• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    半線性分?jǐn)?shù)次發(fā)展方程的非局部Cauchy問題

    2020-09-19 06:48:28
    關(guān)鍵詞:吉安江西線性

    肖 飛

    半線性分?jǐn)?shù)次發(fā)展方程的非局部Cauchy問題

    肖 飛

    (井岡山大學(xué)數(shù)理學(xué)院,江西 吉安 343000)

    針對一種定義在Banach空間上的帶有非局部條件的半線性分?jǐn)?shù)次發(fā)展方程的Cauchy問題,利用krasnoselkii不動點(diǎn)定理,得到了mild解的存在性定理。最后,應(yīng)用我們給出的定理證明了一類微分方程mild解的存在性。

    分?jǐn)?shù)次發(fā)展方程;解;非局部條件

    0 引言和預(yù)備知識

    1 主要結(jié)論

    定理 1 假設(shè)條件(H1)-(H3)成立,且滿足:

    則有

    現(xiàn)在假設(shè):

    于是

    其中

    根據(jù)條件(H2),有

    根據(jù)條件(H4),可得

    2 應(yīng)用

    考慮如下的分?jǐn)?shù)次發(fā)展方程:

    則根據(jù)定理3可知方程(3.1)存在mild解。

    [1] Deng K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial Conditions[J]. J. Math. Analysis Appl, 1993, 179: 630-637.

    [2] Balachandran K, Park J Y. Nonlocal Cauchy problem for abstract fractional semilinear evolution equations[J]. Nonlinear Anal, 2009, 71: 4471-4475.

    [3] Balachandran K, Kiruthika S, Trujillo J J. On fractional impulsive equations of Sobolev type with nonlocal conditions in Banach space[J]. Computers and Mathematics with Applications, 2011, 62(3): 1157-1165.

    [4] Aizicovici S, McKibben M. Existence results for a class of abstract nonlocal Cauchy Problems[J]. Nonlinear Analysis TMA, 2000, 39: 649-668.

    [5] Byszewsk L, Lakshmikantham V. Theorem about existence and uniqueness of solution of a nonlocal abstract Cauchy problem in a Banach space[J]. Appl Anal, 1990, 40: 11-19.

    [6] Ezzinbi K, Liu J. Nondensely defined evolution equations with nonlocal conditions[J]. Math. Computer Modelling, 2002, 36: 1027-1038.

    [7] Anguraj A , Karthikeyan P. Nonlocal Cauchy problem for some fractional abstract differential equations in Banach spaces[J]. Comm Math Analysis, 2009, 61: 31-35.

    [8] Ahmed H M . Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space[J]. Adv Diff Equations, 2014: 1-11.

    [9] Mophou G M, Nguerekata G M. Existence of mild solution for some fractional differential equations with nonlocal conditions[J]. Semigroup Forum, 2009, 79: 315-332.

    [10] El-Borai M M, Amar D, On some fractional integro-differential equations with analytic Semigroups[J]. Int J Contemp Math, 2009, 4: 1361-1371.

    [11] Ricard Almeida, Malinowska Agnieszkab. Fractional differential equations with Caputo derivative with respect to a kernel function and their applications[J]. Mathematical Methods in the applied Sciences, 2018, 41: 336-352.

    [12] Krasnoselskii M A. Topological Methods in the Theory of Nonlinear Integral Equations[M]. New York: Pergamon Press, 1964.

    [13] Zhou Y. Basic Theory of fractional differential equations[M]. Word Scientific, 2014.

    [14] Zhou Y, Feng J. Nonlocal cauchy problem for fractional evolution equations[J]. Nonlinear Analysis: Real World Applications, 2017,11(5): 4465-4475.

    [15] 張恭慶. 泛函分析講義[M].北京:北京大學(xué)出版社, 1990.

    The Cauchy Problem of Similinear Fractional Evolution Equation with Nonlocal condition

    XIAO Fei

    (School of Mathmatics Science& Physics, Jinggangshan University, Ji’an, Jiangxi 343000, China)

    We discuss in this paper the existence and uniqueness of mild solution to the Cau-chy problem for the semilinear fractional evolution equations with nonlocal conditions in a Banach spaces. New results are given. Finally, we give an example to illustrate our main result.

    fractional evolution equation; mild solution; nonlocal condition

    O 175.6

    A

    10.3969/j.issn.1674-8085.2020.04.001

    1674-8085(2020)04-0001-05

    2019-10-19;

    2020-04-10

    國家自然科學(xué)基金項目(11761032)

    肖 飛(1981-),男,江西吉安人,講師,博士,主要從事泛函分析、微分幾何研究(E-mail: xiaofeishuxue@126.com).

    猜你喜歡
    吉安江西線性
    漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
    6.江西卷
    金吉安監(jiān)理公司市場開拓取得重大突破
    線性回歸方程的求解與應(yīng)用
    我的家在江西
    心聲歌刊(2019年4期)2019-09-18 01:15:30
    幸福的江西飛起來
    心聲歌刊(2019年3期)2019-06-06 02:52:30
    二階線性微分方程的解法
    跳高比賽中的意外
    江西立法遏制涉醫(yī)涉校的“以鬧索賠”
    為榮譽(yù)而戰(zhàn)
    岑溪市| 布尔津县| 扬中市| 常宁市| 贺兰县| 辽阳市| 沁源县| 安达市| 阳山县| 威远县| 文登市| 卢氏县| 仁寿县| 崇左市| 灵武市| 濮阳市| 南平市| 黄浦区| 右玉县| 卓尼县| 五指山市| 双牌县| 苍南县| 枣强县| 册亨县| 周宁县| 武乡县| 宣恩县| 滕州市| 正宁县| 建宁县| 海原县| 瑞金市| 丰宁| 博兴县| 抚顺市| 望谟县| 皮山县| 玉屏| 庆元县| 得荣县|