• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    2013-06-01 12:29:57LIANGXiaoyu梁曉瑜
    水動力學研究與進展 B輯 2013年2期

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    Orientation of the fiber suspending in the flow through a tube containing a sphere*

    LIANG Xiao-yu (梁曉瑜)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China,

    E-mail: liangxiaoyu002@sina.cn

    KU Xiao-ke

    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norwegian, Norway

    WANG Ye-long (王葉龍)

    Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

    (Received June 27, 2012, Revised September 9, 2012)

    Fiber suspensions flow through a tube containing a sphere in the dilute and concentrated regimes is simulated numerically with the Lattice Boltzmann Method (LBM). The numerical results of fiber orientation distribution based on a statistical scheme are obtained and agree qualitatively with the experimental ones for the flow through a parallel plate channel containing a cylinder. The results show that the sphere in the tube results in a change in the fiber orientation distribution downstream of the sphere along the flow and transverse directions. The influences of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The effect of the initial fiber orientations on the fiber orientation distribution is significant upstream of the sphere but small downstream of the sphere.

    fiber suspension, laminar flow, tube containing a sphere, orientation distribution, Lattice Boltzmann Method (LBM)

    Introduction

    Fiber suspension occurs in a wide variety of natural and man-made materials. The orientation behavior of fibers is a major concern in many industrial processes, such as extrusion, injection, and compression molding. The fiber orientation distribution determines the mechanical, thermal and electrical properties of the fiber suspensions. In order to design and control manufacturing processes that generate favorable fiber orientation states, the description of the orientation pattern and the ways to control it must be well understood.

    Over the past twenty years the fiber orientation distribution in the flow has been studied[1-4]. The main numerical methods for simulating the fiber orientation distribution include the Lttice Boltzmann Method (LBM)[5], the method of combining the slender body theory and the spectral method[6], and the Lagrangian method[7]. The LBM used in this study is a particletracing scheme. Application of the discrete Boltzmann method to analyze particles suspended in fluid was first proposed by Ladd et al.[8]. Ladd’s model requires fluid to cross the boundary of the suspended solid particle and occupy the entire domain. Aidun et al.[9]developed a method which does not require transfer of fluid into the solid particle and, therefore, applied to real suspension. Ding and Aidun[10]added“virtual nodes” to the solid boundaries and extended the LBM for direct simulation of suspended particles near con- tact. They also proposed a local link-by-link impleme- ntation of the lubrication force when the gapbetween spherical particles becomes very small. In the present study, the equations for fiber suspension in a Newtonian solvent are solved numerically by coupling flow field with fiber orientation. In the computation, the interactions between fibers, between fiber and cylinder in the channel, and between fiber and channel wall are taken into account.

    Fiber orientation in a suspension flow through a tube is of scientific interest and is of importance in the actual application[11,12]. However, there are few studies[13,14]on the fiber orientation in flows through complex geometries. In the present study, we present a more complete model for the simulation of fiber orientation, and apply it to the computation of fiber orientation distributions in a flow through a tube containing a sphere. Such flow offers the possibilities of studying the behavior of the fibers in a variety of flows varying from simple shear or pure elongational flows, to more complex flows especially around the obstacle. Analyzing the flow in such geometry will beneficially contribute to reach a better understanding of flow properties in many important manufacturing processes of producing composites.

    1. Numerical methods

    1.1 Lattice Boltzmann Method

    The original lattice Boltzmann equation in the discrete microscopic velocity space is given as

    in which fiis the density distribution function,eiis the streaming velocity in the ithdirection in the phase space,i =0,1,… ,N,τis the single relaxation time, and fieqis the local equilibrium distribution and, for the square or cubic lattice, is taken as[15]

    In the 9-bit LBGK model, two-dimensional velocity in the phase space is discretized in the following nine directions:

    The kinematic viscosity for the nine-speed model is ν = c2Δt(τ -0.5)/3, and c =Δx /Δtis the lattice speed. In Eq.(2),wiis equal to 4/9 for i =0, 1/9 for i =1-4, and 1/36 for i=5-8.

    In the limit of long wavelengths, the LBE recovers the following quasi-incompressible N-S equations by the Chapman-Enskog multi-scaling expa-nsion[15]:

    1.2 Force and torque exerted on fiber

    The LBM has been a promising numerical tool to effectively model complex physics in computational fluid dynamics. Ladd et al.[8]and Aidun et al.[9]used the momentum exchange method to propose a modified bounce-back rule which is for a moving wall. We place the boundary nodes on the links connecting the interior and exterior nodes, then

    where “t+” denotes the post-collision time,iis the incident direction,i′is the reflected direction,Bi= 3ρwi/ c2,ubis the velocity on the particle surface,ub=u0+Ω×xb, where u0is the translational velocity of the mass center of the particle,Ωis the angular velocity of the particle, and xb= x+ei/2-x0with x0being the position of the mass center. The force and torque exerted by the fluid at xbare

    1.3 Virtual fluid nodes

    When simulating the discrete fibers, the LBM isusually limited to the case where the gap between fibers is much larger than the size of lattice unit. As the fibers get close to each other and the gap between them becomes smaller than a unit lattice dimension as shown in Fig.1, there is no fluid node within the gap. Thus two nodes on the gap link are covered by fibers and the LBM can not accurately calculate the hydrodynamic interaction between the fibers. In order to overcome this difficulty, Ding et al.[10]added “virtual nodes” to the boundaries and extended the LBM to the direct simulation of suspended fibers near contact. There are two fibers,IandJ , as shown in Fig.2. The initial point of link eiis nodex , just inside the boundary of fiber I , while the final point of link eiis nodey , just inside the boundary of fiberJ . Both nodes x and y are considered to be virtual fluid nodes. They serve as the real fluid nodes when the interaction between fiber I( J )and fluid in the gap area is being considered. Taking fiberI for example, the distribution function at nodex at time t +1on link eiis given by

    wherei′always means the link with the direction opposite to that of linki,ubis the velocity of fiber I at x+ei/2, and Bi′=3ρwi′/c2. Consequently,the force and torque exerted on the fiberI by the node x are

    where xb=x+ei/2-x0with x0being the position of centroid of fiberI.

    Fig.1 Two fibers with very small distance

    Fig.2 Interaction between two fibers near contact

    The same rule is used to calculate the interaction between node y and fiberJ . When a fiber is very close to a wall, the interaction between the wall and the fiber is treated in a similar manner. Combining Eqs.(6) and (8), we have the total force and torque on the fiber during [t, t+1], excluding the lubrication force

    1.4 Lubrication forces

    To further represent the forces separating two fibers about to collide, the lubrication forces are included using links connecting two virtual boundary nodes from two surfaces near contact, defined as“bridge” links. The basic idea is to determine an element of force for each bridge link which accurately accounts for the lubrication force. The direction of the element of force is along the bridge link and given as d f =3ν ρU /2λ δ2, whereδis the surface separa

    rtion,νis the kinematic viscosity,U is the relative velocity of the linked surface elements, and λrdepends on the surface curvature and is given by λr=(1/ R1+1/R2)/2for two spheres, where R1and R2are the radii of curvature of the linked two surface elements. It can be seen thatdf has a significant contribution to the lubrication force only when δis very small.df can be neglected ifδis larger than the length of the link. For two-dimensional case,df is given by

    The force and the torque exerted on the particle along this link are given by

    where xb= x+ ei/2-x0(x0is the position of the centroid of particle). So the total lubrication force and its torque exerted on a particle is then given by

    If the fiber concentration is not too high, the end-toend or side-to-side proximity of two fibers rarely occurs. In most cases, the end of one fiber is close to the side of another one. Thus the lubrication approximation given above cannot be used if the fiber has a sharp edge. Therefore, we assume that the fibers have circular caps of diameterD (Dis the diameter of fiber) at their ends, and use the above lubrication approximation. When a fiber is very close to a wall, the fiber is treated in a similar manner.

    From above equations, the net force and torque exerted on a fiber fromtto t +1are given by

    The fiber velocity and angular velocity are updated based on Newton’s laws.

    Fig.3 Collision model

    2. Collision model

    2.1 Collision between fibers

    The collision of two fibers is assumed to be instantaneous and elastic. The contact point and its normal direction are determined by the relative positions of two fibers as shown in Fig.3. After collision, each fiber attains an impulse Ialong the normal direction. The translational and angular velocities of two fibers after collision depend on the impulse and are given as

    where m and vare the mass and velocity of fiber, respectively,pis unit vector along the normal direction, the Subscripts 1 and 2 are used to distinguish two fibers, and the superscript ‘ ' ’means “after collision”. Based on the law of elastic collision, we have

    where k is the elastic coefficient,v1Oand v2Oare the velocity components of two fibers along the normal direction at contact point before collision. The torques exerted on the two fibers arel1×Ipand -l2× Ip , respectively, where l1,l2are the vectors from mass centreO1and O2of two fibers to the contact pointO . Then the rotational equations of fibers are

    where ωis the angular velocity of the fiber, and J1and J2are the rotation inertia of the fiber. Then the impulseI can be written as

    2.2 Collision with wall or sphere

    When fibers collide with wall or sphere, the model of collision between fibers is also used as long as taking m2as infinite and v2Oas 0. Then the transient impulse formula is obtained by reducing Eq.(17) to

    3. Simulation details

    3.1 Computational parameters

    Fig.4 Schematic illustration of tube containing a sphere

    3.2 Evolution of the orientation ellipses

    In order to analyze the fiber orientation quantitatively, the flow region is divided into many small statistical cells (2L×1L). Then the second-order orientation tensorais calculated in each statistical cell from the orientation anglesθof fibers.θis defined as the angle between fiber axis and x-axis. The components of the tensora are given by

    whereN and θnare the total number of fibers in each statistical cell and the orientation angle of each fiber, respectively. Whena12is equal to zero, the fiber axis coincides with the coordinate axis, and if furthermore,a11(or a22) is zero, the fibers are perfectly aligned with ther(orx) axis.

    The preferred angleαof the fibers for each statistical cell is given by

    Fig.5 Illustration of the relation between the orientation state and the orientation parameters

    Fig.6 Distributions of preferred angle at x/ R =–2

    4. Results and discussions

    4.1 Orientation distributions of fibers along the radial direction

    Fig.7 Distributions of orientation order parameter at x/ R=–2

    Fig.8 Distributions of preferred angle at x/ R =–2

    Fig.9 Distributions of orientation order parameter at x/ R =–2

    Fig.10 Preferred angles in the flow direction for the fibers with completely aligned orientation initially at inlet (a11=1, a12=0) (nL2=0.125)

    4.2 Fiber orientation distributions along the flow direction

    The numerical results of the preferred anglesα along the flow direction at r/ R=0, 0.5 and 0.88 are shown in Figs.10 and 11 for the dilute and concentrated regimes. The region of-1 < x/ R <1is the location of the sphere. On the centerline(r/ R =0),α for the dilute case suddenly decreases from α=0oto–50° in the region immediately upstream of the sphere, andαis zero in the downstream region of the sphere. In contrast, for concentrated caseαabruptly increases from α=0oto 88oin front of the sphere, furthermore in the immediately downstream region it increases from -75oto 10o. In the regions between the centerline and the side wall (r/ R =0.5)and near the side wall(r/ R =0.88),αrapidly returns to zero in a short distance behind the sphere(x/ R ≈2.0)for the dilute case, and in the further downstream region, αshows very little change. However, for the concentrated one,αgrows more slowly compared with those for the dilute one, and gradually returns to the flow direction in the far downstream region(x/ R≥4.0) for r/ R =0.88, whereasαreaches a plateau at x/ R ≈4.0and keeps the value around -10ofor r/ R =0.5. It demonstrates that the obstacle such as the sphere in the flow strongly disturbs the fiber orientation state in the concentrated suspension, while it gives relatively small effect on the orientation state in the dilute one.

    Fig.11 Preferred angles in the flow direction for the fibers with moderately orientation initially at inlet (nL2=2.0)

    Fiber orientation distribution depends on the flow field and the fiber interactions including the mechanical and hydrodynamic effects. In the present study, the initial flows in all the cases are the same. Therefore, the difference of fiber orientation for the dilute and concentrated regimes is resulted from the fiber interaction. For the dilute one, the mechanical interactions between fibers are insignificant, and the centroid of fiber is generally expected to move on the streamline. In this case, the hydrodynamic interaction plays an important role on the fiber orientation distribution. However, in the concentrated one, the mechanical interactions between fibers are significant. In the region where the flow suddenly changes, e.g., immediately downstream of sphere, the fibers quickly rotate and even the slight mechanical interactions between fibers play a significant role in the fiber orientation distribution.

    4.3 Effect of initial orientations at inlet

    The fiber orientation distributions with different initial orientations at inlet are studied in order to explore the effect of initial conditions on the fiber orie-ntation. Here the completely aligned fibers at inlet are introduced andλis defined as the angle between the fiber axis and thex -axis.

    Fig.12 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=0.125)

    Fig.13 Preferred angles at x/ R=–2 for various initial orientation at inlet (nL2=2.0)

    Fig.14 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=0.125)

    Figures 12-15 show the transverse distributions of the preferred anglesα, in the upstream region (x/ R = -2)and the downstream region (x/ R =2) of the sphere, for the two concentration regimes with various initial orientations at inlet. As is shown in Figs.12 and 13, the fiber orientation is strongly dependent on the initial orientation at inlet in the upstream region of the sphere, and this is particularly true for the dilute suspension. Therefore, aligning the fibers at inlet along the flow direction has a beneficial effect on the fiber alignment with the flow direction in the upstream region of the sphere. However, the initial orientation angles have little effect on the fiber orientation in the downstream region(x/ R =2)of the sphere because the profiles of the preferred angles for differentλare nearly the same as shown in Figs.14 and 15.

    Fig.15 Preferred angles atx/ R=2 for various initial orientation at inlet (nL2=2.0)

    Based on the above discussion we can conclude that the fiber orientation in the upstream of the sphere is greatly influenced by the initial orientation at inlet, while downstream of the sphere is relatively insensitive to the initial orientation because the fibers with any initial orientation at inlet will align with the flow direction when they flow through the region between the sphere and wall.

    5. Conclusion

    For dilute and concentrated suspensions the fiber orientation distributions have been simulated numerically with the LBM in fiber suspensions flow through a tube containing a sphere. In the simulations the interactions between fibers, fiber and sphere, fiber and tube wall are taken into account. The numerical results of orientation distribution are in agreement with the experiment performed in a channel containing a cylinder qualitatively. The results show that the existence of sphere in the tube results in a change of the fiber orientation in the downstream region of the sphere along the flow and transverse directions because of the stretching and shearing effect caused by the sphere. The effects of the sphere on the fiber orientation distribution are more significant for the concentrated suspensions than for the dilute one. The fiber orientation distribution in the upstream of the sphere is greatly influenced by the initial orientation at inlet, whereas no apparent difference in the fiber orientation in the downstream of the sphere is observed.

    References

    [1] YASUDA K., MORI N. and NAKAMURA K. A new visualization technique for short fibers in a slit flow of fiber suspensions[J]. International Journal of Engi- neering Science, 2002, 40(9): 1037-1052.

    [2] LIN J., ZHANG W. and YU Z. Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows[J]. Journal of Aerosol Science, 2004, 35(1): 63-82.

    [3]SALAHUDDIN A., WU J. S. and AIDUN C. K. Numerical study of rotational diffusion in sheared semidilute fibre suspension[J]. Journal of Fluid Mechanics, 2012, 692: 153-182.

    [4]NISKANEN H.,ELORANTA H. and TUOMELA J. et al. On the orientation probability distribution of flexible fibres in a contracting channel flow[J]. International Journal of Multiphase Flow, 2011, 37(4): 336-345.

    [5] LIN J., SHI X. and YOU Z. Effects of the aspect ratio on the sedimentation of a fiber in Newtonian fluids[J]. Journal of Aerosol Science, 2003, 34(7): 909-921.

    [6] LIN J., SHI X. and YU Z. The motion of fibers in an evolving mixing layer[J]. International Journal of Multiphase Flow, 2003, 29(8): 1355-1372.

    [7]YU Z.,PHAN-THIEN N. and TANNER R. I. Rotation of a spheroid in a couette flow at moderate Reynolds numbers[J]. Physical Review E, 2007, 76(2): 026310.

    [8] LADD A. J. C., COLVIN M. E. and FRENKEI D. Application of lattice-gas cellular automata to the Brownian motion of solids in suspension[J]. Physical Review Letters, 1988, 60(11): 975-978.

    [9] AIDUN C. K., LU Y. and DING E. Direct analysis of particulate suspension with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mecha- nics,1998, 373: 287-311.

    [10] DING E.-J., AIDUN C. K. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact[J]. Journal of Statistical Physics, 2003, 112(3-4): 685-708.

    [11]VENTURA C.,GARCIA F. and FERREIRA P. et al. Flow dynamics of pulp fiber suspensions[J]. TAPPI Journal, 2008, 7(8): 20-26.

    [12]WIKLUND J. A.,STADING M. andPETTERSSON A. J. et al. A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow[J]. AICHE Journal, 2006, 56(2): 484-495.

    [13] YASUDA K., KYUTO T. and MORI N. An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder[J]. Rheolo- gica Acta, 2004, 43(2): 137-145.

    [14] YASUDA K., HENMI S. and MORI N. Effects of abrupt expansion geometries on flow-induced fiber orientation and concentration distributions in slit channel flows of fiber suspensions[J]. Polymer Composi- tes, 2005, 26(5): 660-670.

    [15] CHEN S., DOOLEN G. D. Lattice Boltzmann method for fluid flows[J]. Annual Review Fluid Mechanics, 1998, 30: 329-364.

    [16] GUO Z., ZHAO T. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates[J]. Physical Review E, 2003, 67(6): 066709.

    10.1016/S1001-6058(13)60352-2

    * Project supported by the Doctoral Program of Higher Education in China (Grant No. 20120101110121).

    Biography: LIANG Xiao-yu (1975-), Male, Ph. D. Candidate, Associate Professor

    俺也久久电影网| 99久久成人亚洲精品观看| 亚洲五月天丁香| 美女免费视频网站| 国产成人精品久久二区二区免费| 在线看三级毛片| 中文字幕熟女人妻在线| 国产三级在线视频| 激情在线观看视频在线高清| 99久久成人亚洲精品观看| 男插女下体视频免费在线播放| 国产精品,欧美在线| 1000部很黄的大片| 久久久久久久久中文| 欧美另类亚洲清纯唯美| 这个男人来自地球电影免费观看| 欧美午夜高清在线| 国产高潮美女av| 日日夜夜操网爽| 操出白浆在线播放| 欧美一区二区国产精品久久精品| 亚洲自拍偷在线| 欧美不卡视频在线免费观看| 国产av一区在线观看免费| 给我免费播放毛片高清在线观看| 亚洲av日韩精品久久久久久密| 无遮挡黄片免费观看| 日本免费一区二区三区高清不卡| 此物有八面人人有两片| 变态另类成人亚洲欧美熟女| 天堂网av新在线| 国产视频内射| 中国美女看黄片| 国产精品av久久久久免费| 午夜久久久久精精品| 亚洲真实伦在线观看| 成人永久免费在线观看视频| 国产成人欧美在线观看| 欧美一区二区精品小视频在线| 中文在线观看免费www的网站| 麻豆成人午夜福利视频| 国产成人精品无人区| 亚洲精品色激情综合| 日本五十路高清| 久久久久国产精品人妻aⅴ院| 国产又黄又爽又无遮挡在线| 亚洲人成电影免费在线| 51午夜福利影视在线观看| 国产高清视频在线观看网站| 神马国产精品三级电影在线观看| 免费av不卡在线播放| 丁香六月欧美| 成人18禁在线播放| 中文字幕精品亚洲无线码一区| 最近最新免费中文字幕在线| 久久久久久久午夜电影| 午夜a级毛片| 日本五十路高清| 三级国产精品欧美在线观看 | 亚洲欧美日韩东京热| 国产又黄又爽又无遮挡在线| 国产麻豆成人av免费视频| 国产成人精品久久二区二区91| or卡值多少钱| 精品乱码久久久久久99久播| 神马国产精品三级电影在线观看| 亚洲欧美日韩东京热| 看片在线看免费视频| 日本在线视频免费播放| 亚洲欧美激情综合另类| 99riav亚洲国产免费| av在线天堂中文字幕| 黄片小视频在线播放| av中文乱码字幕在线| 国产精品乱码一区二三区的特点| 日韩大尺度精品在线看网址| 国产单亲对白刺激| 成人av在线播放网站| 在线观看美女被高潮喷水网站 | 岛国视频午夜一区免费看| 女人高潮潮喷娇喘18禁视频| 久久精品91蜜桃| 在线十欧美十亚洲十日本专区| 亚洲av中文字字幕乱码综合| 国产精品 欧美亚洲| 久久午夜亚洲精品久久| 欧美黑人巨大hd| 国产精品爽爽va在线观看网站| 香蕉av资源在线| av国产免费在线观看| 好男人电影高清在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲午夜理论影院| 欧美日韩亚洲国产一区二区在线观看| 久久久久性生活片| 久久九九热精品免费| 亚洲五月天丁香| 国产精品久久视频播放| 国产精品久久久久久精品电影| 999精品在线视频| 757午夜福利合集在线观看| 亚洲 欧美一区二区三区| 无限看片的www在线观看| x7x7x7水蜜桃| 亚洲五月婷婷丁香| 偷拍熟女少妇极品色| 深夜精品福利| 国产亚洲欧美在线一区二区| 午夜福利欧美成人| 亚洲 国产 在线| 夜夜看夜夜爽夜夜摸| 757午夜福利合集在线观看| 欧美高清成人免费视频www| 久久热在线av| 精品日产1卡2卡| 国产黄色小视频在线观看| 免费高清视频大片| 一级a爱片免费观看的视频| 成人国产一区最新在线观看| 一级黄色大片毛片| 亚洲av片天天在线观看| 99热这里只有是精品50| 日本三级黄在线观看| 免费在线观看亚洲国产| 精品熟女少妇八av免费久了| 免费看十八禁软件| 观看美女的网站| 露出奶头的视频| 长腿黑丝高跟| 亚洲,欧美精品.| 草草在线视频免费看| 最好的美女福利视频网| 久久精品人妻少妇| 欧美日韩黄片免| 夜夜看夜夜爽夜夜摸| 女同久久另类99精品国产91| 欧美绝顶高潮抽搐喷水| 久久久色成人| 午夜亚洲福利在线播放| 成在线人永久免费视频| 日本免费a在线| 视频区欧美日本亚洲| 99在线人妻在线中文字幕| 国产精品久久久人人做人人爽| 日韩欧美精品v在线| 午夜视频精品福利| 999精品在线视频| 老司机在亚洲福利影院| 欧美绝顶高潮抽搐喷水| 色综合婷婷激情| 成人精品一区二区免费| 日日夜夜操网爽| 中文在线观看免费www的网站| 欧美中文综合在线视频| 亚洲第一欧美日韩一区二区三区| 性欧美人与动物交配| 在线看三级毛片| 99久久国产精品久久久| 欧美乱妇无乱码| 十八禁人妻一区二区| 91av网站免费观看| 香蕉丝袜av| 免费大片18禁| 亚洲性夜色夜夜综合| 国产精品自产拍在线观看55亚洲| 亚洲中文av在线| 亚洲熟妇熟女久久| 国产高清视频在线观看网站| 天堂动漫精品| 日本精品一区二区三区蜜桃| 中文字幕人妻丝袜一区二区| 国产精品久久久人人做人人爽| 黄色女人牲交| 日本 av在线| 日韩欧美一区二区三区在线观看| 国产一区在线观看成人免费| 久久久国产欧美日韩av| 好男人电影高清在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品影院久久| 国产男靠女视频免费网站| 老汉色∧v一级毛片| 久久久久久九九精品二区国产| 成人av一区二区三区在线看| 黄色 视频免费看| 我的老师免费观看完整版| 午夜福利在线观看免费完整高清在 | 中文亚洲av片在线观看爽| 白带黄色成豆腐渣| 国产乱人伦免费视频| 亚洲av五月六月丁香网| 黄色日韩在线| 国产精品99久久99久久久不卡| 婷婷亚洲欧美| av天堂中文字幕网| 亚洲av五月六月丁香网| 亚洲午夜精品一区,二区,三区| 国语自产精品视频在线第100页| av在线蜜桃| 日韩中文字幕欧美一区二区| 夜夜看夜夜爽夜夜摸| 亚洲精品在线美女| 一区二区三区高清视频在线| 12—13女人毛片做爰片一| 欧美一区二区精品小视频在线| 此物有八面人人有两片| 日本与韩国留学比较| 国产野战对白在线观看| 久久久久亚洲av毛片大全| 老熟妇仑乱视频hdxx| 99久久久亚洲精品蜜臀av| 91字幕亚洲| 人人妻,人人澡人人爽秒播| 午夜免费成人在线视频| 久久国产乱子伦精品免费另类| 精华霜和精华液先用哪个| 丰满的人妻完整版| 色综合站精品国产| 亚洲无线在线观看| 国产精品精品国产色婷婷| 淫秽高清视频在线观看| 我要搜黄色片| 色精品久久人妻99蜜桃| 久久九九热精品免费| 99精品久久久久人妻精品| 欧美日韩福利视频一区二区| 麻豆国产av国片精品| 久99久视频精品免费| 最新在线观看一区二区三区| 色av中文字幕| svipshipincom国产片| 国产高清三级在线| 啦啦啦韩国在线观看视频| 真人做人爱边吃奶动态| 小蜜桃在线观看免费完整版高清| 国产亚洲精品一区二区www| 日韩精品中文字幕看吧| 国产精品1区2区在线观看.| 成人特级黄色片久久久久久久| 91字幕亚洲| 亚洲成人中文字幕在线播放| 亚洲美女视频黄频| 午夜免费观看网址| 午夜福利免费观看在线| 91在线精品国自产拍蜜月 | 亚洲18禁久久av| 欧美日韩中文字幕国产精品一区二区三区| 国产精品av久久久久免费| 夜夜爽天天搞| 后天国语完整版免费观看| 99久久国产精品久久久| 成年女人毛片免费观看观看9| 高清在线国产一区| 脱女人内裤的视频| 国产伦一二天堂av在线观看| 亚洲午夜精品一区,二区,三区| 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久亚洲av鲁大| 美女大奶头视频| 97超视频在线观看视频| 成年女人永久免费观看视频| 亚洲精品中文字幕一二三四区| 俺也久久电影网| 亚洲成人久久爱视频| 色综合欧美亚洲国产小说| 精品久久久久久久久久久久久| 99热精品在线国产| 波多野结衣巨乳人妻| 国产乱人伦免费视频| 国产高潮美女av| 美女午夜性视频免费| 床上黄色一级片| 岛国在线免费视频观看| 香蕉国产在线看| 欧美一级毛片孕妇| 久久久久久久久免费视频了| 国产精品99久久久久久久久| 午夜两性在线视频| 99国产极品粉嫩在线观看| 国产精品香港三级国产av潘金莲| 久久香蕉国产精品| 久久久久久久精品吃奶| 精品一区二区三区视频在线 | 男女视频在线观看网站免费| 久久久久性生活片| 欧美大码av| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品91蜜桃| 97人妻精品一区二区三区麻豆| 99热只有精品国产| 香蕉丝袜av| 久久九九热精品免费| 女人被狂操c到高潮| 真实男女啪啪啪动态图| 好看av亚洲va欧美ⅴa在| 不卡一级毛片| 91av网一区二区| 国产高清视频在线观看网站| 久久亚洲真实| 黄色片一级片一级黄色片| xxx96com| 亚洲无线观看免费| 亚洲美女黄片视频| 国产一区二区三区在线臀色熟女| 母亲3免费完整高清在线观看| 日本撒尿小便嘘嘘汇集6| 国产高清三级在线| 国产精品国产高清国产av| 男人舔奶头视频| 国产成年人精品一区二区| 岛国在线免费视频观看| bbb黄色大片| 国产精品98久久久久久宅男小说| 美女 人体艺术 gogo| 日韩欧美在线二视频| 好看av亚洲va欧美ⅴa在| 成年女人看的毛片在线观看| 91av网一区二区| 国产一区二区三区在线臀色熟女| 男人的好看免费观看在线视频| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 国产精品亚洲一级av第二区| 无遮挡黄片免费观看| 国产精品九九99| 在线观看午夜福利视频| 久久精品国产99精品国产亚洲性色| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| av欧美777| 亚洲狠狠婷婷综合久久图片| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 特级一级黄色大片| 欧美又色又爽又黄视频| 久久久水蜜桃国产精品网| 日本 欧美在线| www国产在线视频色| 欧美乱码精品一区二区三区| 99久久久亚洲精品蜜臀av| 日韩欧美三级三区| 中亚洲国语对白在线视频| 91麻豆av在线| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 午夜日韩欧美国产| 国产精品综合久久久久久久免费| 九九久久精品国产亚洲av麻豆 | 欧美日韩乱码在线| 中文字幕精品亚洲无线码一区| 日日夜夜操网爽| 精品国产亚洲在线| 亚洲av美国av| 一个人免费在线观看电影 | 亚洲在线自拍视频| 手机成人av网站| 亚洲国产精品999在线| 免费观看人在逋| 亚洲精品456在线播放app | 国产免费av片在线观看野外av| 亚洲欧美日韩高清专用| 天天一区二区日本电影三级| 每晚都被弄得嗷嗷叫到高潮| 观看美女的网站| 国产综合懂色| 91字幕亚洲| 91av网站免费观看| 精品久久久久久成人av| 国产精品亚洲一级av第二区| 国产精品一区二区三区四区久久| 啪啪无遮挡十八禁网站| 欧美中文日本在线观看视频| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9 | 99re在线观看精品视频| а√天堂www在线а√下载| 欧美中文综合在线视频| av在线蜜桃| 欧美日韩乱码在线| 国产久久久一区二区三区| 九九在线视频观看精品| 成在线人永久免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 欧美日韩国产亚洲二区| 国产不卡一卡二| 欧美成狂野欧美在线观看| 中文资源天堂在线| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 国产精品99久久99久久久不卡| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类 | 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2| 淫秽高清视频在线观看| 成熟少妇高潮喷水视频| 午夜两性在线视频| 久久久水蜜桃国产精品网| av片东京热男人的天堂| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看| 老汉色∧v一级毛片| 久久久久久久精品吃奶| 人妻久久中文字幕网| 国产乱人视频| 69av精品久久久久久| 国产在线精品亚洲第一网站| 亚洲精品一区av在线观看| 免费人成视频x8x8入口观看| 亚洲 欧美一区二区三区| 一级a爱片免费观看的视频| 午夜福利视频1000在线观看| 亚洲午夜理论影院| 草草在线视频免费看| 久久午夜亚洲精品久久| 国产野战对白在线观看| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 久久香蕉精品热| 舔av片在线| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 99国产综合亚洲精品| 国产av一区在线观看免费| 嫩草影视91久久| 母亲3免费完整高清在线观看| 特级一级黄色大片| a级毛片a级免费在线| 亚洲第一电影网av| 亚洲成人久久性| 精品国产乱码久久久久久男人| 国产又黄又爽又无遮挡在线| 又粗又爽又猛毛片免费看| 午夜福利在线观看吧| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| a级毛片在线看网站| 好看av亚洲va欧美ⅴa在| 波多野结衣高清作品| 少妇的丰满在线观看| 人妻夜夜爽99麻豆av| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 国产伦在线观看视频一区| 全区人妻精品视频| 精品国产乱码久久久久久男人| 真实男女啪啪啪动态图| 欧美av亚洲av综合av国产av| 午夜精品在线福利| 少妇的逼水好多| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 制服人妻中文乱码| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| av在线天堂中文字幕| 两个人看的免费小视频| 久久精品夜夜夜夜夜久久蜜豆| 精品无人区乱码1区二区| 国内精品美女久久久久久| 99久久无色码亚洲精品果冻| 国产av麻豆久久久久久久| 91av网一区二区| 国产真实乱freesex| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品久久久久久| 亚洲第一电影网av| 亚洲精品一区av在线观看| 桃红色精品国产亚洲av| 亚洲av片天天在线观看| 18禁国产床啪视频网站| 久久久国产成人精品二区| 国产爱豆传媒在线观看| 18美女黄网站色大片免费观看| 欧美精品啪啪一区二区三区| 欧美一区二区国产精品久久精品| av黄色大香蕉| 午夜福利18| 成人性生交大片免费视频hd| 欧美日韩精品网址| a级毛片a级免费在线| 中文在线观看免费www的网站| 少妇丰满av| av片东京热男人的天堂| 一进一出抽搐gif免费好疼| 久久久久国内视频| 色老头精品视频在线观看| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 日本五十路高清| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av| 岛国在线免费视频观看| 特级一级黄色大片| 嫩草影院精品99| 看片在线看免费视频| 免费高清视频大片| 高清在线国产一区| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 999精品在线视频| 99riav亚洲国产免费| 亚洲av五月六月丁香网| 偷拍熟女少妇极品色| 一级毛片精品| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 亚洲第一电影网av| 国产不卡一卡二| 欧美中文日本在线观看视频| 亚洲av成人不卡在线观看播放网| 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 亚洲九九香蕉| 国产av麻豆久久久久久久| 欧美午夜高清在线| 蜜桃久久精品国产亚洲av| 一级a爱片免费观看的视频| 国产97色在线日韩免费| 国产乱人视频| 久久九九热精品免费| 午夜两性在线视频| 欧美黑人巨大hd| 99国产精品一区二区三区| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 一a级毛片在线观看| 欧美丝袜亚洲另类 | av福利片在线观看| 最近最新免费中文字幕在线| 欧美激情久久久久久爽电影| 69av精品久久久久久| 一个人看的www免费观看视频| a级毛片在线看网站| 在线观看66精品国产| 最近视频中文字幕2019在线8| 精品99又大又爽又粗少妇毛片 | 又粗又爽又猛毛片免费看| av视频在线观看入口| 亚洲最大成人中文| 亚洲av电影在线进入| 亚洲国产日韩欧美精品在线观看 | 国内精品一区二区在线观看| 久久久水蜜桃国产精品网| 欧美一级a爱片免费观看看| 亚洲av美国av| 怎么达到女性高潮| 深夜精品福利| 国产高清三级在线| 免费电影在线观看免费观看| 99久久成人亚洲精品观看| 亚洲美女视频黄频| 亚洲国产中文字幕在线视频| 亚洲美女视频黄频| 午夜成年电影在线免费观看| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 成人18禁在线播放| 久久精品国产清高在天天线| 国产av一区在线观看免费| 一区福利在线观看| 国产激情久久老熟女| 婷婷六月久久综合丁香| 99热这里只有精品一区 | 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| 色吧在线观看| xxx96com| 老汉色av国产亚洲站长工具| 美女被艹到高潮喷水动态| 久久久久久国产a免费观看| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲美女久久久| 日本免费a在线| 国产精品国产高清国产av| 天天躁日日操中文字幕| 久久精品91蜜桃| 国产精华一区二区三区| 久久久久久九九精品二区国产| 美女 人体艺术 gogo| 在线视频色国产色| 精品午夜福利视频在线观看一区| 一a级毛片在线观看| 黄色丝袜av网址大全| 天堂动漫精品| 99国产精品99久久久久| 嫩草影院精品99|