• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of the induced pressure in a hybrid micro/nano-channel*

    2013-06-01 12:29:57KONGGaopan孔高攀ZHENGXu鄭旭SILBERLIZhanhua李戰(zhàn)華

    KONG Gao-pan (孔高攀), ZHENG Xu (鄭旭), SILBER-LI Zhan-hua (李戰(zhàn)華)

    The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: kun88d@gmail.com

    XU Zheng (徐征)

    Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, China

    Observation of the induced pressure in a hybrid micro/nano-channel*

    KONG Gao-pan (孔高攀), ZHENG Xu (鄭旭), SILBER-LI Zhan-hua (李戰(zhàn)華)

    The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: kun88d@gmail.com

    XU Zheng (徐征)

    Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian, China

    (Received June 24, 2012, Revised September 29, 2012)

    This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient Interface (FCGI) was observed across the nano-channel array. The front of the FCGI was shown to have an analogous parabolic shape. The propagation of this interface reflects indirectly the induced pressure at the micro/nano-channel junction, where the enrichment-depletion processes are known to take place. This induced pressure was predicted by numerical simulations, and this paper gives the first experimental evidence.

    micro/nano-channel, induced pressure, ion enrichment/depletion

    Introduction

    With the rapid development of the micro- and nano-fabrication technology, many nano-fluidic devices were developed with wide applications in laboratories. It is noted that when the characteristic length of the microfluidics channels is reduced to the same order as the Debye length, the ion selection process becomes more efficient due to the overlapping Electric Double Layers (EDL). One kind of these devices, a hybrid micro/nano-channel, was used to improve the trace element detection and its sensitivity. Wang et al.[1]and Kim et al.[2]observed the protein concentration enrichment (of up to a factor of 106) with this kind of system. Recently, Kim et al.[3]developed a new and efficient device for the direct seawater desalination. The physical mechanism of these devices is as follows.

    Basically, the velocity profile of the electro-kinetic flow driven only by an applied electric potential should be shaped as a “plug”. But, Kim et al.[4]observed fast moving vortices in the depletion zone at the positively charged end of the nano-channel array in their hybrid micro/nano-channel chip. They noticed that the front of the depletion zone in the microchannel was like “meniscus” as driven by pressure. This parabolic concentration front in the microchannel was also observed and studied by Yu and Silber-Li[5]. These experimental results indicate that there is an induced pressure in the pure electro-kinetic flow. Jin et al.[6]presented a numerical model based on the Navier-Stokes equation and the Nernst-Planck equation to simulate the flow in a hybrid micro/nano-channel and found that an induced pressure did exist across the micro/nano-channel junction. The associated vortex flow and the induced pressure in the micro/ nano-channel junction were studied by several authors[7-9]. The vortex flows were visualized experimentally, but without the induced pressure distribution being observed in the nanochannel. It is extremely difficult to directly measure the induced pressure distribution in the micro/nano-channel. The present study focuses on the direct observation of this induced pre-ssure field, especially, in the nano-channel.

    The propagation of the fluorescence in an array of nano-channels was observed in the present experiments. The observation results, as shown in Section 2, indicate that the propagation lengths in each channel of the nano array are different and an analogous parabolic front is established across the entire array. It is demonstrated that the induced pressure distribution at the micro/nano-channel junction drives the fluorescence propagation passing through the nanoarray. In Section 3, two hypotheses are proposed for analyzing the induced pressure based on the Navier-Stokes (N-S) equation and the Nernst-Planck equation, accompanying with the results of a transient 2-D numerical simulation. The last section is the conclusion.

    1. Experimental apparatus and methods

    1.1 Experimental setup

    The experiments were performed on a fluorescent inverted microscope (Olympus IX71), equipped with a 10×/NA=0.3objective lens. An electronmultiplying charge coupling device (EMCCD, DV885) was used to record the images. A voltage source (HV1005) was used to apply the electric potential.

    Fig.1(a) A photo of the glass chip

    Fig.1(b) Schematic diagram of the microchannel with a nanochannel array

    1.2 Chip fabrication

    A glass chip employed in the present experiment is shown in Fig.1(a). A schematic diagram of the nano-channel array connected with two micro-channel reservoirs is shown in Fig.1(b), where A-B and C-D are marked. The nominal size of the micro-channel is 40 μm×10 μm×0.02 m and that of each nano-channel is 4 μm×100 nm×200 μm (width×depth×length). The nano-channel bundle consists of 20 channels placed side by side in a linear array with a total width of 120 μm. The entire glass chip is produced by the Dalian University of Technology. (see Xu et al.[10]for details).

    1.3 Reagents

    The sodium borate buffer solution was prepared by using Di-water (Millipore company) at a concentration of 0.1 mM and a pH value of 9.2.

    Two portions of this fluid were prepared. The fluorescence Calcein (an analytical reagent) was diluted into one portion of this solution at a mass concentration of 10 μM and filled into the A-B micro-channel at the beginning of the experiment. The other portion was filled into the C-D micro-channel. Compared with other experiments[4], in which both microchannels were filled with the fluorescence, in our experiment, only one micro-channel is filled with the fluorescence so that the state of the flow passing through the nano-channel array can be observed.

    1.4 Experimenl procedure

    At the beginning of the experiment, one portion of the sodium borate buffer solution with the fluorescence was filled into the upper micro-channel (A-B) and another portion of the sodium borate buffer solution without the fluorescence was filled into the bottom micro-channel (C-D). Platinum wires were then put into the reservoirs to provide the electric connection. A potential difference was then applied between A-B and C-D micro-channels (see Fig.1(b)) while C-D ends were grounded. The flow fields in the two micro-channels and in the array of nano-channels were observed with the EMCCD at 21 frames/s. The images were captured in sequence with an exposure time of 20 ms and an interval of 27 ms.

    The main experiment was conducted as described above with 50 V potential drop across the two microchannels. Also, we used the potential drops of 100 V, 300 V, 500 V and a reduced buffer concentration of 0.01 mM in the tests.

    2. Experimental results

    The results of the present experiments are as follows. After an electric potential was applied to the micro-channel A-B, a depletion zone was observed to form in the A-B micro-channel (that is, at the anode of the nano-channel array) at t =1.24 s (Fig.2(a)). At t=3.91 s, the depletion zone continued to extend, while the enrichment zone developing in the C-D micro-channel (the cathode end of the nano-channel array) as shown in Fig.2(b). At this instant, a Fluorescence Concentration Gradient Interface (FCGI) appeared in the nanochannel array. Att=7.03 s, it was observed that the fluorescence solution was propagating in each nano-channels of the array from the A-B micro-channel towards the C-D micro-channel.The position of the FCGI assumes an analogous parabolic form (as shown in Fig.2(c)). At t=14.86 s, the position of FCGI was near the bottom micro-channel. In addition, the gray scale values of the fluorescence in the nano-channel were always less than those in the depletion area. While in the enrichment area (that is, at the C-D channel end of the nano-channel array), the fluorescent gray values increased with time.

    Fig.2 The FCGI evolution in the nanno-channel array with a depth of 100 nm (the image size is 800 μm ×400 μm)

    The front positions of the FCGI in each nanochannel at different moments are shown in Fig.3. They assume an analogous parabolic shape. The average propagating velocity of the FCGI calculated from Fig.3 is shown in Fig.4. The velocity in the center of the nano-channel array is found always higher than the velocities at the edges. For example at t =3.91 s the maximum velocity,vmax, is about 20 μm/s while the velocities at the edges are only in the range of 0 μm/s-5 μm/s. With the time, the maximum velocity decreases. Att =7.03 s,vmax=15 μm/s, and the corresponding velocity values at the edges of the nano-channel array are about 6 μm/s. Att=14.86 s the maximum velocity is reduced to 9 μm/s while the edge velocities are kept on the level of 5 μm/s . The velocity results indicate that the propagation of fluorescence is faster in the middle part than at the edges, however, this propagation becomes much slower as time progresses.

    Fig.3 The positions of FCGI’s front at different time corresponding to Figs.2(b)-2(d). The location of xaxis is at the middle of the nano-channel array

    Fig.4 The average velocity of the propagating FCGI and the estimated pressure at different moments

    According to the well known Poiseuille formula, the velocity in a channel is proportional to the pressure drop, which can be used to estimate the pressure drop across the nano-channel. The hypothesis involved in the Poiseuille formula will be discussed in Section 3. The Poiseuille formula takes the form

    whereV represents the average velocity of the solutions in the nano-channel, andd is the hydraulicdiameter of the nano-channel. The nano-channel length isL while ΔPdenotes the pressure drop between the two ends of the nano-channel. UsingV, as shown in Fig.4, we can calculate ΔPand display it in the same figure. Att=3.91 s, the pressure in the center of the nano-channel arrayΔPmaxis about 3 500 Pa. After 3 s, at t =7.03 s,ΔPmaxdecreases to 2 500 Pa. And att =14.86 s,ΔPmaxis further reduced to about 1 500 Pa. From Fig.4, it is seen that the center of the experimentalΔPmaxis three times higher than the pressure at the edges (which remains at the level of about 1000Pa in the experiment). These estimates provide qualitative information about the pressure distribution along the axis of the micro-channel near the micro/nano junction.

    3. Discussions

    (1) Ion transportation

    Figures. 2(a)-2(d) show that the FCGI is formed as the depletion region is developed at the micro/ nano-channel junction, and extended along the microchannel. The flux of the ions in the nano array is determined from the Nernst-Planck equation

    (2) Bulk fluid transportation

    The fluid flow is governed by the N-S equation. In the micro/nano-scale, the Reynolds number is low enough, the N-S equation can be simplified as the Stokes equation

    where ρe?Ψdenotes the electrostatic body force term,ρe=F( z+c++ z-c-)is the net charge density of ions,μdenotes the dynamic viscosity of the fluid, μ?2Vrepresents the viscous term. It is clear that the velocity of the fluid is influenced by the pressure, the electrical field and the viscosity. As stated above, the electro-migrationVeis nearly the same in each nanochannel, and has little contribution to the parabolicvelocity distribution in the nano array. Therefore, the second hypothesis proposed here is that the pressure gradient term,ΔP, plays the dominant role in the formation of the analogous parabolic FCGI.

    The estimated pressure is not quite accurate due to the fact that the average velocity value is obtained from experiments, with the effects of the ion diffusion and the electric potential being neglected as just noted. However, these results represent the experimental evidence of the pressure distribution in the micro/nanochannel flows, which has not been noted before. This observation provides some further basic information to understand these complex flows.

    A basic numerical model is tested by a simple verification. It can not fully simulate all the experimental details, but it can help us catch the mechanism in the system.

    Fig.5 The calculated pressure distribution along x?axis of the micro-channel in the micro/nano-channel junction. The inset is the computation area of the numerical study, both x and y are normalized by the width of micro-channel

    Fig.6 The potential distribution along the x?axis of the microchannel near the micro/nano-channel junction. Bothx and yare normalized by the width of micro-channel

    In the numerical simulation, three nano-channels are arranged at x?=-0.3, 0 and 0.3, respectively, to represent the nano array (see the inset graph in Fig.5). Their inlets are all located aty?=0.3, and the outlets are aty?= -0.3. The junction of the micro/nanochannel is thus betweenx?= ±0.3. Figure 6 shows the computed electrical potential distribution along the x?axis of the micro-channel. The curve of voltages is found to be approximately flat fromx?= -0.3to x?=0.3, corresponding to the inlet of the nano-channel array aty?=0.3. This result confirms the above hypotheses that the?Ψis nearly constant along x direction. Hence the electric field could not induce the analogous parabolic FCGI observed in the experiments (see Fig.2(a)-2(d)).

    Figure 5 shows the pressures along thex?direction of the micro-channel near the micro/nano-channel junction. The pressure distribution in the depletion zone near the junction between x?= ±0.3at y?=0.3is in an analogous parabola profile (solid line), and in the enrichment zone aty?= -0.3it is nearly linear (dotted line). This result is in accordance with the experimental pressure distribution discussed above.

    These simulations confirm the existence of an induced pressure distribution in the micro/nano-channel junction and this pressure field is responsible for the formation of an analogous parabolic FCGI in the nano-channel array observed in the experiments.

    4. Conclusions

    In this study, the propagation of the fluorescence concentration in a hybrid micro/nano-channel under external electric field was observed. The main results can be summarized as follows:

    (1) A FCGI was observed across the nano-channel array (20 nano-channels, each of 4 μm×100 nm× 200 μm (width×depth×length). The FCGI front was shown to have an analogous parabolic shape. The average propagation velocity distributions were obtained from images at different moments.

    (2) Based on the Nernst-Planck equation, it is shown that the ion diffusion effect can be neglected as compared with the effects of the electromigration and the fluid convection. Two hypotheses are introduced: (a) the electric potential is uniform and thus the potential gradient can be considered as constant in the junction, and (b) in the N-S equation, only the pressure gradient is responsible for this FCGI. Based on these two hypotheses, the distribution of the induced pressure at the micro/nano junction is evaluated.

    (3) A basic 2-D numerical model was used to simulate the flow in a hybrid micro-channel with nano array composed of three nano-channels. The numerical results show the similar distribution of the induced pressure in the micro/nano-channel junction. Also from the electrical potential along the x?direction, it is shown that the values at the inlets of the nano-channels are nearly uniform.

    Acknowledgment

    The authors wish to thank Professor Trevor Moulden for fruitful discussions.

    [1] WANG Y.-C., STEVENS A. L. and HAN J. Millionfold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.

    [2] KIM S. M., BURNS M. A. and HASSELBRINK E. F. Electrokinetic protein preconcentration using a simple glass/poly (dimethylsiloxane) microfluidic chip[J]. Analytical Chemistry, 2006, 78(14): 4779-4785.

    [3] KIM S. J., KO S. H. and KANG K. H. et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2010, 5(4): 297-301.

    [4] KIM S., WANG Y.-C. and LEE J. H. et al. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel[J]. Physical Review Letters, 2007, 99(4): 044501.

    [5] YU Q., SILBER-LI Z. Measurements of the ion-depletion zone evolution in a micro/nano-channel[J]. Microfluid Nanofluid, 2011, 11(5): 623-631.

    [6] JIN X., JOSEPH S. and GATIMU E. N. et al. Induced electrokinetic transport in micro-nanofluidic interconnect devices[J]. Langmuir, 2007, 23(26): 13209-13222.

    [7] KUO T.-C., CANNON D. M. and SHANNON M. A. et al. Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates[J]. Sensors and Actuators A: Physical, 2003, 102(3): 223-233.

    [8] CHANG H.-C., YOSSIFON G. Understanding electrokinetics at the nanoscale: A perspective[J]. Biomicrofl uidics, 2009, 3(1): 12001.

    [9] SILBER-LI Z., KONG G. and YU Q. et al. Observation of vorticity generation in micro/nano-channel flows subject to an electric field[C]. Proceedings of the 11th Asian Symposium on Visualization. Niigata, Japan, 2011.

    [10] XU Z., WEN J.-K. and LIU C. et al. Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels[J]. Microfluid Nanofluid, 2009, 7(3): 423-429.

    [11] BAO F.-B., LIN J.-Z. Linear stability analysis for various forms of one-dimensional Burnett equations[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(3): 295-303.

    [12] BAO F., LIN J. Burnett simulation of gas flow and heat transfer in micro Poiseuille flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(15-16): 4139-4144.

    [13] BOCQUET L., CHARLAIX E. Nano fl uidics, from bulk to interface[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095.

    [14] KIRBY B. Micro- and nanoscale fluid mechanics: Transport in microfluidic devices[M] Cambridge, UK: Cambridge University Press, 2010.

    [15] KIM S. J., LI L. D. and HAN J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir, 2009, 25(13): 7759-7765.

    [16] ZANGLE T. A., MANI A. and SANTIAGO J. G. On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part II: Numerical and experimental study[J]. Langmuir, 2009, 25(6): 3909-3916.

    10.1016/S1001-6058(13)60363-7

    * Project supported by the Chinese Academy of Sciences Research and Development Program of China (Grant No. KJCX2-YW-H18), the National Natural Science Foundation of China (Grant No. 10872203) and the National Key Basic Research Development Program of China(973 Program, Grant No. 2007CB714501).

    Biography: KONG Gao-pan (1982-), Male, Master

    Corresponding auther: SILBER-LI Zhan-hua,

    E-mail: lili@imech.ac.cn

    观看美女的网站| 久久精品国产自在天天线| 高清欧美精品videossex| av一本久久久久| 99久久中文字幕三级久久日本| 国产午夜精品久久久久久一区二区三区| 寂寞人妻少妇视频99o| 免费高清在线观看日韩| 亚洲,欧美,日韩| 亚洲美女搞黄在线观看| 国产亚洲一区二区精品| 最近2019中文字幕mv第一页| 五月天丁香电影| 午夜老司机福利剧场| 久久影院123| 欧美精品国产亚洲| 欧美精品国产亚洲| 好男人视频免费观看在线| 丰满迷人的少妇在线观看| 我的女老师完整版在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲欧洲精品一区二区精品久久久 | 曰老女人黄片| 国产精品久久久久久av不卡| 青青草视频在线视频观看| 国产亚洲最大av| 中国国产av一级| xxx大片免费视频| 观看av在线不卡| 大话2 男鬼变身卡| av有码第一页| 国产免费现黄频在线看| .国产精品久久| 国产成人精品在线电影| 看免费成人av毛片| 色94色欧美一区二区| 亚洲一区二区三区欧美精品| 国产精品一国产av| 国产极品天堂在线| 日韩av在线免费看完整版不卡| 欧美精品一区二区大全| 日本-黄色视频高清免费观看| 亚洲,欧美,日韩| 一级毛片aaaaaa免费看小| 免费少妇av软件| 午夜影院在线不卡| 免费人成在线观看视频色| 亚洲三级黄色毛片| 国产一区有黄有色的免费视频| 如何舔出高潮| 婷婷色av中文字幕| 一边摸一边做爽爽视频免费| 午夜激情福利司机影院| 2021少妇久久久久久久久久久| xxxhd国产人妻xxx| 国产成人av激情在线播放 | 免费观看性生交大片5| 国产精品三级大全| 一本色道久久久久久精品综合| 国产黄频视频在线观看| 久久99一区二区三区| 中文字幕人妻丝袜制服| 大陆偷拍与自拍| 国产精品99久久久久久久久| av在线app专区| 18禁动态无遮挡网站| 最近的中文字幕免费完整| 色婷婷久久久亚洲欧美| 亚洲四区av| 夜夜骑夜夜射夜夜干| av电影中文网址| 啦啦啦视频在线资源免费观看| 国产精品女同一区二区软件| 激情五月婷婷亚洲| 成人国语在线视频| 99热网站在线观看| 亚洲国产av影院在线观看| 久久99精品国语久久久| 久久久亚洲精品成人影院| 国产精品.久久久| 少妇高潮的动态图| 亚洲第一区二区三区不卡| 午夜福利在线观看免费完整高清在| 国产女主播在线喷水免费视频网站| 母亲3免费完整高清在线观看 | 亚洲熟女精品中文字幕| 欧美日韩综合久久久久久| 亚洲经典国产精华液单| 精品熟女少妇av免费看| 中文天堂在线官网| 伊人亚洲综合成人网| 超色免费av| 亚洲欧洲国产日韩| 精品一区二区免费观看| 又大又黄又爽视频免费| 日日撸夜夜添| 一本—道久久a久久精品蜜桃钙片| 精品国产乱码久久久久久小说| 国产欧美日韩综合在线一区二区| 精品国产一区二区久久| 极品人妻少妇av视频| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 亚洲精品aⅴ在线观看| 交换朋友夫妻互换小说| 亚洲精品aⅴ在线观看| 插逼视频在线观看| 久久久久精品性色| 一本久久精品| 国产一区亚洲一区在线观看| 欧美精品一区二区免费开放| 亚洲av成人精品一二三区| 午夜av观看不卡| 一级毛片 在线播放| 亚洲欧美日韩卡通动漫| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 飞空精品影院首页| 在线观看人妻少妇| 青春草视频在线免费观看| 久久久a久久爽久久v久久| 免费看不卡的av| 中国美白少妇内射xxxbb| 欧美激情 高清一区二区三区| 99视频精品全部免费 在线| 久久久午夜欧美精品| 日韩伦理黄色片| √禁漫天堂资源中文www| 国产成人a∨麻豆精品| 亚洲欧美清纯卡通| 国产日韩欧美视频二区| 中文字幕制服av| 日本91视频免费播放| 亚洲欧美色中文字幕在线| 赤兔流量卡办理| 国产精品.久久久| 亚洲成人av在线免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美精品自产自拍| 纵有疾风起免费观看全集完整版| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 91久久精品电影网| 国产精品国产三级专区第一集| 男人操女人黄网站| 日日撸夜夜添| 久久久久人妻精品一区果冻| 久久韩国三级中文字幕| 丰满少妇做爰视频| 一本大道久久a久久精品| 妹子高潮喷水视频| 久久精品国产鲁丝片午夜精品| 又黄又爽又刺激的免费视频.| 两个人免费观看高清视频| 尾随美女入室| 十八禁网站网址无遮挡| 久久精品国产亚洲av涩爱| 免费av不卡在线播放| a级毛片在线看网站| 欧美亚洲 丝袜 人妻 在线| 久久久亚洲精品成人影院| 天天躁夜夜躁狠狠久久av| av在线观看视频网站免费| 国产精品偷伦视频观看了| 少妇被粗大猛烈的视频| 啦啦啦在线观看免费高清www| 精品久久蜜臀av无| 最新中文字幕久久久久| 99久久中文字幕三级久久日本| 亚洲内射少妇av| 黄色毛片三级朝国网站| 国产精品嫩草影院av在线观看| 国产日韩欧美视频二区| 成年av动漫网址| 蜜桃在线观看..| 十八禁网站网址无遮挡| 高清午夜精品一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲精品,欧美精品| 日本色播在线视频| 国产伦精品一区二区三区视频9| 在线观看三级黄色| 亚洲,一卡二卡三卡| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 大又大粗又爽又黄少妇毛片口| 99国产精品免费福利视频| av.在线天堂| 一级毛片 在线播放| av国产久精品久网站免费入址| 久久久精品区二区三区| 久久久久久人妻| 欧美变态另类bdsm刘玥| 久久久久久久久久久免费av| 永久网站在线| 免费观看a级毛片全部| 最近最新中文字幕免费大全7| 观看美女的网站| 精品人妻熟女av久视频| 中文字幕人妻熟人妻熟丝袜美| 熟女av电影| 99国产综合亚洲精品| 蜜臀久久99精品久久宅男| 黑人高潮一二区| 国产成人a∨麻豆精品| 一级黄片播放器| 乱人伦中国视频| 亚洲性久久影院| 在线看a的网站| 国产欧美日韩综合在线一区二区| 久久久a久久爽久久v久久| av线在线观看网站| 日日摸夜夜添夜夜添av毛片| 欧美最新免费一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲内射少妇av| 嫩草影院入口| 亚洲国产欧美日韩在线播放| 欧美变态另类bdsm刘玥| 亚洲国产精品一区二区三区在线| 日本色播在线视频| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 美女中出高潮动态图| 熟女电影av网| 亚洲伊人久久精品综合| 黄色怎么调成土黄色| 国产成人aa在线观看| 亚洲少妇的诱惑av| 少妇高潮的动态图| 久久99蜜桃精品久久| 啦啦啦在线观看免费高清www| av在线播放精品| 欧美丝袜亚洲另类| 亚洲精品久久成人aⅴ小说 | 久久av网站| 22中文网久久字幕| 2018国产大陆天天弄谢| 精品国产国语对白av| 999精品在线视频| 少妇被粗大的猛进出69影院 | 三上悠亚av全集在线观看| 久久婷婷青草| 成人亚洲欧美一区二区av| 日本色播在线视频| a级毛片免费高清观看在线播放| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃 | 另类亚洲欧美激情| 国产免费一级a男人的天堂| 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 日本欧美视频一区| .国产精品久久| 亚洲av成人精品一二三区| 观看美女的网站| 99热6这里只有精品| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 人人妻人人澡人人看| 视频中文字幕在线观看| 97精品久久久久久久久久精品| 国产色爽女视频免费观看| 免费看光身美女| 亚洲av国产av综合av卡| 菩萨蛮人人尽说江南好唐韦庄| 黄片播放在线免费| 婷婷成人精品国产| 免费看光身美女| 亚洲精品日韩av片在线观看| 精品久久国产蜜桃| 亚洲欧美中文字幕日韩二区| 少妇精品久久久久久久| 成人亚洲欧美一区二区av| 91aial.com中文字幕在线观看| 九色成人免费人妻av| 久久久精品区二区三区| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| av女优亚洲男人天堂| 免费少妇av软件| 免费高清在线观看视频在线观看| 久久久久久久精品精品| 99热这里只有是精品在线观看| 岛国毛片在线播放| 日韩中文字幕视频在线看片| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 国产免费一区二区三区四区乱码| tube8黄色片| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区三区| 国产无遮挡羞羞视频在线观看| www.av在线官网国产| 日本与韩国留学比较| 人人妻人人添人人爽欧美一区卜| 欧美日韩亚洲高清精品| 麻豆成人av视频| av播播在线观看一区| 91精品国产国语对白视频| 亚洲精品一区蜜桃| 久久久国产精品麻豆| 日韩不卡一区二区三区视频在线| av电影中文网址| 成人午夜精彩视频在线观看| 国产精品成人在线| 天堂8中文在线网| 久热久热在线精品观看| 色5月婷婷丁香| av在线观看视频网站免费| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| 亚洲精华国产精华液的使用体验| 男女啪啪激烈高潮av片| 中文精品一卡2卡3卡4更新| 欧美日韩av久久| 成人综合一区亚洲| 三级国产精品欧美在线观看| 国产成人精品婷婷| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 精品国产露脸久久av麻豆| av免费在线看不卡| 性色avwww在线观看| 亚洲精品国产av蜜桃| 夫妻性生交免费视频一级片| 国产欧美日韩综合在线一区二区| 视频中文字幕在线观看| 久久99热6这里只有精品| 欧美激情 高清一区二区三区| 亚洲av国产av综合av卡| 男女高潮啪啪啪动态图| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 国产精品蜜桃在线观看| 亚洲丝袜综合中文字幕| 日本黄大片高清| 日韩三级伦理在线观看| 老司机影院成人| 精品视频人人做人人爽| 美女大奶头黄色视频| 国产男女内射视频| 水蜜桃什么品种好| 国产不卡av网站在线观看| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 免费观看的影片在线观看| 久久久a久久爽久久v久久| 制服丝袜香蕉在线| 精品午夜福利在线看| 99久国产av精品国产电影| 久久婷婷青草| 欧美日韩在线观看h| 久久韩国三级中文字幕| 97在线人人人人妻| 夜夜看夜夜爽夜夜摸| 国产国拍精品亚洲av在线观看| 热99国产精品久久久久久7| 一级爰片在线观看| 日韩一本色道免费dvd| 欧美少妇被猛烈插入视频| 性色av一级| 91精品三级在线观看| 国产黄频视频在线观看| 国产黄片视频在线免费观看| 国产深夜福利视频在线观看| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 99re6热这里在线精品视频| 免费观看a级毛片全部| 亚洲色图综合在线观看| 日日啪夜夜爽| 夜夜看夜夜爽夜夜摸| 国产男女内射视频| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区| 精品久久久久久电影网| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 一个人免费看片子| 欧美三级亚洲精品| 国产精品三级大全| 久久久精品区二区三区| 不卡视频在线观看欧美| 亚洲国产精品专区欧美| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 制服诱惑二区| videossex国产| 久久久精品免费免费高清| 蜜臀久久99精品久久宅男| 免费观看性生交大片5| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 熟妇人妻不卡中文字幕| 久久精品人人爽人人爽视色| 亚洲精品乱久久久久久| 国产成人aa在线观看| 大香蕉久久网| 我的女老师完整版在线观看| 成年人午夜在线观看视频| 午夜福利,免费看| xxx大片免费视频| 亚洲精品成人av观看孕妇| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 熟女av电影| 少妇丰满av| 久久国内精品自在自线图片| 少妇的逼水好多| 我的女老师完整版在线观看| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 能在线免费看毛片的网站| 亚洲无线观看免费| 亚洲欧洲日产国产| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 午夜福利视频精品| a级片在线免费高清观看视频| 少妇人妻 视频| 国产精品蜜桃在线观看| 国产黄色免费在线视频| 国产在视频线精品| 免费人成在线观看视频色| 亚洲国产av新网站| 国产视频内射| 看十八女毛片水多多多| av一本久久久久| 亚洲国产精品国产精品| 超色免费av| 亚洲欧美清纯卡通| 亚洲性久久影院| 欧美精品国产亚洲| 18禁观看日本| 91久久精品电影网| 午夜福利视频精品| 18+在线观看网站| 亚洲国产av影院在线观看| 欧美丝袜亚洲另类| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区成人| 久久狼人影院| 亚洲国产av新网站| 性色av一级| 国产精品久久久久久久电影| 亚洲国产精品一区三区| 成人毛片60女人毛片免费| 亚洲内射少妇av| 午夜福利视频在线观看免费| 国产午夜精品久久久久久一区二区三区| 精品国产国语对白av| 国产成人freesex在线| xxx大片免费视频| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 最近手机中文字幕大全| 亚洲国产日韩一区二区| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃 | 自线自在国产av| 这个男人来自地球电影免费观看 | 一区二区三区乱码不卡18| 欧美日本中文国产一区发布| 午夜激情久久久久久久| 老熟女久久久| 成人手机av| 久久久久精品性色| 五月开心婷婷网| 91久久精品国产一区二区三区| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 久久影院123| 成年女人在线观看亚洲视频| 成人国产麻豆网| a级毛色黄片| 天堂中文最新版在线下载| 亚洲,一卡二卡三卡| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 在线 av 中文字幕| 久久久久久久久久久免费av| 亚洲国产精品一区三区| 午夜视频国产福利| 一本色道久久久久久精品综合| 蜜桃国产av成人99| 视频在线观看一区二区三区| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 国产精品成人在线| 久久人人爽人人片av| 高清黄色对白视频在线免费看| 最近手机中文字幕大全| 老司机影院毛片| av在线播放精品| 国产毛片在线视频| 搡老乐熟女国产| 精品人妻在线不人妻| 一级片'在线观看视频| 午夜影院在线不卡| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 91aial.com中文字幕在线观看| 亚洲精品成人av观看孕妇| 国产精品 国内视频| 亚洲人与动物交配视频| 91久久精品电影网| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 国产av精品麻豆| 一区二区三区乱码不卡18| 国产av精品麻豆| 精品久久久精品久久久| 日本免费在线观看一区| 国产老妇伦熟女老妇高清| 狠狠婷婷综合久久久久久88av| 一本久久精品| 在线天堂最新版资源| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| av电影中文网址| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在| 免费日韩欧美在线观看| 中文天堂在线官网| a 毛片基地| 国产黄频视频在线观看| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 丰满饥渴人妻一区二区三| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品色激情综合| 免费少妇av软件| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 国产成人av激情在线播放 | 全区人妻精品视频| 精品国产国语对白av| 免费高清在线观看日韩| 丝袜美足系列| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 国产在线免费精品| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 国产黄片视频在线免费观看| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 有码 亚洲区| 亚洲丝袜综合中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 美女中出高潮动态图| 高清av免费在线| 青春草视频在线免费观看| 欧美精品国产亚洲| 夜夜爽夜夜爽视频| 亚洲av福利一区| 久久久久久久亚洲中文字幕| 国产欧美另类精品又又久久亚洲欧美| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| av黄色大香蕉| 日日撸夜夜添| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片| videos熟女内射| 国产成人91sexporn| 日日啪夜夜爽| 18禁裸乳无遮挡动漫免费视频| 国产精品麻豆人妻色哟哟久久| 97超视频在线观看视频| 久久这里有精品视频免费| 成人18禁高潮啪啪吃奶动态图 | 国产黄频视频在线观看| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 久久久精品免费免费高清| 高清不卡的av网站| 交换朋友夫妻互换小说| 亚洲成人一二三区av| 色婷婷av一区二区三区视频| 夜夜爽夜夜爽视频| 中文字幕最新亚洲高清| 久久精品国产亚洲av涩爱| 99九九在线精品视频| 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 我的老师免费观看完整版|