肖 飛
半線性分?jǐn)?shù)次發(fā)展方程的非局部Cauchy問題
肖 飛
(井岡山大學(xué)數(shù)理學(xué)院,江西 吉安 343000)
針對一種定義在Banach空間上的帶有非局部條件的半線性分?jǐn)?shù)次發(fā)展方程的Cauchy問題,利用krasnoselkii不動點(diǎn)定理,得到了mild解的存在性定理。最后,應(yīng)用我們給出的定理證明了一類微分方程mild解的存在性。
分?jǐn)?shù)次發(fā)展方程;解;非局部條件
定理 1 假設(shè)條件(H1)-(H3)成立,且滿足:
則有
現(xiàn)在假設(shè):
于是
其中
根據(jù)條件(H2),有
根據(jù)條件(H4),可得
考慮如下的分?jǐn)?shù)次發(fā)展方程:
則根據(jù)定理3可知方程(3.1)存在mild解。
[1] Deng K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial Conditions[J]. J. Math. Analysis Appl, 1993, 179: 630-637.
[2] Balachandran K, Park J Y. Nonlocal Cauchy problem for abstract fractional semilinear evolution equations[J]. Nonlinear Anal, 2009, 71: 4471-4475.
[3] Balachandran K, Kiruthika S, Trujillo J J. On fractional impulsive equations of Sobolev type with nonlocal conditions in Banach space[J]. Computers and Mathematics with Applications, 2011, 62(3): 1157-1165.
[4] Aizicovici S, McKibben M. Existence results for a class of abstract nonlocal Cauchy Problems[J]. Nonlinear Analysis TMA, 2000, 39: 649-668.
[5] Byszewsk L, Lakshmikantham V. Theorem about existence and uniqueness of solution of a nonlocal abstract Cauchy problem in a Banach space[J]. Appl Anal, 1990, 40: 11-19.
[6] Ezzinbi K, Liu J. Nondensely defined evolution equations with nonlocal conditions[J]. Math. Computer Modelling, 2002, 36: 1027-1038.
[7] Anguraj A , Karthikeyan P. Nonlocal Cauchy problem for some fractional abstract differential equations in Banach spaces[J]. Comm Math Analysis, 2009, 61: 31-35.
[8] Ahmed H M . Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space[J]. Adv Diff Equations, 2014: 1-11.
[9] Mophou G M, Nguerekata G M. Existence of mild solution for some fractional differential equations with nonlocal conditions[J]. Semigroup Forum, 2009, 79: 315-332.
[10] El-Borai M M, Amar D, On some fractional integro-differential equations with analytic Semigroups[J]. Int J Contemp Math, 2009, 4: 1361-1371.
[11] Ricard Almeida, Malinowska Agnieszkab. Fractional differential equations with Caputo derivative with respect to a kernel function and their applications[J]. Mathematical Methods in the applied Sciences, 2018, 41: 336-352.
[12] Krasnoselskii M A. Topological Methods in the Theory of Nonlinear Integral Equations[M]. New York: Pergamon Press, 1964.
[13] Zhou Y. Basic Theory of fractional differential equations[M]. Word Scientific, 2014.
[14] Zhou Y, Feng J. Nonlocal cauchy problem for fractional evolution equations[J]. Nonlinear Analysis: Real World Applications, 2017,11(5): 4465-4475.
[15] 張恭慶. 泛函分析講義[M].北京:北京大學(xué)出版社, 1990.
The Cauchy Problem of Similinear Fractional Evolution Equation with Nonlocal condition
XIAO Fei
(School of Mathmatics Science& Physics, Jinggangshan University, Ji’an, Jiangxi 343000, China)
We discuss in this paper the existence and uniqueness of mild solution to the Cau-chy problem for the semilinear fractional evolution equations with nonlocal conditions in a Banach spaces. New results are given. Finally, we give an example to illustrate our main result.
fractional evolution equation; mild solution; nonlocal condition
O 175.6
A
10.3969/j.issn.1674-8085.2020.04.001
1674-8085(2020)04-0001-05
2019-10-19;
2020-04-10
國家自然科學(xué)基金項目(11761032)
肖 飛(1981-),男,江西吉安人,講師,博士,主要從事泛函分析、微分幾何研究(E-mail: xiaofeishuxue@126.com).