• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field*

    2013-06-01 12:29:57MISRA
    水動力學研究與進展 B輯 2013年2期
    關鍵詞:液硫噴射器焚燒爐

    MISRA J. C.

    Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India, E-mail:misrajc@gmail.com

    CHANDRA S.

    Department of Physics, Sabang S. K. Mahavidyalaya, Vidyasagar University, Midnapore, India

    Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field*

    MISRA J. C.

    Department of Mathematics, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India, E-mail:misrajc@gmail.com

    CHANDRA S.

    Department of Physics, Sabang S. K. Mahavidyalaya, Vidyasagar University, Midnapore, India

    (Received May 17, 2012, Revised August 7, 2012)

    Studies on electro-osmotic flows of various types of fluids in microchannel are of great importance owing to their multifold applications in the transport of liquids, particularly when the ionized liquid flows with respect to a charged surface in the presence of an external electric field. In the case of viscoelastic fluids, the volumetric flow rate differs significantly from that of Newtonian fluids, even when the flow takes place under the same pressure gradient and the same electric field. With this end in view, this paper is devoted to a study concerning the flow pattern of an electro-osmotic flow in a porous microchannel, which is under the action of an alternating electric field. The influence of various rheological and electro-osmotic parameters, e.g., the Reynolds number, Debye-Huckel parameter, shape factor and fluid viscoelasticity on the kinematics of the fluid, has been investigated for a secondgrade viscoelastic fluid. The problem is first treated by using analytical methods, but the quantitative estimates are obtained numerically with the help of the software MATHEMATICA. The results presented here are applicable to the cases where the channel height is much greater than the thickness of the electrical double layer comprising the Stern and diffuse layers. The study reveals that a larger value of the Debye-Huckel parameter creates sharper profile near the wall and also that the velocity of electro-osmotic flow increases as the permeability of the porous microchannel is enhanced. The study further shows that the electro-osmotic flow dominates at lower values of Reynolds number. The results presented here will be quite useful to validate the observations of experimental investigations on the characteristics of electro-osmotic flows and also the results of complex numerical models that are necessary to deal with more realistic situations, where electro-osmotic flows come into the picture, as in blood flow in the micro-circulatory system subject to an electric field.

    electrical double layer, Debye length, second-grade fluid, Ionic energy

    Introduction

    In recent years microfluidics has emerged as an important branch of fluid mechanics. It has occupied a central position in scientific research and has profuse applications not only in engineering and technology, but also in various branches of science, including physiological and medical sciences. Studies on electroosmotic flow in microchannels have been receiving growing interest of researchers in recent years, because of their wide range of applications in many biomedical lab-on-a-chip devices to transport liquids in narrow confinements like sample injection, in the investigation of bio-chemical reactions and in the process of species separation[1-3]. Owing to the developments in micro-fabrication technologies, there has been an urgent need of research on various aspects of miniaturized fluidic systems in order that they can be utilized in a better way for drug delivery, DNA analysis/sequencing systems as well as in the improvement of biological/chemical agent detection sensors.

    When a solid surface comes in contact with an aqueous solution of an electrolyte, a structure is formed that comprises a layer of charges of one polarity on the solid side and a layer of charges of opposite polarity on the liquid side of the solid-liquid interface. This phenomenon is known as the Electrical Double Layer (EDL). In order to resolve problems arising out of highly charged double layers, Stern suggested the consideration of an additional internal layer, where the ions are strongly bound.

    The Stern layer is formed in the immediate vicinity of the wall with charges opposite to that of the wall and has a typical thickness of one ionic diameter. The ions within the Stern layer are attracted towards the wall with very strong electrostatic forces. But the ions in the outer diffuse layer are less associated and when these free ions experience a force due to the influence of an external electric field, there occurs a bulk motion of the liquid. This type of flow is termed as electro-osmotic flow.

    The concept of electro-osmosis has been established experimentally. Several studies on electro-osmosis in microchannels were carried out by some researchers in the recent past[4-7]. Different aspects of electro-osmotic flow in microchannels were investigated by them. All these studies were, however, confined to simple Newtonian fluids. But the flow behavior of a non-Newtonian fluid is of greater interest in many areas of science and technology, including physiology and medicine. Many physiological fluids such as blood, saliva and DNA solutions have been found to be viscoelastic in nature. It is now well known that changes due to different diseases or surgical interventions can be readily identified, considering blood viscoelasticity as a useful clinical parameter. Tang et al.[8]studied the electro-osmotic flow of a non-Newtonian viscous fluid described by the power law model, using the lattice Boltzmann method. Zhao et al.[9]presented a detailed account of studying the effect of dynamic viscosity on the velocity of the electro-osmotic flow of power-law fluids.

    Analysis, prediction and simulation of the behaviour of viscoelastic fluids by the use of Newtonian fluid models have been made in the past and they also have been adopted in many industries. But the flow behavior of viscoelastic fluids exhibits wide departure from that of Newtonian fluids. Various non-Newtonian models have been tried by several investigators to explain the complex behavior of viscoelastic fluids. Among them the second grade fluid models have become quite popular. One of the reasons for their popularity is that it has been possible to derive analytical solutions of different problems by adopting the second-grade fluid model and to explore thereby different characteristics of viscoelastic fluids. From the analytical solutions it is also possible to derive various information by using the method of parametric variation.

    There is another more important reason for considering second-grade viscoelastic fluid model in preference to other non-Newtonian fluid models. In a recent communication by Misra et al.[I0]it has been mentioned that the second-grade fluid model is compatible with the principles of thermodynamics. Moreover, the specific Helmholtz free energy is minimum in the equilibrium state of the fluid. This is owing to the fact that for a second-grade fluid, all of the following three conditions are met simultaneously whereμrepresents the fluid viscosity coefficient and a1,a2are normal stress moduli. It is worthwhile to emphasize that as a1<0, the fluid exhibits an anomalous behavior, even if the two other conditions are satisfied and therefore, that sort of fluid model is not suitable for use in any study of rheological fluids.

    It may further be mentioned that all porous media are stable both mechanically and chemically. Poroelastic and poroviscoelastic media possess the characteristics of porosity and permeability both. By utilizing the porosity factor, it is possible to control the fluid flow[10].

    Due to inherent analytical difficulties introduced by more complex constitutive equations, studies of non-Newtonian fluids have been limited to simple inelastic fluid models, such as the power-law model. Influences of viscosity index and electro-kinetic effects on the velocity of a third-grade fluid between microparallel plates were demonstrated by Akgul and Pakdemirli[11]. Dhinakaran et al.[12]presented a solution for a viscoelastic fluid model using the Phan-Thien-Tanner model. Some different aspects of electro-osmotic flow of a viscoelastic fluid in a channel was studied by Misra et al.[13]who also illustrated the applicability of their theoretical analysis to physiological fluid dynamics. But all these studies were limited to the steady case of electro-osmotic flow, where the external electric field was of DC nature, which requires extremely large voltages for producing significant electro-kinetic forces for a controlled transport of the fluid. To maintain controlled micro-bio-fluidic transport, a periodic electric field is better than a DC electric field in multiple ways. Moreover, in the study of some pathological situations as well as in various medical treatment methods, studies on flows in porous channels find significant applications. But all the investigations referred to above are not suitable to depict the exact behavioral pattern of fluid flow through a porous channel.

    The present study is motivated towards investigating the flow behavior of a second-grade viscoelastic fluid between two porous plates executing oscillatory motion, under the influence of electro-kinetic forces. In this study, an AC electric field is considered and for the sake of generality, the frequency of the oscillatory plates and that of the electric field are considered to be different. By adopting appropriate constitutive equations, a mathematical analysis has been presented with the purpose of examining the effect of the viscoelastic parameter in the ionized motion of the viscoelastic fluid. Analytical solutions are derived and the derived expressions have been computed numerically for aspecific situation. The numerical estimates obtained on the basis of our computational work, for different physical quantities of special interest are presented graphically. The results will be highly beneficial for validating the results of complex numerical models required for dealing with more realistic situations and also for establishing related experimental observations.

    1. The model and its analysis

    The constitutive equation of an incompressible second-grade fluid is of the form[14]

    where T is the Cauchy stress tensor,pis the pressure,-pIdenotes the indeterminate spherical stress andu,α1and α2are measurable material constants which denote, respectively, the viscosity, elasticity and cross-viscosity. These material constants can be determined from viscometric flows for any real fluid. A1and A2are the Rivlin-Ericksen tensors[14]and they denote, respectively, the rate of strain and acceleration.A1and A2are defined as

    whereu is the velocity vector,?, the gradient operator,T, the transpose andd/dtthe material time derivative.

    The basic equations governing the motion of an incompressible fluid are

    in which ρrepresents the fluid density,J, the current density,Hthe total magnetic field,μm, the magnetic permeability,E, the total electric field and kp, the permeability of the porous channel.

    Considering the flow to be symmetric, we can confine the analysis of the model to the region0≤y≤h, for Ex[0,L], whereL represents the length of the channel (cf. Fig.1) The effect of gravity and the Joule heating effect, being quite small for the situation taken up for the present study, will be disregarded. The Debye lengthλis assumed to be much smaller than the channel height2h . Further, h is supposed to be much smaller than the widthw and the lengthL of the channel.

    Fig.1 Physical sketch of the problem

    Inserting Eq.(2) into Eq.(6) and making use of Eqs.(3), (4) and (7) and assuming Boussinesq incomepressible fluid model yield the boundary-layer equations[15,16]governing the second grade viscoelastic fluid in the presence of a time-periodic electric field

    The charge density and electric potential are related to each other according to Gauss’s law of charge distribution. The relation is given by the equation

    where ρe=2 n0ez sinh(e z/ KBTψ)represents the distribution of net electric charge density in equilibrium near a charged surface, as in a fully developed flow, weis the angular velocity of the AC electric field,Exis the amplitude of the field andt denotes the time. The electrical double layers are considered to be so thin that there is no mutual interference between the walls. The symbolsv,K,ρand kpdenote respectively the kinematic viscosity, viscoelastic coefficient, density and porous medium permeability coefficient.

    Let us now introduce the following set of non-dimensional variables:

    In Eqs.(11) and (12),UHSdenotes the Helmholtz-Smoluchowski electro-osmotic velocity, which is defined by

    in which M stands for the mobility,ζfor the zeta potential,εfor the dielectric constant of the medium and u =ρvis the dynamic viscosity.

    In terms of the dimensionless variables defined in Eqs.(11) and (12), Eqs.(8)-(10) can be rewritten in the form

    where m2is called the Debye-Huckel parameter (in the non-dimensional form) and is defined by

    λbeing the thickness of the Debye layer.

    The solution of Eq.(16) subject to the boundary conditions

    In the sequel, we shall drop the superscript “?” to give a more convenient look to the equations involving non-dimensional variables. To solve the Eqs.(14), (15) and (16), we further write the velocityuas u= useiw1t, whereusrepresents the steady part of the velocity (independent of time).

    Now the boundary conditions applicable to our flow problem are,

    Making use of these boundary conditions and the Eq.(14), we have derived the following equation

    where w =we-ω1represents the difference between the angular velocity of the applied electric field and that of the oscillatory motion of the plates.

    來自各級硫冷凝器的液硫隨重力自流至液硫池(S-301),在液硫池中通過Black&Veatch的專利技術(shù)MAG○R脫氣工藝可將液硫中的硫化氫質(zhì)量分數(shù)脫除至15×10-6以下[2]。MAG○R液硫脫氣工藝無需采用任何化學添加劑,其工藝原理為:液硫在液硫池的不同分區(qū)中循環(huán)流動,并通過一、二級噴射器(EJ-302/303)進行機械攪動,溶解在液硫中的硫化氫釋放到氣相中并由蒸汽抽空器(EJ-301A/B)送入尾氣焚燒爐焚燒[3]。

    Solving the Eq.(20) subject to the boundary condition (19), we obtain,

    Equation (21) gives the required solution for the steady part of the electro-osmotic flow velocity, while for the problem under consideration at any instant, the fluid velocity is given by u= useiω1t. The numerical estimates of the velocity variations have been computed and presented graphically in the section that follows. They are quite useful to derive a variety of information in respect of different bio-medical applications.

    2. Application: Quantitative estimates for physiological flows

    In this section we want to present some numerical estimates that are useful to examine the variation in velocity distribution as well as the change in velocity as time progresses for different values of the parameters involved in the analysis of the problem. The software MATHEMATICA has been used for the purpose of computational work. In order to illustrate the applicability of the mathematical analysis presented in Section 1, we consider an example concerning the physiological problem of the hemodynamical channel flow of blood under the action of an applied alternating electric field. We have confined our computational work to electro-osmotic flows of blood in the microcirculatory system. With this end in view, the effects of the blood viscoelasticity parameter K, the Reynolds numberRe , the porous medium shape factor parameterD , the Debye-Huckel parameterm on velocity distribution of blood flow has been investigated thoroughly. For the purpose of computation of the concerned analytical expressions, we have made use of experimental data for different parameters for blood and its flow, as available from Refs.[17]-[20].

    Fig.2 Distribution of blood velocity during electro-osmotic flow, in lower range values of Reynolds number Re, when m =50,t =5,D =0.1,B =30,K =0.005, we=50,ω1=20

    Fig.3 Distribution of blood velocity during electro-osmotic flow, in higher range values of Reynolds number Re, when m =50,t =5,D =0.1,B =30,K =0.005, we=50,ω1=20

    Figure 2 provides an idea of the velocity distribution in the lower range of the Reynolds number Re. This figure reveals that with an increase in the Reynolds numberRe, the velocity of blood in a micro-channel decreases. But from Fig.3, it is revealed that the velocity increases with the increase in the Reynolds number (at a higher range values ofRe). Physically, the Reynolds number can be defined as a ratio between the inertia force and the viscous force. So, logically any increase in the Reynolds number causes a rise in the magnitude of the inertia force, and so the velocity should increase. But, for an electroosmotically actuated flow at lower values ofRe, flow due to electro-osmosis dominates first and with an increase in the value ofRe, the flow gradually turns out to be controlled by the inertia force arising out of the increasing value of Reynolds number. It is also to be observed from Fig.3 that the electrokinetic force is more dominant near the vicinity of the wall due to the formation of electrical double layer.

    From Fig.4 it is observed that the velocity increases with a rise in porous medium shape factorD. The shape factor of porous medium is the ratio between the permeability coefficient and the square of the height of the channel. So, any increase in theporous medium permeability coefficient causes a rise in the velocity of the fluid (blood). Figure 5 illustrates that the amplitude of oscillation of blood velocity u increases as the value of the shape factorD is enhanced.

    Fig.4 Variation in distribution of blood velocity during electroosmotic flow, for different values of porous medium shape factor parameter D, when m =50,t =5,Re= 0.001,B =30,K =0.005,we=50,ω1=20

    Fig.5 Variation in velocity field during electro-osmotic flow of blood with change in porous medium shape factor parameter D, when m =50,y =0.95,Re =0.01,B =30, K =0.005,we=5,ω1=2

    Fig.6 Variation in velocity distribution in electro-osmotic blood flow with change in blood viscoelasticity (K), when m =50,t =5,D =0.1,B =30,Re =0.01,we=50, ω1=20

    Fig.7 Change in velocity field of blood during electro-osmotic flow, with change in blood viscoelasticity (K), when m =50,y =0.9,D =0.1,B =30,Re =0.01,we= 5,ω1=2

    Fig.8 Change in distribution of electro-osmotic flow velocity of blood, as the value of the Debye-Huckel parameter m changes, where Re =0.1,t =10,D =0.1,B =30, K =0.005,we=500,ω1=200

    Fig.9 Change in distribution of electro-osmotic flow velocity with time as the value of the Debye-Huckel parameter m changes, when Re =0.1,y =0.9,D =0.1,B= 30,K =0.005,we=50,ω1=20

    3. Concluding remark

    The study has been motivated by recent developments of bio-sensing and high thought-put screening technologies for several important applications, such as sample collection for detection of viruses like adenovirus and Dengue Hemorrhagic fever. Basically the problem is formulated as a boundary-value problem concerning the flow of a second-grade viscoelastic fluid under the influence of electro-kinetic forces. The object of this theoretical investigation has been to have an idea of the distribution of the fluid velocity through a porous channel, with the change in different parameters of interest in the viscoelastic fluid flow pattern. The study serves as a first step towards a better understanding of the role of electro-osmosis in the viscoelastic flow pattern, which is oscillatory in nature, when influenced by an alternating electric field. The numerical estimates presented in the preceding section bear the potential of throwing some light on the electro-osmotic flow behavior of blood in the micro-circulatory system, when the system is under the influence of an external electric field. These results are expected to be of immense interest to clinicians and bio-engineers.

    Acknowledgement

    The authors wish to express their deep sense of gratitude to the esteemed reviewers for their comments on original version of the manuscript, based on which the revised manuscript has been prepared.

    [1] STONE H. A., STROOCK A. D. and AJDARI A. Engineering flows in small devides: Microfluidics toward a lab-on-a-chip[J]. Annual Review and Fluid Mechanics, 2004, 36: 381-411.

    [3] HLUSHKOU D., KANDHAI D. and TALLAREK U. Coupled lattice-Boltzmann and finite-difference simulation of velectroosmosis in microfluidic channels[J]. International Journal of Numerical Methods Fluids, 2004, 46(5): 507-532.

    [4] HERR A. E., MOLHO J. I. and SANTIAGO J. G. et al. Electro-osmotic capillary flow with non-uniform zeta potential[J]. Analytical Chemistry, 2000, 72: 1053-1057.

    [5] CHEN C.-I., CHEN C.-K. and LIN H.-J. Analysis of unsteady flow through a microtube with wall slip and given inlet volume flow variations[J]. Journal of Applied Mechanics, 2008, 75(1): 014506.

    [6] YANG R. J., FU L. M. and LIN Y. C. Electro-osmotic flow in microchannels[J]. Journal of Colloid Interface Science, 2001, 239: 98-105.

    [7] PIKAL M. J. The role of electroosmotic flow in transdermal ionotophoresis[J]. Advance Drug Delivery Reviews, 2001, 46(1-3): 281-305.

    [8] TANG G. H., LI X. F. and HE Y. L. et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157(1-2): 133-137.

    [9] ZHAO C., ZHOLKOVSKIJ E. and JACOB H. et al. Analysis of electroosmotic flow of power-law fluids in a slit microchannel[J]. Journal of Colloid Interface Science, 2008, 326(2): 503-510.

    [10] MISRA J. C., SINHA A. and SHIT G. C. Flow of a biomagnetic viscoelastic fluid: Application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapautic procedure for cancer treatment[J]. Applied Mathematics Mechanics, 2010, 31(11): 1405-1420.

    [11] AKGUL M. B., PAKDEMIRLI M. Analytical and numerical solutions of electro-osmotically driven flow of a third-grade fluid between micro-parallel plates[J]. International Journal of Non-Linear Mechanics, 2008, 43(9): 985-992.

    [12] DHINAKARAN S., AFONSO A. M. and ALVES M. A. et al. Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien-Tanner model[J]. Journal of Colloid Interface Science, 2010, 344(2): 513-520.

    [13] MISRA J. C., SHIT G. C. and CHANDRA S. et al. Electro-osmotic flow of a vis-coelastic fluid in a channel: Applications to physiological fluid mechanics[J]. Applied Mathematics and Computation, 2011, 217: 7932-7939.

    [14] RIVLIN R. S., ERICKSEN J. L. Stress deformation relations for isotropic materials[J]. Journal of Rational Mechanics Analysis, 1955, 4: 323-425.

    [15] MAKINDE O. D., MHONE P. Y. Heat transfer to MHD oscillatory flow in a channel filled with porous medium[J]. Rom Journal of Physics, 2005, 50(9-10): 931-938.

    [16] HAMZA M. M., ISAH B. Y. and USMAN H. Unsteady heat transfer to MHD oscillatory flow through a porous medium under slip condition[J]. International Journal of Computer Applications, 2011, 33(4): 12-17.

    [17] MISRA J. C., SHIT G. C. and RATH H. J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching wall: Some applications to hemodynamics[J]. Computers and Fluids, 2008, 37(1): 1-11.

    [18] MISRA J. C., SHIT G. C. and CHANDRA S. et al. Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: Application to the dynamics of blood flow[J]. Journal of Engineering Mathematics, 2011, 69(1): 91-100.

    [19] PAPADOPOULOS P. K., TZIRTZILAKIS E. E. Biomagnetic flow in a curved square duct under the influence of an applied magnetic field[J]. Physics of Fluids, 2004, 16(8): 29-52.

    [20] TZIRTZILAKIS E. E. A mathematical model for blood flow in magnetic field[J]. Physics of Fluids, 2005, 17(7): 07710.

    Nomenclature

    (x, y)– Space coordinates in Cartesian system

    u– Velocity of the fluid along x-direction

    us– The steady value of the velocity

    L– Length of the channel

    Ex– Amplitude of the instantaneous electric field applied externally

    E– Value of dc electric field

    v – The kinematic viscosity

    K– The coefficient of viscoelasticity

    kp– Porous medium permeability coefficient

    e– Charge of an electron

    z – Absolute value of the ionic valance

    KB– Boltzmann constant

    T– Temperature in Kelvin scale

    no– Ionic number concentration

    ω– The angular velocity

    ψ– Potential field in the transverse direction (induced)

    ζ– Wall zeta potential

    ε– Dielectric constant

    ρ– Density of the fluid

    ρe– Electric charge density

    v – The kinematic viscosity

    m– Non-dimensional Debye-Huckel parameter

    μ– Dynamicor viscometric viscosity

    p– Pressure

    D =k/h2– Porous medium shape factor parameter

    p

    λ– The thickness of electrical double layer

    B– Amplitude of the instantaneous pressure

    ωe– Angular velocity of the applied electric field ω1– Angular velocity of the oscillatory plates

    M– Mobility

    h– Half-width of the channel

    Re – Reynolds number

    10.1016/S1001-6058(13)60368-6

    * Biography: MISRA J. C. (1944-), Male, Ph. D., Professor

    猜你喜歡
    液硫噴射器焚燒爐
    尾氣處理工藝中尾氣焚燒爐的控制原理及應用
    液硫輸送和液位測量技改實踐
    垃圾焚燒爐的專利技術(shù)綜述
    含堿廢液焚燒爐耐火材料研究進展
    硫化氫制酸焚燒爐的模擬分析
    山東化工(2020年9期)2020-06-01 06:56:48
    液硫噴射鼓泡脫氣工藝運行及設計總結(jié)
    大型液硫脫氣裝置改造
    超深高含硫氣藏氣—液硫兩相滲流實驗
    噴射器氣體動力函數(shù)法的真實氣體修正
    喉嘴距可調(diào)的組裝式噴射器
    91字幕亚洲| av有码第一页| 亚洲精品中文字幕在线视频| 国产精品永久免费网站| 夜夜爽天天搞| 国产精品免费一区二区三区在线| 女同久久另类99精品国产91| 精品高清国产在线一区| 在线av久久热| 国产精品 国内视频| АⅤ资源中文在线天堂| 国产野战对白在线观看| 久久香蕉精品热| 亚洲国产欧美网| 日韩一卡2卡3卡4卡2021年| а√天堂www在线а√下载| 午夜免费观看网址| 亚洲全国av大片| 在线十欧美十亚洲十日本专区| 丰满人妻熟妇乱又伦精品不卡| 大香蕉久久成人网| 日韩三级视频一区二区三区| 午夜福利18| 手机成人av网站| 国产精品电影一区二区三区| 一进一出抽搐动态| 少妇被粗大的猛进出69影院| 亚洲熟女毛片儿| 日日摸夜夜添夜夜添小说| bbb黄色大片| 国产黄色小视频在线观看| 亚洲第一青青草原| 亚洲专区中文字幕在线| 欧美绝顶高潮抽搐喷水| 午夜久久久久精精品| 日韩一卡2卡3卡4卡2021年| 国产高清有码在线观看视频 | 久久午夜亚洲精品久久| 亚洲狠狠婷婷综合久久图片| av在线播放免费不卡| 亚洲国产高清在线一区二区三 | 真人做人爱边吃奶动态| 国产麻豆成人av免费视频| 欧美激情高清一区二区三区| 美女免费视频网站| 不卡一级毛片| 亚洲国产精品合色在线| 夜夜躁狠狠躁天天躁| 精品欧美一区二区三区在线| 桃红色精品国产亚洲av| 俄罗斯特黄特色一大片| 1024香蕉在线观看| 韩国精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 50天的宝宝边吃奶边哭怎么回事| e午夜精品久久久久久久| 18禁裸乳无遮挡免费网站照片 | 久久精品国产亚洲av高清一级| 香蕉av资源在线| 午夜免费成人在线视频| 女同久久另类99精品国产91| 一本大道久久a久久精品| 日日爽夜夜爽网站| 中文资源天堂在线| 女人被狂操c到高潮| 国产色视频综合| 两个人视频免费观看高清| 亚洲av电影在线进入| 草草在线视频免费看| 最好的美女福利视频网| 亚洲av五月六月丁香网| 中文字幕高清在线视频| 国产片内射在线| 大香蕉久久成人网| 欧美中文日本在线观看视频| 日本 欧美在线| 日韩欧美三级三区| 中文字幕最新亚洲高清| 午夜福利视频1000在线观看| 欧美成人性av电影在线观看| 国产一卡二卡三卡精品| 久久精品国产亚洲av香蕉五月| 久久欧美精品欧美久久欧美| 白带黄色成豆腐渣| 一级毛片女人18水好多| 特大巨黑吊av在线直播 | 久久久久久久久免费视频了| 国产精品美女特级片免费视频播放器 | 人人澡人人妻人| 精品久久蜜臀av无| 亚洲人成电影免费在线| www.www免费av| 国产午夜精品久久久久久| 午夜免费观看网址| av天堂在线播放| 国产精品亚洲一级av第二区| 一本大道久久a久久精品| 欧美乱码精品一区二区三区| 脱女人内裤的视频| 国产人伦9x9x在线观看| 99久久精品国产亚洲精品| 十八禁人妻一区二区| 久久人妻福利社区极品人妻图片| 亚洲成人国产一区在线观看| 午夜福利18| 国产高清视频在线播放一区| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 亚洲欧洲精品一区二区精品久久久| 成人亚洲精品av一区二区| 精品一区二区三区四区五区乱码| 在线观看日韩欧美| 男人的好看免费观看在线视频 | 国产精品久久久人人做人人爽| 午夜福利在线在线| 亚洲午夜精品一区,二区,三区| 又黄又粗又硬又大视频| 中文字幕高清在线视频| 中文字幕av电影在线播放| 日日夜夜操网爽| 精品第一国产精品| www国产在线视频色| 国产成人欧美在线观看| 操出白浆在线播放| 欧美日韩一级在线毛片| 嫁个100分男人电影在线观看| 色播亚洲综合网| 亚洲av电影在线进入| 午夜福利免费观看在线| 久久精品影院6| 99热只有精品国产| 久久久久久久久久黄片| 国产精品免费一区二区三区在线| 久热这里只有精品99| 国产主播在线观看一区二区| 两个人免费观看高清视频| 国产精品香港三级国产av潘金莲| 丁香欧美五月| 波多野结衣av一区二区av| 亚洲自拍偷在线| 男女午夜视频在线观看| 免费看a级黄色片| 日本五十路高清| 色哟哟哟哟哟哟| 亚洲中文字幕日韩| 日韩中文字幕欧美一区二区| 婷婷亚洲欧美| 国产亚洲精品一区二区www| 国产精品99久久99久久久不卡| 国产av一区在线观看免费| 亚洲精品国产一区二区精华液| 性欧美人与动物交配| 精品久久蜜臀av无| 老司机福利观看| 亚洲一区高清亚洲精品| 亚洲免费av在线视频| 亚洲欧美激情综合另类| 操出白浆在线播放| 黄色片一级片一级黄色片| 99精品久久久久人妻精品| 久久精品成人免费网站| 黄片大片在线免费观看| 国产成人av教育| 首页视频小说图片口味搜索| 狂野欧美激情性xxxx| 最新美女视频免费是黄的| 中文在线观看免费www的网站 | 国产伦人伦偷精品视频| 国产亚洲欧美在线一区二区| 亚洲狠狠婷婷综合久久图片| 精品免费久久久久久久清纯| 一个人观看的视频www高清免费观看 | 男女床上黄色一级片免费看| 黄色视频,在线免费观看| av在线天堂中文字幕| 欧美激情高清一区二区三区| 亚洲黑人精品在线| 大香蕉久久成人网| 99热6这里只有精品| 国产97色在线日韩免费| 精品午夜福利视频在线观看一区| 国产高清videossex| 国产又黄又爽又无遮挡在线| 人人澡人人妻人| 好看av亚洲va欧美ⅴa在| 亚洲五月色婷婷综合| 久久精品人妻少妇| 亚洲国产精品sss在线观看| av在线播放免费不卡| 一进一出好大好爽视频| www.999成人在线观看| 成在线人永久免费视频| 日本 欧美在线| 操出白浆在线播放| 久久草成人影院| 在线播放国产精品三级| 精品久久久久久久久久免费视频| 免费一级毛片在线播放高清视频| 色婷婷久久久亚洲欧美| 国产亚洲精品久久久久久毛片| 麻豆久久精品国产亚洲av| 色在线成人网| 欧美激情 高清一区二区三区| av在线天堂中文字幕| 18美女黄网站色大片免费观看| 成年人黄色毛片网站| 久久草成人影院| 亚洲av电影不卡..在线观看| 久久午夜综合久久蜜桃| netflix在线观看网站| 欧美精品亚洲一区二区| 丝袜在线中文字幕| 18禁黄网站禁片免费观看直播| 18禁国产床啪视频网站| 视频区欧美日本亚洲| 色播亚洲综合网| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲免费av在线视频| 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| 久久久久久免费高清国产稀缺| 女人高潮潮喷娇喘18禁视频| 国产一卡二卡三卡精品| 欧美性猛交黑人性爽| 18美女黄网站色大片免费观看| 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| 国产精品野战在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| 日韩欧美一区视频在线观看| 女性生殖器流出的白浆| 男女之事视频高清在线观看| 亚洲色图 男人天堂 中文字幕| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 在线观看66精品国产| 村上凉子中文字幕在线| 国产精品香港三级国产av潘金莲| 变态另类丝袜制服| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 欧美国产日韩亚洲一区| 国产成+人综合+亚洲专区| 亚洲精品中文字幕在线视频| 久久精品aⅴ一区二区三区四区| a级毛片a级免费在线| 俺也久久电影网| 特大巨黑吊av在线直播 | 午夜视频精品福利| 99热只有精品国产| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 在线av久久热| 97超级碰碰碰精品色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 日本一本二区三区精品| 一级毛片高清免费大全| 亚洲专区国产一区二区| 国产三级在线视频| 十八禁网站免费在线| 黄频高清免费视频| 亚洲成人久久爱视频| 中文在线观看免费www的网站 | 脱女人内裤的视频| 美女国产高潮福利片在线看| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜一区二区| 日韩av在线大香蕉| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 无限看片的www在线观看| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 99国产综合亚洲精品| 麻豆国产av国片精品| 老司机福利观看| 日日夜夜操网爽| 又紧又爽又黄一区二区| 亚洲国产精品sss在线观看| 亚洲中文av在线| 俺也久久电影网| 桃色一区二区三区在线观看| 亚洲国产精品久久男人天堂| 日本熟妇午夜| 免费看a级黄色片| 一个人免费在线观看的高清视频| 可以在线观看的亚洲视频| 亚洲 欧美一区二区三区| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 久久性视频一级片| xxx96com| 侵犯人妻中文字幕一二三四区| 久热这里只有精品99| 欧美成人性av电影在线观看| 欧美色欧美亚洲另类二区| 91在线观看av| 成人国产一区最新在线观看| 在线天堂中文资源库| 成人手机av| 亚洲欧美日韩高清在线视频| 欧美亚洲日本最大视频资源| 久久天堂一区二区三区四区| a在线观看视频网站| 国产又黄又爽又无遮挡在线| 日本成人三级电影网站| 国产免费av片在线观看野外av| 免费搜索国产男女视频| 午夜久久久在线观看| 国产精品1区2区在线观看.| 国产主播在线观看一区二区| 麻豆av在线久日| 天堂影院成人在线观看| 麻豆成人av在线观看| 午夜免费观看网址| 国产色视频综合| 免费观看精品视频网站| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 精品一区二区三区视频在线观看免费| 午夜福利在线在线| 精品国产美女av久久久久小说| 亚洲精品一区av在线观看| 久热爱精品视频在线9| 亚洲午夜精品一区,二区,三区| 亚洲三区欧美一区| 身体一侧抽搐| 久久国产精品男人的天堂亚洲| 国产私拍福利视频在线观看| 国产精品二区激情视频| 久久久久久久久久黄片| 久久中文字幕人妻熟女| 亚洲五月天丁香| 中亚洲国语对白在线视频| 97超级碰碰碰精品色视频在线观看| 夜夜夜夜夜久久久久| 亚洲男人的天堂狠狠| 一级毛片精品| 亚洲中文日韩欧美视频| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 亚洲 欧美 日韩 在线 免费| 天天躁夜夜躁狠狠躁躁| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧洲综合997久久, | 国产三级黄色录像| 俄罗斯特黄特色一大片| 久久精品91无色码中文字幕| 国产欧美日韩一区二区精品| 国产av又大| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 99国产精品一区二区三区| 国产午夜福利久久久久久| 国产亚洲精品第一综合不卡| 日本精品一区二区三区蜜桃| 俄罗斯特黄特色一大片| 国产精华一区二区三区| 老司机福利观看| 亚洲专区字幕在线| 欧美亚洲日本最大视频资源| 国产不卡一卡二| 国产亚洲欧美在线一区二区| 亚洲九九香蕉| 日本免费a在线| 欧美成人一区二区免费高清观看 | 久久精品国产亚洲av高清一级| 日本 欧美在线| 99精品久久久久人妻精品| 成人亚洲精品av一区二区| 脱女人内裤的视频| 看片在线看免费视频| 日韩精品中文字幕看吧| 悠悠久久av| 日韩成人在线观看一区二区三区| 久久99热这里只有精品18| 亚洲人成77777在线视频| 久久精品91无色码中文字幕| av片东京热男人的天堂| 亚洲第一电影网av| 久久青草综合色| 国产精品免费视频内射| 免费看a级黄色片| 国产精品免费一区二区三区在线| 亚洲人成77777在线视频| 成年女人毛片免费观看观看9| 91大片在线观看| 久久热在线av| 少妇熟女aⅴ在线视频| 两个人免费观看高清视频| 满18在线观看网站| a级毛片在线看网站| 欧美成人性av电影在线观看| 国产精品九九99| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一电影网av| 久久精品国产综合久久久| 国产亚洲av高清不卡| 国产精品久久久久久精品电影 | 亚洲av第一区精品v没综合| 99国产综合亚洲精品| 美女高潮到喷水免费观看| 久久久久久国产a免费观看| a级毛片在线看网站| aaaaa片日本免费| 国产精品电影一区二区三区| 黄色成人免费大全| 波多野结衣高清无吗| 久久婷婷人人爽人人干人人爱| 国产成人精品无人区| 18禁黄网站禁片午夜丰满| 女人被狂操c到高潮| 日本在线视频免费播放| 欧美乱妇无乱码| 少妇裸体淫交视频免费看高清 | 国产精品一区二区三区四区久久 | 99久久久亚洲精品蜜臀av| 亚洲美女黄片视频| 久久久精品欧美日韩精品| 91国产中文字幕| 午夜福利成人在线免费观看| 91大片在线观看| 亚洲一区中文字幕在线| 国内少妇人妻偷人精品xxx网站 | 欧美久久黑人一区二区| 欧美绝顶高潮抽搐喷水| 男人舔奶头视频| 亚洲中文av在线| 人成视频在线观看免费观看| 亚洲免费av在线视频| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 国产亚洲精品第一综合不卡| 亚洲av成人av| 夜夜爽天天搞| 热99re8久久精品国产| 国产精品电影一区二区三区| 黄网站色视频无遮挡免费观看| www日本黄色视频网| 成人三级黄色视频| 黑丝袜美女国产一区| 91大片在线观看| 久久精品国产清高在天天线| 丝袜美腿诱惑在线| 午夜精品久久久久久毛片777| 久久伊人香网站| 中文字幕精品免费在线观看视频| 日韩欧美 国产精品| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| videosex国产| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 亚洲国产精品sss在线观看| 国产精品久久久人人做人人爽| 波多野结衣高清作品| 99久久无色码亚洲精品果冻| 国产视频内射| 国内久久婷婷六月综合欲色啪| 中文字幕av电影在线播放| 好看av亚洲va欧美ⅴa在| 国产一级毛片七仙女欲春2 | 亚洲av美国av| 搡老妇女老女人老熟妇| 久久草成人影院| 午夜日韩欧美国产| 亚洲专区中文字幕在线| 亚洲,欧美精品.| 香蕉国产在线看| 一本精品99久久精品77| 成年版毛片免费区| 亚洲真实伦在线观看| 国产精品二区激情视频| 99riav亚洲国产免费| 日韩欧美在线二视频| 99国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 色综合站精品国产| 麻豆成人午夜福利视频| 亚洲 欧美一区二区三区| 亚洲专区国产一区二区| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频| 成人三级做爰电影| 欧美乱色亚洲激情| 亚洲国产精品合色在线| 欧美av亚洲av综合av国产av| 琪琪午夜伦伦电影理论片6080| 亚洲成av人片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜理论影院| 午夜影院日韩av| 露出奶头的视频| 欧美乱妇无乱码| 啦啦啦韩国在线观看视频| 一区二区三区高清视频在线| 国产不卡一卡二| 国产成人精品久久二区二区91| 久久久精品国产亚洲av高清涩受| 丁香六月欧美| 搡老熟女国产l中国老女人| 亚洲电影在线观看av| 天堂动漫精品| 99热这里只有精品一区 | 亚洲三区欧美一区| 一区福利在线观看| 国产高清有码在线观看视频 | 欧美成狂野欧美在线观看| 欧美另类亚洲清纯唯美| 日韩国内少妇激情av| 国产av在哪里看| 99re在线观看精品视频| 69av精品久久久久久| 青草久久国产| 亚洲天堂国产精品一区在线| 不卡av一区二区三区| 亚洲美女黄片视频| 大型av网站在线播放| 午夜久久久在线观看| 曰老女人黄片| 午夜a级毛片| 久久亚洲真实| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 中文字幕人成人乱码亚洲影| 亚洲av熟女| 夜夜夜夜夜久久久久| 国产激情欧美一区二区| 一进一出抽搐gif免费好疼| 深夜精品福利| 欧美日韩一级在线毛片| 精品久久久久久久久久免费视频| 久久婷婷成人综合色麻豆| av欧美777| 这个男人来自地球电影免费观看| www.精华液| 午夜激情av网站| 久热这里只有精品99| 亚洲黑人精品在线| 精品第一国产精品| 亚洲成人免费电影在线观看| 女性生殖器流出的白浆| 国产亚洲欧美98| 又黄又粗又硬又大视频| 波多野结衣av一区二区av| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 999久久久国产精品视频| 女生性感内裤真人,穿戴方法视频| 精品无人区乱码1区二区| 亚洲专区字幕在线| 男女做爰动态图高潮gif福利片| 黄片大片在线免费观看| 国产成人av激情在线播放| 午夜福利在线在线| 最近最新中文字幕大全免费视频| 亚洲avbb在线观看| 不卡一级毛片| 欧美激情高清一区二区三区| 亚洲国产精品久久男人天堂| 中文字幕av电影在线播放| 一进一出抽搐gif免费好疼| 91成年电影在线观看| 午夜福利成人在线免费观看| 亚洲色图av天堂| 在线永久观看黄色视频| 最近最新免费中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区中文字幕在线| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 亚洲午夜理论影院| 亚洲美女黄片视频| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 国产成年人精品一区二区| x7x7x7水蜜桃| 欧美成人午夜精品| 亚洲精品色激情综合| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 午夜两性在线视频| 亚洲无线在线观看| 久久草成人影院| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 日本成人三级电影网站| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 色播在线永久视频| 精华霜和精华液先用哪个| 丝袜人妻中文字幕| 9191精品国产免费久久| 国产私拍福利视频在线观看| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 日韩欧美一区二区三区在线观看| 免费在线观看黄色视频的| 岛国在线观看网站| 欧美激情 高清一区二区三区| aaaaa片日本免费| 老司机在亚洲福利影院| 亚洲中文av在线| 国内精品久久久久久久电影| 国产精品免费视频内射| 精品国产美女av久久久久小说| 国产精华一区二区三区|