妥曉梅,朱東麗,2,陳曉峰,榮譽(yù),郭燕,楊鐵林,2
研究報(bào)告
骨質(zhì)疏松易感SNP rs4325274通過增強(qiáng)子遠(yuǎn)程調(diào)控基因的功能機(jī)制研究
妥曉梅1,朱東麗1,2,陳曉峰1,榮譽(yù)1,郭燕1,楊鐵林1,2
1. 西安交通大學(xué)生命科學(xué)與技術(shù)學(xué)院,生物醫(yī)學(xué)信息工程教育部重點(diǎn)實(shí)驗(yàn)室,生物醫(yī)學(xué)信息與基因組學(xué)中心,西安 710049 2. 浙江西安交通大學(xué)研究院,杭州 311215
骨質(zhì)疏松癥是一種典型的多基因復(fù)雜疾病,遺傳力高達(dá)85%,其發(fā)病率已躍居常見疾病的第5位。盡管已經(jīng)鑒定出大量骨質(zhì)疏松易感SNP,但大多數(shù)SNP位點(diǎn)位于基因組非編碼區(qū),且功能機(jī)制未知。本研究旨在通過生物信息學(xué)分析和功能實(shí)驗(yàn)探究骨質(zhì)疏松非編碼功能性易感SNP rs4325274的分子調(diào)控機(jī)制。首先,通過表觀注釋發(fā)現(xiàn)該SNP所在區(qū)域處在增強(qiáng)子上,eQTL和Hi-C分析結(jié)果發(fā)現(xiàn)SNP調(diào)控的潛在靶基因是;然后,利用多種數(shù)據(jù)庫(kù)進(jìn)行Motif預(yù)測(cè),并結(jié)合GEO數(shù)據(jù)庫(kù)中的ChIP-seq數(shù)據(jù)分析進(jìn)行了驗(yàn)證,結(jié)果發(fā)現(xiàn)轉(zhuǎn)錄因子更傾向于結(jié)合SNP rs4325274-G堿基;進(jìn)一步通過雙熒光素酶報(bào)告基因?qū)嶒?yàn)驗(yàn)證了該SNP對(duì)基因表達(dá)的增強(qiáng)作用;最后,利用shRNA敲低轉(zhuǎn)錄因子實(shí)驗(yàn),檢測(cè)靶基因的表達(dá)變化。以上研究結(jié)果初步解析了非編碼區(qū)功能性SNPrs4325274作為增強(qiáng)子遠(yuǎn)程調(diào)控基因表達(dá)的分子機(jī)制,為復(fù)雜疾病非編碼易感SNP的遺傳調(diào)控研究提供新思路。
SNP rs4325274;基因;轉(zhuǎn)錄因子;骨質(zhì)疏松癥發(fā)生機(jī)制
骨質(zhì)疏松癥是一種世界范圍內(nèi)流行的全身性骨代謝性疾病,以骨量減少和骨組織微結(jié)構(gòu)損壞為特征[1]。由于其高發(fā)病率、高死亡率以及高醫(yī)療花費(fèi)[2~4],骨質(zhì)疏松癥已成為當(dāng)前亟需解決的公共健康問題之一。但至今骨質(zhì)疏松癥的遺傳發(fā)病機(jī)制仍不清楚。因此,開展骨質(zhì)疏松癥的基礎(chǔ)研究,深入探索其分子致病機(jī)制,對(duì)骨質(zhì)疏松癥的預(yù)防和臨床治療有著重要意義。
(SRY-box transcription factor 6)基因是SRY相關(guān)轉(zhuǎn)錄因子D亞家族的成員,在軟骨細(xì)胞分化、軟骨形成和軟骨內(nèi)骨形成中起著非常重要的調(diào)控作用[5,6]。當(dāng)和基因同時(shí)缺失時(shí),小鼠胚胎會(huì)發(fā)展成嚴(yán)重的泛發(fā)性軟骨發(fā)育不良,在胚胎發(fā)育16.5天左右死亡[5]。另外,和協(xié)同基因調(diào)節(jié)軟骨中II 型膠原()的表達(dá)來(lái)控制軟骨的重塑,在治療骨關(guān)節(jié)炎中軟骨退變和軟骨損傷修復(fù)中具有重要的臨床應(yīng)用價(jià)值[7,8]。本課題組前期研究發(fā)現(xiàn)基因參與了軟骨形成和成骨的耦合調(diào)控作用[9],這提示基因可能在骨質(zhì)疏松發(fā)生過程起著非常重要的作用。
骨質(zhì)疏松癥的臨床診斷和評(píng)估主要以骨密度(bone mineral density, BMD)為依據(jù)[10],其遺傳力高達(dá)0.6~0.8[11]。目前,國(guó)際上已有多項(xiàng)全基因組關(guān)聯(lián)研究(genome-wide association study, GWAS)發(fā)現(xiàn)位于染色體11p15區(qū)的基因內(nèi)部及上下游區(qū)的多個(gè)SNPs位點(diǎn)與股骨頸、腰椎和手腕骨密度等骨質(zhì)疏松癥表型顯著關(guān)聯(lián)[12~15]。但對(duì)于這些風(fēng)險(xiǎn)SNPs在骨質(zhì)疏松癥發(fā)生過程中的功能及作用機(jī)制至今尚不清楚。本課題組前期從骨質(zhì)疏松癥遺傳因素聯(lián)合會(huì)(genetic factors for osteoporosis consortium, GEFOS)下載和整理了所有與骨質(zhì)疏松癥相關(guān)表型的所有GWAS 數(shù)據(jù),通過精細(xì)定位分析,篩選到基因上游區(qū)域中一個(gè)潛在的骨質(zhì)疏松癥易感causal SNP rs4325274位點(diǎn),已有研究報(bào)道了該SNP位點(diǎn)與足跟部骨密度[16]和全身骨密度[17]表現(xiàn)出顯著的關(guān)聯(lián)性,值分別為1.60×10–42和1.73×10–13,但該SNP潛在的功能機(jī)制有待進(jìn)一步研究。本研究將結(jié)合生物信息學(xué)分析以及功能實(shí)驗(yàn),探究骨質(zhì)疏松癥易感SNP rs4325274調(diào)控基因表達(dá)的分子機(jī)制,以期為進(jìn)一步解析骨質(zhì)疏松癥的發(fā)生機(jī)制提供理論基礎(chǔ)。
成骨細(xì)胞來(lái)源的U2OS細(xì)胞,用含有10%胎牛血清,100 U/mL的青霉素和100 μg/mL的鏈霉素的RPMI-1640培養(yǎng)基在37℃、5%CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。
菌株感受態(tài)細(xì)胞DH5a購(gòu)自北京天根生化技術(shù)有限公司;雙熒光素酶報(bào)告基因載體PGL-3 Basic、內(nèi)參海腎載體phRL和ViaFect轉(zhuǎn)染試劑均購(gòu)自美國(guó)Promega公司;定點(diǎn)突變?cè)噭┖匈?gòu)自北京天恩澤技術(shù)有限公司;限制性內(nèi)切酶,DNA ligation Mix,ExDNA 聚合酶均購(gòu)自日本TaKaRa公司;膠純化回收試劑盒購(gòu)自上海GENEray公司;血液/組織/細(xì)胞基因組DNA提取試劑盒,無(wú)內(nèi)毒素質(zhì)粒小量中提提取試劑盒均購(gòu)自北京天根生化技術(shù)有限公司。
利用ANNOVAR軟件注釋causal SNP rs4325274的基因組位置,利用WashU Epigenome Brower (http://epigenomegateway.wustl.edu/)在線網(wǎng)站,選取成骨細(xì)胞及GM12878的表觀調(diào)控?cái)?shù)據(jù),包括各類激活型組蛋白修飾如H3K4me1、H3K4me3、H3K27ac、P300以及DNase I 超敏感位點(diǎn)等,對(duì)SNP rs4325274所在區(qū)域進(jìn)行功能注釋。
利用福明翰心臟研究(Framingham Heart Study, FHS)中的全血eQTL數(shù)據(jù)(ftp://ftp.ncbi.nlm.nih.gov/ eqtl/original_submissions/FHS_eQTL/)進(jìn)行eQTL分析。
結(jié)合本實(shí)驗(yàn)室測(cè)得成骨細(xì)胞的Hi-C 數(shù)據(jù)、ChIP-seq 測(cè)序數(shù)據(jù)(doi: https://doi.org/10.1101/2020.05.25.114272),利用實(shí)驗(yàn)室搭建的分析平臺(tái)進(jìn)行了Hi-C 分析,以期得到與SNP rs4325274 所在區(qū)域顯著互作的成環(huán)片段。
1.6.1 野生型和突變型兩種熒光素酶重組載體構(gòu)建
構(gòu)建含啟動(dòng)子片段的PGL3熒光素酶報(bào)告載體,正確載體命名為promoter-Luc+。然后,構(gòu)建含SNP rs4325274片段的promoter-Luc+重組載體。NCBI(http://www.ncbi.nlm.nih.gov/)比對(duì)結(jié)果顯示SNP位點(diǎn)為C堿基,故將構(gòu)建好的重組載體命名為rs4325274-C-promoter-Luc+,在此基礎(chǔ)上利用定點(diǎn)突變?cè)噭┖羞M(jìn)行C→G定點(diǎn)突變。首先,在CE Design V1.03網(wǎng)站上設(shè)計(jì)SNP rs4325274定點(diǎn)突變引物,然后根據(jù)基因定點(diǎn)突變?cè)噭┖?D0206)操作說明書進(jìn)行定點(diǎn)突變反應(yīng),正確載體命名為rs4325274-G-promoter-Luc+。相關(guān)引物序列見表1。
1.6.2 報(bào)告基因載體的轉(zhuǎn)染及熒光素酶活性檢測(cè)
分別將構(gòu)建好的promoter-Luc+、rs4325274- C-promoter-Luc+和rs4325274-G-promoter- Luc+熒光素酶報(bào)告基因載體與內(nèi)參海腎質(zhì)粒(phRL) 共轉(zhuǎn)染至成骨系細(xì)胞U2OS中,根據(jù)Dual Luciferase Reporter Assay System操作說明書,利用化學(xué)發(fā)光儀檢測(cè)rs4325274兩種堿基型增強(qiáng)子對(duì)基因啟動(dòng)子的調(diào)控活性,以確定其是否對(duì)基因有增強(qiáng)子作用。
表1 實(shí)驗(yàn)所用引物序列
、和下劃線分別表示d III、I和I酶切位點(diǎn)。
從meme suite網(wǎng)站(http://meme-suite.org/doc/ meme.html?man_type=web)下載整理最新的人類轉(zhuǎn)錄因子Motif 數(shù)據(jù)庫(kù),包括JASPAR 2018、HO-COMOCOv11、SwissRegulon和TRANSFAC四個(gè)權(quán)威數(shù)據(jù)庫(kù)的數(shù)據(jù)進(jìn)行Motif 預(yù)測(cè),分析能夠與增強(qiáng)子上目標(biāo)SNP rs4325274結(jié)合的轉(zhuǎn)錄因子,以及SNP rs4325274不同堿基型的改變是否會(huì)影響轉(zhuǎn)錄因子的結(jié)合情況。利用GEO數(shù)據(jù)庫(kù)里的ChIP-seq數(shù)據(jù)集分析在SNP rs4325274位點(diǎn)處是否有轉(zhuǎn)錄因子的結(jié)合信號(hào)。
首先在U2OS細(xì)胞中,對(duì)SNP rs4325274進(jìn)行了分型,利用血液/組織/細(xì)胞基因組DNA提取試劑盒提取U2OS細(xì)胞的基因組DNA作為模板進(jìn)行PCR擴(kuò)增,將得到的PCR產(chǎn)物送北京擎科生物科技有限公司進(jìn)行測(cè)序檢測(cè)SNP基因型。
本研究選取文獻(xiàn)[19]已報(bào)道的-shRNA寡核苷酸序列為shRNA序列:-shRNA1:5?-GGCAGAAGAACCCTAGCAA-3?,-shRNA2:5?-GGTCTTCACCTCAGACACT-3?,sh-NC:5?-GTT-CTCCGAACGTGTCACGT-3?,構(gòu)建到miR-30骨架上,經(jīng)I和R I雙酶切克隆到pcDNA3.1表達(dá)載體上,酶切及測(cè)序鑒定驗(yàn)證,即構(gòu)建好sh--1,sh--2和sh-NC (空白對(duì)照)表達(dá)質(zhì)粒。然后用ViaFect轉(zhuǎn)染試劑分別轉(zhuǎn)染U2OS細(xì)胞。轉(zhuǎn)染48h后,提取細(xì)胞總RNA,反轉(zhuǎn)錄,用實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)的敲低情況及基因mRNA水平的表達(dá)情況。qRT-PCR檢測(cè)引物序列見表1。
利用ENCODE數(shù)據(jù)庫(kù)里的成骨細(xì)胞及GM12878的ChIP-seq數(shù)據(jù)對(duì)篩選出的SNP rs4325274所在區(qū)域進(jìn)行表觀注釋,利用WashU可視化工具作圖,發(fā)現(xiàn)SNP rs4325274周圍富集了多個(gè)具有較強(qiáng)的激活型組蛋白標(biāo)記,如H3K4me1、H3K4me3、H3K27ac,以及轉(zhuǎn)錄激活因子P300和DNase I 超敏感位點(diǎn)(DHS) (圖1),提示SNP rs4325274處于增強(qiáng)子元件內(nèi),初步推斷該SNP所在區(qū)域可能是一個(gè)增強(qiáng)子。
研究發(fā)現(xiàn),基因組可折疊成環(huán)使得直線物理位置較遠(yuǎn)的增強(qiáng)子和靶基因的啟動(dòng)子在三維結(jié)構(gòu)上接近,進(jìn)而發(fā)揮調(diào)控作用[20,21]。為了證明易感SNP rs4325274與靶基因之間的關(guān)系,利用FHS中5257個(gè)人的全血eQTL數(shù)據(jù)進(jìn)行了eQTL分析,結(jié)果發(fā)現(xiàn)SNP rs4325274 (= 2.06×10–12)與基因之間的關(guān)系較顯著。利用本課題組前期對(duì)成骨細(xì)胞高分辨率的Hi-C測(cè)序數(shù)據(jù)及搭建好的Hi-C分析流程,數(shù)據(jù)分辨率為2 kb,發(fā)現(xiàn)非編碼區(qū)SNP rs4325274與基因存在遠(yuǎn)程互作(圖2)。
圖1 SNP rs4325274組蛋白注釋結(jié)果(采用Wash U基因組瀏覽器可視化)
eQTL分析和Hi-C分析結(jié)果表明,易感SNP rs4325274所調(diào)控的靶基因可能是基因。
分別將包含rs4325274(C/G)不同等位基因的片段(約0.8 kb)及基因啟動(dòng)子區(qū)片段(約1.2 kb)克隆到熒光素酶報(bào)告基因載體(PGL3-Basic)上,與內(nèi)參海腎質(zhì)粒(phRL)共轉(zhuǎn)染至U2OS細(xì)胞中,檢測(cè)其熒光素酶活性。結(jié)果發(fā)現(xiàn),相比只含基因啟動(dòng)子的載體,含SNP不同等位基因的重組載體表達(dá)活性顯著增強(qiáng),且含有G堿基的載體表達(dá)活性相比C堿基的載體表達(dá)活性顯著增強(qiáng)(圖3),這進(jìn)一步證實(shí)了SNP rs4325274所在的片段是作為一個(gè)增強(qiáng)子來(lái)調(diào)控基因表達(dá),而且不同等位基因調(diào)控活性有差異,其中G等位基因的調(diào)控活性更高。
圖2 Hi-C數(shù)據(jù)分析結(jié)果示意圖
根據(jù)JASPAR 2018、HOCOMOCOv11、Swiss-Regulon和TRANSFAC四個(gè)權(quán)威數(shù)據(jù)庫(kù)對(duì)SNP rs4325274 (G/C)序列進(jìn)行轉(zhuǎn)錄因子預(yù)測(cè),結(jié)果同時(shí)在SwissRegulon和TRANSFAC數(shù)據(jù)庫(kù)中發(fā)現(xiàn)SNP rs4325274都結(jié)合轉(zhuǎn)錄因子,而且轉(zhuǎn)錄因子更傾向于結(jié)合rs4325274-G等位基因(圖4)。因此,推測(cè)SNP rs4325274通過不同基因型結(jié)合轉(zhuǎn)錄因子的活性對(duì)增強(qiáng)子具有潛在的激活作用。
圖4 轉(zhuǎn)錄因子HNF1A結(jié)合DNA序列和SNP位置
*:SNP rs4325274位點(diǎn)。
圖3 雙熒光素酶報(bào)告基因活性檢測(cè)rs4325274的增強(qiáng)子活性結(jié)果
數(shù)據(jù)為均值 ± 標(biāo)準(zhǔn)差;*:<0.05;**:< 0.01。
圖5 ChIP-seq數(shù)據(jù)分析結(jié)果(采用IGV工具可視化)
為了驗(yàn)證rs4325274可能與轉(zhuǎn)錄因子結(jié)合,從GEO數(shù)據(jù)庫(kù)中獲得轉(zhuǎn)錄因子的ChIP-seq數(shù)據(jù)(NO:GSM2534454),利用IGV (Inte-grative Genomics Viewer)工具可視化作圖,發(fā)現(xiàn)rs4325274位于ChIP信號(hào)富集區(qū)(圖5),這一結(jié)果進(jìn)一步說明了rs4325274可能會(huì)結(jié)合轉(zhuǎn)錄因子。
對(duì)SNP rs4325274在U2OS細(xì)胞中進(jìn)行了分型,分型結(jié)果顯示rs4325274在U2OS細(xì)胞中是雜合型(G/C)(圖6),確保了后續(xù)敲低實(shí)驗(yàn)的進(jìn)行。
為進(jìn)一步探究SNPrs4325274是否通過影響轉(zhuǎn)錄因子結(jié)合機(jī)制調(diào)控靶基因的表達(dá),本研究構(gòu)建了-shRNA敲低載體,轉(zhuǎn)染至U2OS細(xì)胞,利用qRT-PCR檢測(cè)基因的表達(dá)情況。結(jié)果表明,與陰性對(duì)照shRNA轉(zhuǎn)染細(xì)胞相比,在轉(zhuǎn)錄因子敲低的U2OS細(xì)胞中,基因的表達(dá)顯著降低(圖7)。這一結(jié)果提示可能是SNP rs4325274調(diào)控機(jī)制中的潛在調(diào)節(jié)因子,通過目標(biāo)SNP-轉(zhuǎn)錄因子–靶基因的調(diào)控機(jī)制,進(jìn)而導(dǎo)致疾病的發(fā)生。轉(zhuǎn)錄因子與SNP rs4325274等位基因的特異性結(jié)合需進(jìn)一步實(shí)驗(yàn)去驗(yàn)證。
圖6 rs4325274在U2OS細(xì)胞中的分型結(jié)果
圖7 在U2OS細(xì)胞中敲低HNFIA對(duì)SOX6表達(dá)的影響
數(shù)據(jù)為均值 ± 標(biāo)準(zhǔn)差;***:<0.001;**:<0.01。
骨質(zhì)疏松癥是一種受多基因調(diào)控的復(fù)雜疾病[11],其遺傳力高達(dá)85%[22]。隨著基因組技術(shù)的發(fā)展,大規(guī)模GWAS的開展,已經(jīng)成功鑒定了大量與骨質(zhì)疏松癥骨密度相關(guān)聯(lián)的易感變異位點(diǎn)。目前,破譯這些易感位點(diǎn)影響疾病發(fā)生的功能機(jī)制,進(jìn)而為臨床轉(zhuǎn)化提供潛在治療靶點(diǎn),是后GWAS時(shí)代的研究熱點(diǎn)和難點(diǎn)[23]。
近年來(lái),隨著ENCODE[24,25]和Roadmap[26]計(jì)劃結(jié)果的陸續(xù)公布,提供了大量人類基因組上的各種表觀調(diào)控信息,這為解析非編碼區(qū)疾病位點(diǎn)的功能提供了新的契機(jī)。本研究利用ENCODE數(shù)據(jù)對(duì)骨質(zhì)疏松易感SNP rs4325274進(jìn)行表觀注釋,發(fā)現(xiàn)SNP rs4325274位于增強(qiáng)子區(qū)域。為進(jìn)一步證明易感SNP rs4325274與靶基因之間的關(guān)系,利用eQTL分析和Hi-C分析發(fā)現(xiàn)易感SNP rs4325274所調(diào)控的靶基因可能是基因。在此基礎(chǔ)上通過功能實(shí)驗(yàn)證實(shí)該SNP確實(shí)對(duì)基因表達(dá)有增強(qiáng)子調(diào)控活性,并發(fā)現(xiàn)rs4325274-G等位基因表達(dá)活性比rs4325274-C等位基因顯著增強(qiáng)。
研究表明,SNP影響疾病易感性的機(jī)制之一就是通過影響轉(zhuǎn)錄因子與DNA的結(jié)合調(diào)控基因表達(dá)[27],在骨質(zhì)疏松癥發(fā)生機(jī)制中已有相關(guān)研究報(bào)道。Xiao等[28]研究證明轉(zhuǎn)錄因子特異性結(jié)合rs9547970的主等位基因A而非等位基因G,通過該機(jī)制調(diào)控基因的轉(zhuǎn)錄活性,從而影響骨形成。基因上的rs4317882與骨密度關(guān)聯(lián),該研究者[29]同時(shí)又證實(shí)了轉(zhuǎn)錄因子可特異性結(jié)合rs4317882的風(fēng)險(xiǎn)等位基因A而非等位基因G。本課題組前期在解析骨質(zhì)疏松癥熱點(diǎn)區(qū)域13q14.11中易感SNP位點(diǎn)的機(jī)制時(shí),證明rs9533090-C等位基因可以大量招募激活型轉(zhuǎn)錄因子,提高其增強(qiáng)子活性,從而增強(qiáng)骨質(zhì)疏松明星基因表達(dá)的機(jī)制[30]。
為進(jìn)一步探究易感SNP rs4325274位點(diǎn)調(diào)控基因表達(dá)的機(jī)制,本研究利用多種數(shù)據(jù)庫(kù)進(jìn)行了Motif預(yù)測(cè),發(fā)現(xiàn)SNP rs4325274結(jié)合的轉(zhuǎn)錄因子,并結(jié)合ChIP-seq數(shù)據(jù)分析進(jìn)行驗(yàn)證,發(fā)現(xiàn)rs4325274位于轉(zhuǎn)錄因子ChIP信號(hào)富集區(qū),進(jìn)一步利用shRNA干擾轉(zhuǎn)錄因子,發(fā)現(xiàn)在基因敲低的細(xì)胞中,基因的表達(dá)顯著降低。由此推測(cè)骨質(zhì)疏松易感SNP rs4325274可能通過影響與轉(zhuǎn)錄因子的特異性結(jié)合來(lái)調(diào)節(jié)基因表達(dá)。后續(xù)本課題組會(huì)進(jìn)一步通過染色質(zhì)互作(chromosome conformation capture, 3C)實(shí)驗(yàn)和染色質(zhì)免疫共沉淀(chromatin immunoprecipitation assay, ChIP)等實(shí)驗(yàn)來(lái)深入探究該SNP位點(diǎn)與轉(zhuǎn)錄因子及靶基因基因之間的作用機(jī)制,并在細(xì)胞水平和動(dòng)物模型深入探究基因在骨質(zhì)疏松癥發(fā)病中的真正作用機(jī)制。
綜上所述,本研究初步解析了非編碼區(qū)功能性SNPrs4325274作為增強(qiáng)子遠(yuǎn)程調(diào)控基因表達(dá)的分子機(jī)制。研究結(jié)果將有助于為復(fù)雜疾病非編碼易感SNP的遺傳調(diào)控研究提供新思路,并為骨質(zhì)疏松癥的藥物開發(fā)和治療提供潛在的藥物靶點(diǎn)。
[1] Lamichhane AP. Osteoporosis-an update., 2005, 44(158): 60–66.
[2] Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence., 2006, 38(2 Suppl. 1): S4–9.
[3] Morales-Torres J, Gutiérrez-Ure?aS.The burden of osteo-porosis in latinamerica., 2004, 15(8): 625– 632.
[4] Nguyen TV, Center JR, Eisman JA. Osteoporosis: under-rated, underdiagnosed and undertreated., 2004, 180(S5): S18–22.
[5] Smits P, Li P, Mandel J, Zhang ZP, Deng JM, Behringer RR, de Crombrugghe B, Lefebvre V. The transcription factors L-Sox5 and Sox6 are essential for cartilage for-mation., 2001, 1(2): 277–290.
[6] Smits P, Dy P, Mitra S, Lefebvre V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate., 2004, 164(5): 747–758.
[7] Renard E, Porée B, Chadjichristos C, Kypriotou M, Maneix L, Bigot N, Legendre F, Ollitrault D, De Crombrugghe B, Malléin-Gérin F, Moslemi S, Demoor M, Boumediene K, Galéra P. Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes., 2012, 90(6): 649–666.
[8] Liu J, Wang HW, Chen Y, Yu HL, Wang Q, Yang HF, Ma JX, Xiang LB. Regulatory effect ofandon the growth and differentiation properties into chondrocytes of MPCs in primary OA articular cartilage, 2014, (5): 477–481.劉軍, 王洪偉, 陳語(yǔ), 于海龍, 王琪, 楊會(huì)峰, 馬駿雄,項(xiàng)良碧.和基因轉(zhuǎn)染對(duì)人原發(fā)性骨關(guān)節(jié)炎關(guān)節(jié)軟骨間充質(zhì)祖細(xì)胞增殖和成軟骨分化的調(diào)控作用. 局解手術(shù)學(xué)雜志, 2014, (5): 477–481.
[9] Zhang Y, Yang TL, Li X, Guo Y. Functional analyses reveal the essential role of SOX6 and RUNX2 in the communication of chondrocyte and osteoblast., 2015, 26(2): 553–561.
[10] Livshits G, Deng HW, Nguyen TV, Yakovenko K, ReckerRR, Eisman JA. Genetics of bone mineral density: evidence for a major pleiotropic effect from an inter-continental study., 2004, 19(6): 914– 923.
[11] Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis., 2002, 23(3): 303–326.
[12] Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou YH, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies., 2009, 41(11): 1199–1206.
[13] Hsu YH, Zillikens MC, Wilson SG, Farber CR, Demissie S, Soranzo N, Bianchi EN, Grundberg E, Liang LM, Richards JB, Estrada K, Zhou YH, van Nas A, Moffatt MF, Zhai GJ, Hofman A, van Meurs JB, Pols HA, Price RI, Nilsson O, Pastinen T, Cupples LA, Lusis AJ, Schadt EE, Ferrari S, Uitterlinden AG, Rivadeneira F, Spector TD, Karasik D, Kiel DP. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits., 2010, 6(6): e1000977.
[14] Tan LJ, Liu R, Lei SF, Pan R, Yang TL, Yan H, Pei YF, Yang F, Zhang F, Pan F, Zhang YP, Hu HG, Levy S, Deng HW. A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass., 2010, 53(9): 1065–1072.
[15] Villalobos-Comparán M, Jiménez-Ortega RF, Estrada K, Parra-Torres AY, González-Mercado A, Pati?o N, Castillejos- López M, Quiterio M, Fernandez-López JC, Ibarra B, Romero-Hidalgo S, Salmerón J, Velázquez-Cruz R.A pilot genome-wide association study in postmenopausal mexican- mestizo women implicates the RMND1/CCDC170 locus is associated with bone mineral density., 2017, 2017: 5831020.
[16] Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta V, Kleinman A, Mohanty ST, Sergio CM, Quinn J, Nguyen-Yamamoto L, Luco AL, Vijay J, Simon MM, Pramatarova A, Medina-Gomez C, Trajanoska K, Ghirardello EJ, Butterfield NC, Curry KF, Leitch VD, Sparkes PC, Adoum AT, Mannan NS, Komla-Ebri DSK, Pollard AS, Dewhurst HF, Hassall TAD, Beltejar MG, Adams DJ, Vaillancourt SM, Kaptoge S, Baldock P, Cooper C, Reeve J, Ntzani EE, Evangelou E, Ohlsson C, Karasik D, Rivadeneira F, Kiel DP, Tobias JH, Gregson CL, Harvey NC, Grundberg E, Goltzman D, Adams DJ, Lelliott CJ, Hinds DA, Ackert-Bicknell CL, Hsu YH, Maurano MT, Croucher PI, Williams GR, Bassett JHD, Evans DM, Richards JB. An atlas of genetic influences on osteoporosis in humans and mice., 2019, 51(2): 258–266.
[17] Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP, Evans DS, Joro R, Nedeljkovic I, Zheng HF, Zhu K, Atalay M, Liu CT, Nethander M, Broer L, Porleifsson G, Mullin BH, Handelman SK, Nalls MA, Jessen LE, Heppe DHM, Richards JB, Wang C, Chawes B, Schraut KE, Amin N, Wareham N, Karasik D, Van der Velde N, Ikram MA, Zemel BS, Zhou YH, Carlsson CJ, Liu Y, McGuigan FE, Boer CG, B?nnelykke K, Ralston SH, Robbins JA, Walsh JP, Zillikens MC, Langenberg C, Li-Gao R, Williams FMK, Harris TB, Akesson K, Jackson RD, Sigurdsson G, den Heijer M, van der Eerden BCJ, van de Peppel J, Spector TD, Pennell C, Horta BL, Felix JF, Zhao JH, Wilson SG, de Mutsert R, Bisgaard H, Styrkársdóttir U, Jaddoe VW, Orwoll E, Lakka TA, Scott R, Grant SFA, Lorentzon M, van Duijn CM, Wilson JF, Stefansson K, Psaty BM, Kiel DP, Ohlsson C, Ntzani E, van Wijnen AJ, Forgetta V, Ghanbari M, Logan JG, Williams GR, Bassett JHD, Croucher PI, Evangelou E, Uitterlinden AG, Ackert-Bicknell CL, Tobias JH, Evans DM, RivadeneiraF.Life-Course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects., 2018, 102(1): 88–102.
[18] Chau D, Ng K, Chan TS, Cheng YY, Fong B, Tam S, Kwong YL, Tse E. Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9., 2015, 8: 46.
[19] Pelletier L, Rebouissou S, Paris A, Rathahao-Paris E, Perdu E, Bioulac-Sage P, Imbeaud S, Zucman-Rossi J. Loss of hepatocyte nuclear factor 1alpha function in human hepatocellular adenomas leads to aberrant activa-tionof signaling pathways involved in tumorigenesis., 2010, 51(2): 557–566.
[20] Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome., 2016, 17(12): 771–782.
[21] Lane JM, Russell L, Khan SN. Osteoporosis., 2000, (327): 139–150.
[22] Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass., 2016, 432: 3–13.
[23] Huang QY. Genetic study of complex diseases in the post-GWAS era., 2015, 42(3): 87–98.
[24] ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genome., 2012, 489(7414): 57–74.
[25] Ding N, Qu HZ, Fang XD. The ENCODE project and functional genomics studies., 2014, 36(3): 237–247.丁楠, 渠鴻竹, 方向東. ENCODE計(jì)劃和功能基因組研究.遺傳, 2014, 36(3): 237–247.
[26] Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA.The NIH roadmap epigenomics mapping consortium., 2010, 28(10): 1045–1048.
[27] Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, Migliavacca E, Wiederkehr M, Gutierrez-Arcelus M, Panousis NI, Yurovsky A, Lappalainen T, Romano-Palumbo L, Planchon A, Bielser D, Bryois J, Padioleau I, Udin G, Thurnheer S, Hacker D, Core LJ, Lis JT, Hernandez N, Reymond A, Deplancke B, Dermitzakis ET. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription., 2013, 342(6159): 744–747.
[28] Xiao SM, Gao Y, Cheung CL, Bow CH, Lau KS, Sham PC, Tan KC, Kung AW. Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk., 2012, 23(7): 1877–1887.
[29] Xiao SM, Kung AW, Gao Y, Lau KS, Ma A, Zhang ZL, Liu JM, Xia W, He JW, Zhao L, Nie M, Fu WZ, Zhang MJ, Sun J, Kwan JS, Tso GH, Dai ZJ, Cheung CL, Bow CH, Leung AY, Tan KC, Sham PC. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density., 2012, 21(7): 1648–1657.
[30] Zhu DL, Chen XF, Hu WX, Dong SS, Lu BJ, Rong Y, Chen YX, Chen H, Thynn HN, Wang NN, Guo Y, Yang TL.Multiple functional variants at 13q14 risk locus for osteoporosis regulate RANKL expression through long- range super-enhancer., 2018, 33(7): 1335–1346.
The osteoporosis susceptible SNP rs4325274 remotely regulates thegene through enhancers
Xiaomei Tuo1, Dongli Zhu1,2, Xiaofeng Chen1, Yu Rong1, Yan Guo1, Tielin Yang1,2
Osteoporosis is a typical polygenic disease, and its heritability is as high as 85%. The incidence of osteoporosis has jumped to the fifth among the common diseases. Although a large number of osteoporosis-susceptible SNPs have been identified, most of them are in the non-coding regions of the genome and the functional mechanisms are unknown. The purpose of this study was to explore the function of non-coding osteoporosis-susceptible SNP rs4325274 and dissect the molecular regulatory mechanisms through integrating bioinformatics analysis and functional experiments. Firstly, we found the SNP rs4325274 resided in a putative enhancer element through functional annotation. eQTL and Hi-C analysis found that thegene might be a potential distal target of rs4325274. We conducted the motif prediction using multiple databases and verified the result using ChIP-seq data from GEO database. The result showed that the transcription factorcould preferentially bind to SNP rs4325274-G allele. We further demonstrated that SNP rs4325274 acted as an enhancer regulatinggene expression by using dual-luciferase reporter assays. Knockdown ofdecreased thegene expression. Taken together, our results uncovered a new mechanism of a non-coding functional SNP rs4325274 as a distal enhancer to modulateexpression, which provides new insights into deciphering molecular regulatory mechanisms underlying non-coding susceptibility SNPs on complex diseases.
SNP rs4325274;gene; transcription factor; mechanism of osteoporosis
2020-05-26;
2020-09-04
國(guó)家自然科學(xué)基金面上項(xiàng)目(編號(hào):31771399,31970569),中國(guó)博士后基金項(xiàng)目(編號(hào):2019M650261),陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(編號(hào):2020JQ-026)和浙江省自然科學(xué)基金(編號(hào):GF18C060003)資助[Supported by the National Natural Science Foundation of China (No. 31771399, 31970569), China PostdoctoralScience Foundation (No. 2019M650261), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JQ-026), and the Zhejiang Provincial Natural Science Foundation of China (No. GF18C060003)]
妥曉梅,在讀碩士研究生,專業(yè)方向:疾病分子遺傳機(jī)制的基礎(chǔ)研究。E-mail: xmt18392079044@stu.xjtu.edu.cn
楊鐵林,博士,教授,研究方向:生物信息分析及復(fù)雜疾病遺傳致病機(jī)制研究。E-mail: yangtielin@xjtu.edu.cn
10.16288/j.yczz.20-098
2020/9/10 7:21:15
URI: https://kns.cnki.net/kcms/detail/11.1913.r.20200908.1130.004.html
(責(zé)任編委: 周鋼橋)