[18,24]。相關(guān)研究發(fā)現(xiàn), 拔節(jié)至開花期是小麥生長和養(yǎng)分吸收的重要生育階段, 孕穗期的干物質(zhì)積累量與產(chǎn)量之間呈顯著正相關(guān)關(guān)系[25-26]。周玲等[24]和Meng等[27]研究發(fā)現(xiàn), 高產(chǎn)水平小麥花前的干物質(zhì)積累量與中產(chǎn)相近, 而花后則遠(yuǎn)高于中產(chǎn)水平小麥。Meng等[27]和黃明等[28]認(rèn)為, 高產(chǎn)小麥成熟期氮積累量較中產(chǎn)和低產(chǎn)分別高17%和57%, 隨著產(chǎn)量水平的提高, 出苗—拔節(jié)期的氮積累比例顯著降低, 而拔節(jié)—開花期和開花—成熟期的氮積累量和氮積累比例均增加或顯著增加。小麥在拔節(jié)后期具有較強(qiáng)的干物質(zhì)和產(chǎn)量形成能力, 拔節(jié)—開花期的氮積累量對(duì)產(chǎn)量形成的影響最大[2]。氮肥施用應(yīng)集中在中后期, 以滿足小麥氮素需求[27]。本研究中, 高產(chǎn)水平下播種—拔節(jié)期和拔節(jié)—開花期階段的干物質(zhì)積累和氮積累比例呈增加趨勢, 而在開花—成熟期階段則先增加后降低, 這與高產(chǎn)小麥具有較高的干物質(zhì)積累量和氮積累量有關(guān)。
隨著產(chǎn)量水平的提高, 收獲指數(shù)逐漸提高。岳善超[11]認(rèn)為, 華北地區(qū)旱地小麥在優(yōu)化施氮田間管理?xiàng)l件下, 收獲指數(shù)從低產(chǎn)的0.39增加到超高產(chǎn)的0.48, 對(duì)應(yīng)產(chǎn)量范圍為3.2~11.8 t hm–2。山東省小麥?zhǔn)斋@指數(shù)范圍為0.40~0.49, 對(duì)應(yīng)產(chǎn)量范圍為5.2~9.4 t hm–2[29]。河北地區(qū)小麥?zhǔn)斋@指數(shù)范圍為0.47~0.50, 對(duì)應(yīng)產(chǎn)量范圍為6.9~9.7 t hm–2[30]。英格蘭冬小麥?zhǔn)斋@指數(shù)范圍為0.37~0.76, 對(duì)應(yīng)產(chǎn)量范圍為2.1~11.8 t hm–2[31]。本研究稻茬小麥的收獲指數(shù)范圍為0.39~0.49, 對(duì)應(yīng)產(chǎn)量范圍為2.7~9.1 t hm–2, 與華北地區(qū)旱地小麥的研究結(jié)果一致, 但低于河北省小麥和英格蘭小麥的收獲指數(shù), 這與其較高的產(chǎn)量有關(guān)。Barraclough等[31]認(rèn)為, 不同小麥品種的收獲指數(shù)間有差異, 但產(chǎn)量間差異并不明顯。理論上小麥的收獲指數(shù)可以達(dá)到0.64[32]。許多研究者[29,33-34]研究發(fā)現(xiàn), 收獲指數(shù)主要是生物量生產(chǎn)和異速生長的結(jié)果, 較高的收獲指數(shù)是獲得高產(chǎn)的原因之一, 提高收獲指數(shù)能有效提高產(chǎn)量。收獲指數(shù)不僅與品種和地區(qū)有關(guān), 還與管理?xiàng)l件有關(guān), 在干燥條件下, 小麥?zhǔn)斋@指數(shù)較低, 高水分條件下, 收獲指數(shù)較高[34]。本研究的氮收獲指數(shù)范圍為0.60~0.96, 該結(jié)果與多個(gè)相關(guān)研究的結(jié)果較為一致, 且多數(shù)研究認(rèn)為不同產(chǎn)量水平間的氮收獲指數(shù)變化范圍為0.69~0.98, 產(chǎn)量之間差異不顯著, 主要與小麥品種有關(guān)[11,29,31]。
本研究中籽粒和秸稈氮濃度變化范圍分別為1.44%~1.87%和0.32%~0.46%。華北地區(qū)旱地小麥在優(yōu)化施氮田間管理?xiàng)l件下, 籽粒和秸稈氮濃度變化范圍分別為1.43%~2.80%和0.29%~1.05%[11], 英格蘭冬小麥的籽粒氮濃度為1.08%~2.79%[31]。本研究的籽粒和秸稈氮濃度均低于華北地區(qū)和英格蘭冬小麥。岳善超的研究結(jié)果表明, 隨著產(chǎn)量水平的提高籽粒氮濃度逐漸降低, 造成該趨勢的主要原因是籽粒中氮積累速率小于同化物積累速率。但是在不同施氮水平下, 隨著產(chǎn)量提高籽粒和秸稈氮濃度逐漸提高[11,13]。張青松等[14]認(rèn)為, 從低產(chǎn)到高產(chǎn)籽粒氮濃度逐漸下降, 但產(chǎn)量再提高, 籽粒氮濃度會(huì)逐漸提高。Triboi等[12]研究發(fā)現(xiàn), 在限氮條件下, 籽粒氮濃度對(duì)產(chǎn)量變化較為敏感, 產(chǎn)量與籽粒氮濃度之間有較強(qiáng)的負(fù)相關(guān)關(guān)系。在缺氮條件下, 增施氮肥會(huì)增加產(chǎn)量, 但對(duì)籽粒氮濃度影響不大; 繼續(xù)增施氮肥, 產(chǎn)量和氮濃度會(huì)同時(shí)增加; 而再增加施氮量, 籽粒氮濃度會(huì)逐漸提高, 而產(chǎn)量不會(huì)提高[35]。本研究中籽粒和秸稈氮濃度均隨著產(chǎn)量提高呈逐漸上升趨勢, 這主要與本研究數(shù)據(jù)來源中氮肥試驗(yàn)較多有關(guān)。籽粒和秸稈氮濃度從低產(chǎn)到高產(chǎn)分別提高了29%和46%, 秸稈氮濃度的增幅高于籽粒氮濃度, 這也表明較高的氮肥施用量易造成小麥氮素的奢侈吸收[11]。氮營養(yǎng)指數(shù)是診斷小麥田間氮肥供應(yīng)的重要指標(biāo), 氮營養(yǎng)指數(shù)和產(chǎn)量均隨施氮量的增加而增加[36-37]。本研究中, 氮營養(yǎng)指數(shù)與產(chǎn)量的相關(guān)性較大, 氮營養(yǎng)指數(shù)隨著產(chǎn)量水平的提高逐漸提高, 該結(jié)果與前人研究一致。高產(chǎn)水平和中產(chǎn)水平小麥的氮營養(yǎng)指數(shù)接近1甚至高于1, 表明氮肥供應(yīng)充足; 中低產(chǎn)和低產(chǎn)水平的氮營養(yǎng)指數(shù)偏低, 在小麥生長關(guān)鍵階段適當(dāng)增施氮肥利于小麥進(jìn)一步提高產(chǎn)量[16,38]。
不同產(chǎn)量水平稻茬小麥單位籽粒需氮量間無顯著差異, 小麥籽粒產(chǎn)量與植株氮積累量并不是等比例增加。拔節(jié)—開花期階段是小麥干物質(zhì)積累量和氮積累量最高的階段, 該階段保證充足的養(yǎng)分供應(yīng)有利于小麥取得高產(chǎn)。秸稈氮濃度、籽粒氮濃度和氮營養(yǎng)指數(shù)均隨著產(chǎn)量水平的提高而提高, 主要與施氮量增加有關(guān), 并且籽粒氮濃度的增幅低于秸稈氮濃度, 意味著過量施氮易造成小麥的奢侈吸收。
[1] Cui Z L, Chen X P, Zhang F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China., 2010, 39: 376–384.
[2] 陽顯斌, 張錫洲, 李廷軒, 余海英, 吳德勇. 不同產(chǎn)量水平小麥的氮吸收利用差異. 核農(nóng)學(xué)報(bào), 2010, 24: 1073–1079. Yang X B, Zhang X Z, Li T X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level., 2010, 24: 1073–1079(in Chinese with English abstract).
[3] 田昌玉, 孫文彥, 林治安, 趙秉強(qiáng), 李志杰. 氮肥利用率的問題與改進(jìn). 中國土壤與肥料, 2016, (4): 9–16. Tian C Y, Sun W Y, Lin Z A, Zhao B Q, Li Z J. Problems and improvements of recovery efficiency of applied N., 2016, (4): 9–16 (in Chinese with English abstract).
[4] 李瑞珂, 汪洋, 安志超, 武慶慧, 王改革, 仝瑞芳, 葉優(yōu)良. 不同產(chǎn)量類型小麥品種的干物質(zhì)和氮素積累轉(zhuǎn)運(yùn)特征. 麥類作物學(xué)報(bào), 2018, 38: 1359–1364. Li R K, Wang Y, An Z C, Wu Q H, Wang G G, Tong R F, Ye Y L. The transport characteristics of dry matter and nitrogen accumulation in different wheat cultivars., 2018, 38: 1359–1364 (in Chinese with English abstract).
[5] 趙雪飛, 王麗金, 李瑞奇, 李雁鳴. 不同灌水次數(shù)和施氮量對(duì)冬小麥群體動(dòng)態(tài)和產(chǎn)量的影響. 麥類作物學(xué)報(bào), 2009, 29: 1004–1009. Zhao X F, Wang L J, Li R Q, Li Y M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat., 2009, 29: 1004–1009 (in Chinese with English abstract).
[6] Yan S C, Wu Y, Fan J L, Zhang F C, Zheng J, Qiang S C, Guo J J, Xiang Y Z, Zou H Y, Wu L F. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes., 2020, 250: 1–13.
[7] 于振文, 田奇卓, 潘慶民, 岳壽松, 王東, 段藏祿, 段玲玲, 王志軍, 牛運(yùn)生. 黃淮麥區(qū)冬小麥超高產(chǎn)栽培的理論與實(shí)踐. 作物學(xué)報(bào), 2002, 28: 577–585. Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts., 2002, 28: 577–585 (in Chinese with English abstract).
[8] 黨紅凱, 李瑞奇, 李雁鳴, 孫亞輝, 張馨文, 劉夢(mèng)星. 超高產(chǎn)冬小麥對(duì)氮素的吸收、積累和分配. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19: 1037–1047. Dang H K, Li R Q, Li Y M, Sun Y H, Zhang X W, Liu M X. Absorption, accumulation and distribution of nitrogen in super-highly yielding winter wheat., 2013, 19: 1037–1047 (in Chinese with English abstract).
[9] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes., 2011, 123: 139–152.
[10] Fowler D B. Crop nitrogen demand and grain protein concentration of spring and winter wheat., 2003, 95: 260–265.
[11] 岳善超. 小麥玉米高產(chǎn)體系的氮肥優(yōu)化管理. 中國農(nóng)業(yè)大學(xué)博士學(xué)位論文, 北京, 2013. pp 25–37. Yue S C. Optimum Nitrogen Management for High-yielding Wheat and Maize Cropping System. PhD Dissertation of China Agricultural University, Beijing, China, 2013. pp 25–37 (in Chinese with English abstract).
[12] Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A M. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat., 2006, 25: 108–118.
[13] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, Gate P, Martre P, Le Gouis J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat., 2010, 61: 4303–4312.
[14] 張青松, 盧殿君, 岳善超, 占愛, 崔振嶺. 華北地區(qū)高產(chǎn)冬小麥氮磷鉀養(yǎng)分需求特征. 中國農(nóng)業(yè)科學(xué), 2018, 51: 3840–3851. Zhang Q S, Lu D J, Yue S C, Zhan A, Cui Z L. Characteristics of N, P and K nutrient demand of high-yielding winter wheat in north China plain., 2018, 51: 3840–3851 (in Chinese with English abstract).
[15] 趙犇, 姚霞, 田永超, 劉小軍, 曹衛(wèi)星, 朱艷. 基于臨界氮濃度的小麥地上部氮虧缺模型. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23: 3141–3148. Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration., 2012, 23: 3141–3148 (in Chinese with English abstract).
[16] 曹強(qiáng), 田興帥, 馬吉鋒, 姚霞, 劉小軍, 田永超, 曹衛(wèi)星, 朱艷. 中國三大糧食作物臨界氮濃度稀釋曲線研究進(jìn)展. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 32: 1148–1159. Cao Q, Tian X S, Ma J F, Yao X, Liu X J, Tian Y C, Cao W X, Zhu Y. Research progress in critical nitrogen dilution curve of three main grain crops in China., 2019, 32: 1148–1159 (in Chinese with English abstract).
[17] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management., 2008, 28: 614–624.
[18] 丁錦峰, 楊佳鳳, 王云翠, 陳芳芳, 封超年, 朱新開, 李春燕, 彭永欣, 郭文善. 稻茬小麥公頃產(chǎn)量9000 kg群體氮素積累、分配與利用特性. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19: 543–551. Ding J F, Yang J F, Wang Y C, Chen F F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Nitrogen accumulation, distribution and utilization characteristics of wheat at yield level of 9000 kg ha–1in rice-wheat rotation., 2013, 19: 543–551 (in Chinese with English abstract).
[19] Greewood D J, Neeteson J J, Draycott A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial enviroment., 1986, 91: 281–301.
[20] Liu M Q, Yu Z R, Liu Y H, Konijn N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach., 2006, 74: 245–258.
[21] 串麗敏. 基于產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的小麥推薦施肥方法研究. 中國農(nóng)業(yè)科學(xué)院博士學(xué)位論文, 北京, 2013. pp 25–29. Chuan L M. Methodology of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Wheat. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013. pp 25–29 (in Chinese with English abstract).
[22] 安志超. 不同基肥供氮水平下氮肥形態(tài)對(duì)小麥植株氮濃度、群體動(dòng)態(tài)和產(chǎn)量的影響. 河南農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 河南鄭州, 2018. pp 23–29. An Z C. Effects of Different Nitrogen Forms on Plant Nitrogen Concentration, Population Dynamic and Yield of Wheat under Different Nitrogen Applications Rates. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. pp 23–29 (in Chinese with English abstract).
[23] 盧殿君. 華北平原冬小麥高產(chǎn)高效群體動(dòng)態(tài)特征與氮營養(yǎng)調(diào)控. 中國農(nóng)業(yè)大學(xué)博士學(xué)位論文, 北京, 2015. pp 15–22.Lu D J. Dynamics of Population Trait for High Yielding and High Efficiency Winter Wheat and N Nutrient Regulation in the North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2015. pp 15–22 (in Chinese with English abstract).
[24] 周玲, 王朝輝, 李富翠, 孟曉瑜, 李可懿, 李生秀. 不同產(chǎn)量水平旱地冬小麥品種干物質(zhì)累積和轉(zhuǎn)移的差異分析. 生態(tài)學(xué)報(bào), 2012, 32: 4123–4131. Zhou L, Wang Z H, Li F C, Meng X Y, Li K Y, Li S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland., 2012, 32: 4123–4131 (in Chinese with English abstract).
[25] Ye Y L, Wang G L, Huang Y F, Zhu Y J, Meng Q F, Chen X P, Zhang F S, Cui Z L. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties., 2011, 124: 316–322.
[26] Meng Q F, Yue S C, Chen X P, Cui Z L, Ye Y L, Ma W Q, Tong Y N, Zhang F S. Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China., 2013, 8: 1–9.
[27] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review., 2016, 26: 137–147.
[28] 黃明, 吳金芝, 李友軍, 王賀正, 陳明燦, 付國占. 旱地不同產(chǎn)量水平小麥的產(chǎn)量構(gòu)成及氮素吸收利用的差異. 麥類作物學(xué)報(bào), 2019, 39: 163–170. Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands., 2019, 39: 163–17 (in Chinese with English abstract).
[29] 劉海紅, 徐學(xué)欣, 吳姍姍, 於思益, 石巖, 趙長星. 雨養(yǎng)條件下不同冬小麥品種產(chǎn)量形成及氮素利用特征. 華北農(nóng)學(xué)報(bào), 2019, 34(6): 133–144. Liu H H, Xu X X, Wu S S, Yu S Y, Shi Y, Zhao C X. Studies on yield formation and nitrogen utilization characteristics of different winter wheat varieties under rain-fed condition., 2019, 34(6): 133–144 (in Chinese with English abstract).
[30] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain., 2018, 221: 219–227.
[31] Barraclough P B, Howarth J R, Jones J, Lopez-Bellida R, Parmar S, Shepherd C E, Hawkesford M J. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement., 2010, 33: 1–11.
[32] Foulkes M J, Slafer G A, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance., 2010, 62: 469–486.
[33] Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand., 1999, 39: 1611–1621.
[34] Weiner J. Allocation, plasticity and allometry in plants., 2004, 6: 207–215.
[35] Macy P. The quantitative mineral nutrient requirements of plants., 1936, 11: 749–764.
[36] 岳松華, 劉春雨, 黃玉芳, 葉優(yōu)良. 豫中地區(qū)冬小麥臨界氮稀釋曲線與氮營養(yǎng)指數(shù)模型的建立. 作物學(xué)報(bào), 2016, 42: 909–916. Yue S H, Liu C Y, Huang Y F, Ye Y L. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area., 2016, 42: 909–916 (in Chinese with English abstract).
[37] Zhao B, Niu X L, Ata-Ul-Karim S T, Wang L G, Duan A W, Liu Z D, Lemaire G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat., 2020, 113: 1–11.
[38] 李正鵬, 馮浩, 宋明丹. 關(guān)中平原冬小麥臨界氮稀釋曲線和氮營養(yǎng)指數(shù)研究. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(10): 177–273.Li Z P, Feng H, Song M D. Critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong plain., 2015, 46(10): 177–273 (in Chinese with English abstract).
Nitrogen demand characteristics with different grain yield levels for wheat after rice
DU Yu-Xiao, LI Xin-Ge, WANG Xue, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, and CAO Qiang*
National Engineering and Technology Center for Information Agriculture, Nanjing Agricltural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, Jiangsu, China
It is necessary to clarify the nitrogen (N) demand characteristics with yield levels for wheat after rice in the middle and down reaches of the Yangtze River, which could provide theoretical basis for N fertilizer management. Based-on the multi-years and multi-sites wheat experiments in Jiangsu province, this study constructed the datasets of different yield levels derived from different varieties, N rates, densities, and sowing date experiments. N indicators including N requirement per ton grain (Nreq), dry matter accumulation (DMA), plant N accumulation (PNA), plant N concentration (PNC), straw N concentration (SNC), grain N concentration (GNC), harvest index (HI), N harvest index (NHI) and N nutrition index (NNI) were analyzed. The results showed that there were not significant differences in Nreqamong the different yield levels, and the highest Nreqwas middle-low yield with 27.8 kg t–1, while the lowest value was 24.8 kg t–1for low yield level. With the increase of yield levels, DMA, PNA and PNC all showed a gradually increasing trend during maturity stage, and there were significant differences among the different yield levels. There was a significant positive correlation between grain yield and PNA, the DMA and PNA increased with the increase of yield in the sowing–jointing stage, jointing–flowering stage and flowering–maturing stage, but the DMA and PNA proportion in different growth stages showed different trends. The SNC and GNC increased with the increase of yield levels. For SNC, there was no significant difference between the high yield and middle yield level, but it was significantly higher than the low-middle and low yield level. For GNC, there were significant differences among different yield levels except for the middle and low-middle yield level. The HI increased gradually with the increase of the yield levels, and its range was 0.39–0.49. The HI for low-middle and low yields were significantly lower than that of middle and high yield levels, while there were not significant differences in NHI among different yield levels. Its variation range was 0.60–0.96. The NNI gradually increased with the increase of the yield levels, and there was significant difference between different yield levels. The NNI of the high-yield level was higher, and some of the values were greater than 1 which indicating that some experiments had excessive nitrogen fertilizer supply. With the increase of the yield level, the Nreqincreased first and then decreased, while the DMA, PNA, PNC, SNC, and GNC were gradual increased. The increase of SNC was higher than the GNC, therefore, the extravagant absorption of N by wheat should be avoided in field management. The variation ranges of the HI and NHI were consistent with previous studies. The higher DMA and PNA in the late growth stages were the main reasons for the high yield of wheat. The NNI could be a promising indictor in the field N management of wheat.
yield levels; nitrogen requirement per ton grain; harvest index; nitrogen nutrition index
10.3724/SP.J.1006.2020.01027
本研究由國家自然科學(xué)基金青年項(xiàng)目(31601222), 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(KJQN201725)和江蘇現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(JATS[2019]433, JATS[2019]141)資助。
This study was supported by the Youth Program of National Natural Science Foundation of China (31601222), the Fundamental Research Funds for the Central University (KJQN201725), and the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2019]433, JATS[2019]141).
曹強(qiáng), E-mail: qiangcao@njau.edu.cn, Tel: 025-84399050
E-mail: 2018801186@njau.edu.cn
2020-03-26;
2020-07-02;
2020-07-13.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20200713.1406.006.html