郭真珍 新疆塔城市阿不都拉鄉(xiāng)中心學(xué)校
摘要:簡易方程”作為刻畫數(shù)量關(guān)系的模型,架構(gòu)起了算術(shù)與代數(shù)之間的橋梁,在小學(xué)數(shù)學(xué)“數(shù)與代數(shù)”知識領(lǐng)域中占有非常重要的地位,是小學(xué)階段具體學(xué)習(xí)代數(shù)知識的起點。 為此,本文從教學(xué)實際出發(fā),圍繞新課程標(biāo)準(zhǔn)、教材內(nèi)容與教學(xué)實際,對簡易方程中的相關(guān)教學(xué)內(nèi)容設(shè)計思路提出幾點思考和建議。
關(guān)鍵詞:小學(xué)數(shù)學(xué);簡易方程;教學(xué)設(shè)計
簡易方程作為刻畫實際問題中等量關(guān)系的模型,在培養(yǎng)學(xué)生算術(shù)思維的基礎(chǔ)上,初步發(fā)展學(xué)生的代數(shù)思維不僅有助于其形成良好的數(shù)感和符號意識,還有利于滲透數(shù)學(xué)的重要思想方法,同時為初中的代數(shù)知識學(xué)習(xí)奠定基礎(chǔ)。
一、新課程標(biāo)準(zhǔn)要求與教材內(nèi)容分析
1、新課程標(biāo)準(zhǔn)對建議方程教學(xué)的要求
新課程標(biāo)準(zhǔn)在學(xué)段目標(biāo)的第二學(xué)段中明確要求“能用方程表示簡單的數(shù)量關(guān)系,能解簡單的方程”;在式與方程的內(nèi)容中要求了“能在具體情境中用字母表示數(shù)”“能夠結(jié)合簡單的實際情境了解等量關(guān)系,并用字母表示”“能夠用方程表示簡單情境中的等量關(guān)系,如3x+2=5,2x-x=3,了解方程的作用”“通過了解等式性質(zhì),能夠用等式性質(zhì)解簡單的方程”。通過分析新課程標(biāo)準(zhǔn)中的具體要求,可見“式與方程”部分內(nèi)容是小學(xué)階段學(xué)習(xí)代數(shù)相關(guān)知識的起點,而字母表示數(shù)中的“數(shù)”主要是從具體的數(shù)到抽象的數(shù),再到變量的循序漸進(jìn),也正是這樣的滲透方式能夠讓學(xué)生深入理解“數(shù)”的本質(zhì)。小學(xué)階段算數(shù)與代數(shù)的過渡和銜接點就是“用字母表示數(shù)”,這同樣也是學(xué)習(xí)方程的基礎(chǔ)和前提。在學(xué)習(xí)“用字母表示數(shù)”時需要落實培養(yǎng)學(xué)生觀察、比較、分析的綜合能力目標(biāo),進(jìn)一步發(fā)展其抽象、概括和推理等邏輯思維能力。再如,“在經(jīng)歷將現(xiàn)實問題抽象為方程的過程和用方程解決實際問題的過程中,發(fā)展用方程解決實際問題的代數(shù)思維;掌握多種解決問題的方法和策略,積累解決問題的方法,擴(kuò)展大腦中的數(shù)的概念,掌握明確地表達(dá)日常生活中數(shù)量關(guān)系及一般規(guī)律的方法?!庇纱艘罂梢?,通過該部分內(nèi)容的學(xué)習(xí),學(xué)生能夠且需要獲得有關(guān)代數(shù)內(nèi)容的基礎(chǔ)知識及基本技能。此外,需要注意的一點是,小學(xué)低段教學(xué)時要提前滲透代數(shù)思想,以有效培養(yǎng)學(xué)生的代數(shù)思維,為之后的深入教學(xué)打好基礎(chǔ)。
2、教材中簡易方程內(nèi)容設(shè)計分析
小學(xué)數(shù)學(xué)教材中的簡易方程內(nèi)容安排在五年級上冊,以人教版為例,其主要內(nèi)容有兩節(jié),第一節(jié)是用字母表示數(shù),一共5道例題,主要內(nèi)容包括字母表示數(shù)、數(shù)量關(guān)系、表示運算定律及公式計算。第二節(jié)是解簡易方程,主要內(nèi)容包括方程的意義、等式性質(zhì)及解簡易方程,還有通過列方程解決一些比較簡單的實際問題。整體下來大致可分為18課時。由于篇幅限制,在此僅以“用字母表示數(shù)”為例做內(nèi)容分析,本課是簡易方程單元的第一課時,其中包含有5個例題,例1是有關(guān)加減數(shù)量關(guān)系的知識,教學(xué)重點是用含字母的式子來表示數(shù)量關(guān)系和一個量,這是列方程的基礎(chǔ)。例2介紹了數(shù)字與字母相乘時的省略寫法。例3是用字母來表示運算定律和公式,同時介紹了字母相乘的習(xí)慣性寫法以及代入公式求值。重點是令學(xué)生體會到運用數(shù)學(xué)符號語言的優(yōu)越性。例4中的數(shù)量關(guān)系相比例1和例2更近了一步,包含了里昂及運算,其重點是用含有字母的識字來表示數(shù)量關(guān)系和一個量。例5死兩積之和的數(shù)量關(guān)系,同樣含有兩級運算,且有三步,重點是含有字母的式子表示數(shù)量關(guān)系及化簡。
二、教學(xué)實踐分析(實際問題與方程例2)
1、教材分析
方程教學(xué)首先要滲透為什么要學(xué)習(xí)等式的性質(zhì)的觀念。 其次, 強(qiáng)化學(xué)生運用等式的性質(zhì)來解方程。 再次,通過解方程及典型的解決實際問題來直觀呈現(xiàn)算術(shù)與代數(shù)兩種方法并進(jìn)行對比分析,體會代數(shù)方法的優(yōu)勢。在此選取實際問題與方程例2,該部分內(nèi)容屬于小學(xué)數(shù)學(xué)五年級上冊第五單元的第九課時,是基于用等式性質(zhì)解簡單方程的前提下進(jìn)一步學(xué)習(xí)使用代數(shù)方法解決實際生活問題,屬于實際應(yīng)用范疇。例2的題材來源是足球,貼合學(xué)生所熟悉的實際生活,主要考察的也是幾倍多或少幾的問題,教師在教學(xué)實踐中可以大膽放手讓學(xué)生去獨立自主地尋找不同形式的數(shù)量關(guān)系,通過直觀呈現(xiàn)算數(shù)與代數(shù)兩種方法的特征來使其感受到利用方程解決問題的優(yōu)勢。
2、分析學(xué)情
處于五年級的小學(xué)生已經(jīng)具備了對問題的自主分析和解決能力,那么基于前期對類似ax±b=c的方程和利用方程解決實際問題的例1探究之后,學(xué)生已經(jīng)初步掌握了通過方程來解決問題的方法和步驟,并且能夠熟練地解決此類問題,但在尋求等量關(guān)系上還是會存在一定的困難,而且畢竟用代數(shù)方法去解決問題對此時的學(xué)生來說還是有些抽象,所以教師在教學(xué)過程中應(yīng)當(dāng)有意識地為學(xué)生滲透數(shù)形結(jié)合方法,以幫助其準(zhǔn)確地找尋到等量關(guān)系,同時與算術(shù)方法進(jìn)行比較分析,感受到用方程解決問題的優(yōu)勢,最后不要忘了強(qiáng)調(diào)解題的步驟及規(guī)范書寫的良好習(xí)慣。
3、教學(xué)分析
(1)關(guān)于等式中“=”的不同含義
“=”在算數(shù)中表示計算的結(jié)果,而在方程中則表示左右相等的關(guān)系。小學(xué)生經(jīng)常在解方程過程中出現(xiàn)“連等”的現(xiàn)象,其實就是對“=”的理解不到位。教師可以在課堂教學(xué)中出示實物天平,以左右兩邊達(dá)到平衡的直觀現(xiàn)象來幫助學(xué)生更好地理解“=”,進(jìn)而為理解和把握方程本質(zhì),即“在已知數(shù)與未知數(shù)之間建立等量關(guān)系以及等式性質(zhì)”做鋪墊。
(2)深入理解方程含義
首先對于方程的認(rèn)識,教師要從學(xué)生的已有認(rèn)知經(jīng)驗出發(fā),其次教師在備課時要充分把握教材的編寫意圖,結(jié)合參考新課程標(biāo)準(zhǔn)中的具體要求,設(shè)計出極具合理性且貼合學(xué)生實際的課堂教學(xué)。最后使學(xué)生在理解和把握相等關(guān)系的同時,完整經(jīng)歷數(shù)學(xué)建模過程,把握方程的本質(zhì)內(nèi)涵。
(3)尋找問題中的等量關(guān)系,提高列方程能力
一般來說,小學(xué)階段的列方程技巧主要包括兩種,其一是借助常用的數(shù)量關(guān)系來找尋等量關(guān)系,如單價×數(shù)量=總價,路程=速度×?xí)r間等,此外還有分析問題中關(guān)鍵信息。其二是利用數(shù)形結(jié)合思想方法來分析等量關(guān)系,遵循“數(shù)離形時少直觀,形離數(shù)時難入微”的原則,用“形”來代替“數(shù)”,使教學(xué)內(nèi)容更加直觀,一目了然。常用的有畫線段圖等,目的都是為了使題目中的數(shù)量關(guān)系更加直觀地呈現(xiàn)在眼前,長此以往也有利于培養(yǎng)和提高學(xué)生對于題目判斷的準(zhǔn)確性,開拓思維,一題多解。
綜上所述,通過簡單的教學(xué)分析可以看出,無論是教師還是學(xué)生,對于方程本身都存在著的不同程度的認(rèn)知問題,針對這些存在的問題也希望能夠為廣大一線教師帶去一些啟發(fā)和思考,落實相關(guān)的建議和教學(xué)設(shè)計思路,目的始終是為了使學(xué)生更好地學(xué)習(xí)方程相關(guān)知識。研究不止,探索不止。
參考文獻(xiàn)
[1]夏彬.小學(xué)高年級數(shù)學(xué)簡易方程的有效教學(xué)方法[J].新課程教學(xué)(電子版),2019(02):69.
[2]張紅江.提高小學(xué)數(shù)學(xué)方程教學(xué)有效性的策略研究[J].新課程(中),2018(10):177.
[3]陳紅.小學(xué)簡易方程的概念理解與教學(xué)分析[J].甘肅教育,2018(08):88.