• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype

    2020-08-26 04:58:08DongyuWANG王棟煜MingZHANG張明ShaoxiangMA馬少翔ShuYANG楊舒KexunYU于克訓(xùn)andYuanPAN潘垣
    Plasma Science and Technology 2020年8期
    關(guān)鍵詞:王棟張明

    Dongyu WANG(王棟煜),Ming ZHANG(張明),Shaoxiang MA(馬少翔),Shu YANG (楊舒), Kexun YU (于克訓(xùn)) and Yuan PAN (潘垣)

    1 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract The acceleration grid power supply (AGPS) rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system (AGPS-CS), with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage. Moreover, a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented, proving the performance of the power supply to achieve the desired requirements.

    Keywords: CFETR, NBI, accelerator grid power supply, feedforward control, high voltage power supply

    1. Introduction

    In order to prepare for China fusion engineering test reactor(CFETR), a prototype of CFETR negative-ion-based Neutral Beam Injector (N-NBI) is under designing. The N-NBI prototype should accelerate hydrogen negative ions up to 200 keV with a beam current as high as 20 A for 3600 s, and an acceleration grid power supply (AGPS) rated at 200 kV/25 A/3600 s needs to be researched and developed. The scheme of the AGPS for CFETR N-NBI prototype is shown in figure 1 [1].

    The scenario of the inverter-type high voltage power supply is applied to AGPS, this scenario is also utilized for ITER, JT-60U N-NBI system [2, 3]. In the AGPS prototype scheme, a step-down transformer with voltage regulation switch feeds a 12-pulse thyristor rectifier, which supplies the three-level neutral point clamped (3L-NPC) inverter. Inverter generates a 150 Hz square wave voltage to the primary side of the step-up transformer, and the secondary side is connected to the uncontrolled diode rectifier.The output voltage is dealt with a DC filter to provide the required 200 kV high-voltage.In order to produce high DC voltage, a lot of diodes are connected in series. Compared with thyristor, the reliability and cost of diode solution is satisfactory due to the less drive circuit and control optical. In general, the high-voltage part consisted of step-up transformer, diode rectifier and DC filter is named direct current generator (DCG), the medium-high voltage part consisted of step-down transformer, rectifier and inverter is named conversion system(CS).In order to provide a central point for the connection to the neutral point of 3LNPC,the 12-pulse rectifier made by the two 6-pulse rectifiers connected in series is utilized, and the rated DC-link voltage is 5 kV.Considered the actual requirements of power capacity and the high switch-off time, the 4.5 kV injection enhanced gate transistor (IEGT) is used in 3L-NPC inverter. Major specification of the AGPS for the CFETR N-NBI prototype is summarized in table 1.AGPS-CS is the key component of the AGPS. The DC-link voltage and modulation coefficient are controlled in real time during AGPS operation. Output voltage of the AGPS depends on the DC-link voltage and inverter modulation [4]. Furthermore, the protection against breakdown or beam-off between accelerator grids also relies on fast switch-off of the inverter [2].Thus,the control and design of the AGPS-CS are important.

    Figure 1.The scheme of the AGPS.

    In ITER AGPS design, the proportional-integral derivative (PID) regulator is used in the control loop [5]. At the output,the modulation coefficient of 3L-NPC is generated by the PID regulator.This modulation coefficientDis defined as the duty of the 3L-NPC phase-leg with the 150 Hz modulation frequency. In order to minimize the ripple voltage, the DC-link voltage also can be adjusted uniformly [6]. The relationship between modulation coefficient and ripple voltage is analyzed and reported in[7].It has been proved that the control is satisfactory for ITER AGPS [8]. However, it is noted that the wide range and adjustable rise-time of output voltage for CFETR AGPS prototype are desired during NBI runtime debugging.The performance of AGPS is affected by fixed PI parameter. Hence, control strategy for optimal performance based on feedforward control with piecewise PI parameter at such operation of AGPS should be considered.On the other hand,the performance of the DC-link voltage is improved by the regulation switch,in particular,when the low output voltage of AGPS such as 20% rated voltage is required.

    In this paper, the development of CFETR N-NBI prototype AGPS-CS is introduced. The detailed design of the AGPS-CS for CFETR N-NBI prototype is described in section 2. The simplified average model of rectifier and inverter is discussed in section 3.In addition,an improvement of the feedforward control strategy based on piecewise PI is proposed in section 4. The performance achievable with this solution is verified by simulation results in section 5.

    Table 1.Specification of the AGPS.

    2. Design of the AGPS-CS

    2.1. CS overview

    As shown in figure 1, the circuit of the CS is a typical AC/DC/AC topology. The main components are thyristor rectifier and 3L-NPC inverter. The DC-link power is provided by the rectifier and inverted by the 3L-NPC.

    The thyristor rectifier presents two fundamental advantages compared to the active front end: (1) with the same large capacity, the cost is low, and the reliability is high due to the simple control method.(2)Based on the regulation of the firing angle,the DC-link voltage can be adjusted in quite a large range.

    Figure 2.Assembly design of AGPS-CS.

    Figure 3. Topology of thyristor rectifier.

    The 3L-NPC inverter presents two fundamental advantages compared to the two-level inverter:(1)the harmonics in step-up transformer and the output ripple voltage are reduced with the multilevel. (2) With the same DC-link voltage, the power semiconductor devices withstand the half voltage, so the inverter capacity is doubled as well.

    The detailed assembly design of the AGPS-CS is shown in figure 2.There are 8 equipment cabinets in AGPS-CS.The total size is 9.4 × 1.5 × 2.2 m3. It must be point out that the two control cabinets are utilized as main-slave structure,the main inverter cabinet connects to the AGPS controller. It receives the operation commands and controls the inverter state. The slave rectifier cabinet connects to the inverter cabinet.It receives the reference DC-link voltage and controls the states of rectifier and voltage regulation switch.

    2.2. Thyristor rectifier

    The topology of thyristor rectifier is shown in figure 3. The rated output power of the CSPois 5 MW, considered the power factor 0.95 and efficiency 0.95, the rated input power of CSPiis 5.5 MW and the rated DC-link voltagevdcis 5 kV,so the output current of the rectifierIdis 1.1 kA. A realistic per-unit inductive short-circuit voltage of the step-down transformer rated for this powervXSCis 8%. Considered thevXSCand the minimum voltage of the grid respect to the rated grid voltage Δvg(90%), the secondary voltage of the transformerv20.SDcan be expressed as equation (1)

    Thus,the input current of each thyristori2.SDis given by equation (2)

    Assuming the DD and DY connections, the turn ratio of the step-down transformernSDcan be given by equation (3)

    wherevgis the nominal grid voltage (10 kV). The equivalent short-circuit inductance of transformer is determined by equation (4)

    wherefgis the grid frequency. The dry-type transformer installed in indoor is selected.

    Figure 4.Phase-leg of inverter. (a) Circuit diagram of the phase-leg. (b) Assembly diagram of the phase-leg.

    In the output of rectifier, the capacitance of DC-linkCdcis a key parameter for AGPS. When breakdown or beam-off occurs, the inverter would cut off within 100 μs, and the rectifier remains the DC-link voltage in suitable range without load. Hence, the design of DC-link considers this fault condition.

    The DC-link inductorLdcsmooths the output current of rectifier, and it can be expressed by equation (5)

    wherevLis the drop voltage factor of the DC inductor (5%),ΔIdis the ripple factor ofid(15%).

    During the fault process,Eoff,LandEoff,grepresented the energy from the leakage inductance of the step-down transformer and grid can be estimated as equation (6)

    Then according to the maximum overvoltage permitted on the DC-link voltagevdc.max(109% ofvdc), the minimumCdccan be calculated as equation (7)

    The voltage regulation switch equipped in the primary side of step-down transformer has 13 voltage gears,the rated voltage is 10.4 kV with the difference 400 V among each gear. When the lowest 40 kV output voltage of AGPS is required, the lowest gear would be chosen and thenv20.SDwould decrease by about a half (from 2.3 to 1.24 kV). Thus,the firing angle of thyristor and input current are improved.

    2.3. 3L-NPC inverter

    The RMS value of the output current of the inverterIINV,depending on the output current of AGPSIoutand the turn ratio of the step-up transformernSU, can be expressed by equation (8)

    Based on the calculate results,the IEGT ST1500GXH24 with nominal parameter 4500 V/1500 A is used in inverter,the antiparallel diode is integrated in IEGT pack. During normal operation of N-NBI, frequent grid breakdown occurs,which leads to short-circuit of the load for AGPS. Then the current flowing in inverter and DCG would rapidly increase.When breakdown event is detected, the inverter shuts down and the current is switched off within 100 μs. As a result of the voltage driving method,IEGT could cut off larger current compared with the integrated gate-commutated thyristor [9].Thus, IEGT is a better choice considering frequent shortcircuit current caused by breakdown. Moreover, the snubber circuit consists of a resistor, a capacitor and a DC inductor,and a clamped diode is not required,except for improving the converter’s reliability.

    Considered the output performance, design risk and cost,the inverter frequency is selected as 150 Hz. The higher inverter frequency would have beneficial effect on the dynamic performance of the inverter, permit a reduction of the ripple voltage of the AGPS but decrease the short-circuit impedance of the step-up transformer and then the over-currents in case of grid breakdown. Also the losses in the inverter active devices and step-up transformer are affected by the frequency of the output waveform. Thus, the cost of inverter and step-up transformer increases.With the analyses shown in this paper,it has been demonstrated that the requirements in terms of ripple on the AGPS output voltages (±5%) can be achieved with 150 Hz. Moreover, the 150 Hz inverter frequency is equal to the ITER AGPS, which is a useful reference.

    Figure 5. Control unit architecture of AGPS-CS.

    The phase-leg of the inverter is shown in figure 4,whereCcis a part of DC capacitor,Dp1,2are clamp diodes,S1_4are IEGTs andD1_4are antiparallel diodes of IEGTs. Clamp resistanceRpis 20 kΩ and can prevent the clamp failure ofDp1,2. To reduce the shock voltage of driver and peak voltage of IEGT, the driver is placed with IEGT as close as possible.

    The design of the high power 3L-NPC inverter is difficult, particular with the basic phase-leg. Thus, the configurations of the phase-leg, snubber circuit and the gate resistance of the driver are discussed with supplier,a series of experiments including the dual-pulse test,minimum pulse test and the short-circuit current test are completed [1]. It means that the design of the inverter is viable.

    2.4. Control unit

    The schematic of control unit architecture for AGPS-CS is shown in figure 5. It has PXIe interfaced with a real-time controller deployed with National Instruments real-time (NI RT) software as AGPS controller [10]. The AGPS-CS controller based on digital signal processor (DSP) and field programmable gate array (FPGA) of optical fiber sensor signal was applied. The DSP is also used as converter controller for rectifier and inverter.From a functional standpoint,the control command of converter is generated and executed by DSP, and the high-speed communication is realized by FPGA between AGPS-CS controller and other controllers.The reference signal and power data are provided by AGPS controller based on the graphical user interface.Moreover,the converter controller has the direct interface for fault signal in order to switch off the converter as fast as possible.

    Figure 6. The block diagram of the interlock of the AGPS.

    The interlock system is a high-reliability system devoted to the investment protection of N-NBI system.Figure 6 shows the block diagram of the interlock of the AGPS. Electrical faults (EFs) of AGPS include output overcurrent, output undercurrent, output overvoltage and internal fault. They are related to electrical insulation, short-circuit, open-circuit and overvoltage inside in CS.Moreover,the acceleration grid will operate breakdown and beam-off conditions, during normal operation of the NBI system, beam current would switch off and arcs can occur frequently and unpredictably. Therefore,the breakdown and beam-off are not considered as fault even if it may cause stresses of AGPS. In order to coordinates the protective actions of AGPS, an independent block named breakdown and beam-off detector (BBD) is generated. BBD and EF would switch off the CS to shut down AGPS. They require detection and intervention within 100 μs to avoid major damage of AGPS. The intervention time is defined as the time form the fault detection to the inverter switch-off,which is estimated to be less than 10 μs. The delay time is reduced by the implementation of FPGA in the proposed control unit. On the other hand, if the BBD fails, a back-up intervention is granted by the overcurrent and undercurrent detectors in EF. These fault signals would also communicate with AGPS controller and NBI controller in the interlock system.

    Figure 7.Block diagram of the proposed feedforward control.

    Figure 8. Flow diagram of the implemented calculate process.

    Table 2.Parameters used in the simulations.

    On the other hand,the frequent breakdown and beam-off decrease the source conditioning efficiency. In order to improve this situation, the output voltage of AGPS will automatically recover with the predefined rise time after the predefined restart time.

    3. AGPS-CS analysis and modeling

    The required output voltage is realized by the control of thyristor rectifier and 3L-NPC inverter. The main circuit of the thyristor and diode rectifiers is similar, the difference between two rectifiers is that thyristor rectifier is controlled by firing angle,and diode rectifier is adjusted by input source.In order to describe the characteristic of three phase rectifier, a simplified average model, approximating the original system by ‘neglecting’ or ‘a(chǎn)veraging’ the effect of fast switching within a prototypical switching interval and assuming overlap, is obtained by equation (9) [5]

    Figure 9. Steady-state operation of AGPS with breakdown at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevois the average output voltage,vo.0is the average output voltage without load,fis the frequency of input source,Lis the input inductor,iois the average output current.

    For the thyristor rectifier,the input sinusoidal source and the phase control are considered, which influenced thevo.0.Therefore, the output voltage of thyristor controlled by the firing angle α can be expressed by equation (10)

    For the diode rectifier, the input source is provided by 3L-NPC inverter. Due to the square wave modulation, the source voltage is multilevel voltage controlled byDas shown in equation (11)

    Figure 10.Steady-state operation of AGPS with breakdown at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevoutis the output voltage of AGPS,vout.0is the voltage with no load,fsis the constant inverter frequency equaled to 150 Hz,LSC.SUis the equivalent short-circuit inductance of step-up transformer.

    According to the equation (11), any value ofvoutcan be accessed by adjustingDorvdc.ButDis also a key parameter for the ripple voltage. It should be noted that ripple voltage has significant effect on the N-NBI system. Thus, the minimum ripple voltage is required, too. As for the specificvoutandiout,the certain value ofDfor lower ripple voltage could be estimated.

    4. Proposed control scheme

    The inverter in AGPS-CS with fixed PI control parameters may not meet the desired and acceptable performance in CFETR NBI prototype test, particularly with respect to low output voltage and short rise time. A feedforward control strategy with piecewise PI is proposed in this section to realize suitable parameters for AGPS.

    Figure 11.Operation during breakdown of AGPS with load changed at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    The control diagram for AGPS-CS is shown in figure 7.The reference voltagevout*(kV) and rise timetr*(ms) are selected by operator. According to thevout*, the gear of voltage regulation switchS, PI parametersKPandKI,vdc*(kV) and referenceD*are calculated, the calculate workflow is shown in figure 8. WhereKP0andKI0are the initial values of inverter PI regulator for rated output voltage.During the AGPS runtime,D*is continuously updated based on thevout*andiout(t)according to equation (11). However, the error of the average model and the excursion of system parameters lead to the unsatisfactory accuracy.This difference ΔDis compensated by a PI regulator.The finalDis decided by theD*and ΔD.In this control system,the measured voltagevout(t)and thevout*(t)are in per-unit values.

    5. Simulation validation

    Figure 12.Operation during breakdown of AGPS with load changed at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    To study the operation of the proposed control strategy, the AGPS has been simulated using the PSIM software. The load model is a nonlinear voltage-controlled current source referenced in[11].The main electrical parameters of the circuit and control data are given in table 2.Simulations are done for 200 and 40 kV,because they are the top and bottom limitations of output voltage of AGPS.The rise time is set to 80,50 and 30 ms considering the actual requirements, and it could be changed further.

    Figures 9 and 10 present the steady-state operation of AGPS with breakdown at the output voltage of 40 kV and 200 kV, respectively.voutmeets the required stability and can track the reference curve as well. Thevdcis not stable during breakdown,the fluctuation ofvdcis ±5%at 5 kV and become more serious with the reduce ofvdc*. The response time of lowervdc*is larger, too. However, the performance ofvdcis sufficient to apply for AGPS. As for lowervdc*, the peak voltage ofvdcis lower, too. The converter and DC-link capacitor are not damaged.Moreover, due to the fixed capacitance of DC-link, small current causes the response time increasing.

    Figure 13.Start performance and DC-link voltage of AGPS with different rise time. (a) Output voltage vout. (b) DC-link voltage vdc.

    Figures 11 and 12 present the operation during breakdown of AGPS with load changed at the output voltage of 40 kV and 200 kV,respectively.The ripple ofvoutis±2.5%,which is half of the requirement. The accuracy ofvoutis 2%, although the 20%ioutincreased at 410 ms.ioutdecreases with the reducing output voltage,the influence of the current perturbation becomes little impact on thevout. On the other hand, when breakdown occurs, the 3L-NPC inverter switches off and the inverter current enlarges slightly within 100 μs,and the grid current cuts off in about 4 ms. Moreover, total harmonic distortions (THDs) of grid current are 11.2%and 9.3%at the output voltage of 40 kV and 200 kV,respectively.The improved of THD can be mostly attributed to the voltage regulation switch.

    The start performance and DC-link voltage of AGPS with different rise time are presented in figure 13. With the lower rise time, the supposed output voltage and the output power of DC-link are close to step waveform. Thus, the oscillations of output voltage and DC-link voltage are distinct gradually. The response performance is improved with the reduction ofand output power in figure 13(a). However,the slight overvoltage can also be observed due to the overvoltage of DC-link appearing at the full AGPS output voltage as shown in figure 13(b).This oscillation would not affect the AGPS operation.On the other hand,the peak voltage of DC-link in figure 13(b)is 5285 V.The maximum ripple voltage in transient conditions is 7.68%, which meets the requirements.

    6. Conclusions

    In this paper, the main development about the design and control of the CFETR N-NBI AGPS prototype is described.The parameter design of the AGPS-CS including the converter and controller is analyzed in detail.In order to improve the grid current and DC-link voltage, the voltage regulation switch is utilized. Then, a feedforward control strategy with piecewise PI is proposed. With this method, a wide range of output voltage and rise time for AGPS is realized. The PI regulation of inverter is implemented in order to compensate for the drawback of average model. Simulation results are conducted to validate the performance of the proposed control strategy. The experiment based on test platform would be done in future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China under Grant No. 2017YFE0300104 and by National Natural Science Foundation of China (Nos. 51707073 and 51821005).

    猜你喜歡
    王棟張明
    Effect of electron–electron interaction on polarization process of exciton and biexciton in conjugated polymer
    Transformation relation between coherence and entanglement for two-qubit states
    Quantum correlation and entropic uncertainty in a quantum-dot system
    中正平和——王棟山水畫中的古意
    金橋(2022年2期)2022-03-02 05:43:02
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    張明等
    国产色婷婷99| 精品久久久久久久久av| 成人无遮挡网站| 午夜精品国产一区二区电影 | 国产白丝娇喘喷水9色精品| 男人舔奶头视频| 少妇的逼好多水| 春色校园在线视频观看| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 国产精品一区二区性色av| 免费观看a级毛片全部| 久久久久久久午夜电影| 亚洲精品成人av观看孕妇| 国产av国产精品国产| 亚洲成人久久爱视频| 国产日韩欧美在线精品| 国产永久视频网站| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 中文在线观看免费www的网站| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| 欧美激情在线99| 成人二区视频| 色综合色国产| 99热网站在线观看| 亚洲高清免费不卡视频| av黄色大香蕉| 身体一侧抽搐| 大码成人一级视频| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 国产黄片美女视频| 中国三级夫妇交换| 高清欧美精品videossex| 亚洲天堂国产精品一区在线| 大话2 男鬼变身卡| 爱豆传媒免费全集在线观看| 精品一区二区三区视频在线| 人妻 亚洲 视频| 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| 高清欧美精品videossex| av在线app专区| 在线a可以看的网站| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 真实男女啪啪啪动态图| 中文天堂在线官网| 国产亚洲午夜精品一区二区久久 | 日韩av在线免费看完整版不卡| 久久久国产一区二区| 五月天丁香电影| 天堂网av新在线| 精品国产一区二区三区久久久樱花 | 国产精品不卡视频一区二区| 2022亚洲国产成人精品| 欧美性感艳星| 国产精品久久久久久精品古装| 91狼人影院| 2021天堂中文幕一二区在线观| 亚洲av电影在线观看一区二区三区 | av天堂中文字幕网| 亚洲国产欧美在线一区| 丝袜脚勾引网站| 欧美97在线视频| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 好男人视频免费观看在线| 中文字幕制服av| 伦理电影大哥的女人| 成人国产麻豆网| 男男h啪啪无遮挡| 欧美高清性xxxxhd video| 少妇高潮的动态图| 又大又黄又爽视频免费| 99久久精品国产国产毛片| 在线观看一区二区三区激情| 国产精品久久久久久久电影| 国产亚洲91精品色在线| 麻豆乱淫一区二区| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 亚洲国产精品成人综合色| 99热这里只有精品一区| 欧美xxⅹ黑人| av一本久久久久| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看 | 午夜亚洲福利在线播放| 久久久久久久国产电影| 成人毛片60女人毛片免费| 一级a做视频免费观看| 人妻少妇偷人精品九色| 国产精品不卡视频一区二区| 视频区图区小说| 一区二区三区四区激情视频| 真实男女啪啪啪动态图| 国产黄色免费在线视频| 免费观看性生交大片5| 女的被弄到高潮叫床怎么办| 国产老妇女一区| av又黄又爽大尺度在线免费看| 在线免费十八禁| 另类亚洲欧美激情| 看非洲黑人一级黄片| 久久午夜福利片| 中文在线观看免费www的网站| 身体一侧抽搐| 天美传媒精品一区二区| av在线老鸭窝| 久久久亚洲精品成人影院| 亚洲综合色惰| 丝袜美腿在线中文| 日本一本二区三区精品| 亚洲av中文av极速乱| 天美传媒精品一区二区| 亚洲人成网站高清观看| av播播在线观看一区| 啦啦啦中文免费视频观看日本| 精品99又大又爽又粗少妇毛片| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费av不卡在线播放| 一本色道久久久久久精品综合| 老司机影院成人| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 大码成人一级视频| 如何舔出高潮| 交换朋友夫妻互换小说| 欧美zozozo另类| videos熟女内射| 男的添女的下面高潮视频| 美女xxoo啪啪120秒动态图| 18禁动态无遮挡网站| 国产av码专区亚洲av| 久久久国产一区二区| 韩国高清视频一区二区三区| 国产老妇女一区| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| a级一级毛片免费在线观看| 国产乱人视频| 精品久久久久久久末码| 少妇的逼水好多| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 欧美激情久久久久久爽电影| 黑人高潮一二区| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 精品久久久久久久久av| 亚洲图色成人| 亚洲精品乱码久久久久久按摩| 观看美女的网站| 新久久久久国产一级毛片| 91久久精品电影网| 久久精品久久精品一区二区三区| 成人欧美大片| www.色视频.com| 国产精品久久久久久精品电影小说 | 亚洲,欧美,日韩| 国产精品秋霞免费鲁丝片| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 亚洲av.av天堂| 丝袜脚勾引网站| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 熟女av电影| 精品国产三级普通话版| 国产精品久久久久久精品电影小说 | 一个人看的www免费观看视频| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 午夜亚洲福利在线播放| 亚洲av中文字字幕乱码综合| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 亚洲精品国产成人久久av| 久久久久久久国产电影| av在线观看视频网站免费| 好男人视频免费观看在线| 波多野结衣巨乳人妻| 在线观看一区二区三区| 秋霞在线观看毛片| 天堂中文最新版在线下载 | 国产探花在线观看一区二区| 一区二区av电影网| a级毛色黄片| 人体艺术视频欧美日本| 国精品久久久久久国模美| 成人综合一区亚洲| 少妇丰满av| 国产人妻一区二区三区在| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 春色校园在线视频观看| 三级经典国产精品| 欧美一区二区亚洲| 99热这里只有是精品50| 少妇人妻一区二区三区视频| 少妇 在线观看| 老司机影院毛片| 国产亚洲最大av| 亚洲精品国产av蜜桃| 成人毛片60女人毛片免费| 欧美zozozo另类| 日韩欧美一区视频在线观看 | 亚洲欧美日韩无卡精品| 水蜜桃什么品种好| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| av在线观看视频网站免费| 日本一二三区视频观看| 国产黄片美女视频| 久久99热这里只频精品6学生| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 国产成人aa在线观看| 少妇高潮的动态图| 观看美女的网站| 国产淫语在线视频| 各种免费的搞黄视频| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 亚洲四区av| 成人高潮视频无遮挡免费网站| 国产成人精品婷婷| 丝瓜视频免费看黄片| 午夜福利在线在线| 乱系列少妇在线播放| 欧美最新免费一区二区三区| 久久97久久精品| 国产午夜精品一二区理论片| 精品久久久久久久久av| 亚洲在线观看片| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 色综合色国产| 91在线精品国自产拍蜜月| 午夜视频国产福利| 国产成人福利小说| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 成人无遮挡网站| 久久久久久久久久成人| 欧美性猛交╳xxx乱大交人| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 高清欧美精品videossex| 国产成人精品福利久久| 超碰av人人做人人爽久久| 日韩视频在线欧美| 七月丁香在线播放| 伊人久久国产一区二区| 亚洲美女视频黄频| 欧美极品一区二区三区四区| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 成人漫画全彩无遮挡| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 日本三级黄在线观看| 亚洲欧美精品专区久久| 一级黄片播放器| 1000部很黄的大片| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 国产精品熟女久久久久浪| 免费av不卡在线播放| 国产黄片视频在线免费观看| 99re6热这里在线精品视频| 精品一区在线观看国产| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看a级黄色片| 在线免费十八禁| 免费观看av网站的网址| 婷婷色综合www| 久久女婷五月综合色啪小说 | 小蜜桃在线观看免费完整版高清| 国产成人精品婷婷| 青春草视频在线免费观看| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 男的添女的下面高潮视频| 日韩欧美精品免费久久| av福利片在线观看| av国产久精品久网站免费入址| 伊人久久精品亚洲午夜| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 丰满乱子伦码专区| 少妇的逼水好多| 国产成人福利小说| 99久久精品一区二区三区| 一本色道久久久久久精品综合| 直男gayav资源| 美女主播在线视频| 精品99又大又爽又粗少妇毛片| 亚洲熟女精品中文字幕| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 亚洲欧美日韩无卡精品| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 国产久久久一区二区三区| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看| 51国产日韩欧美| 成人毛片a级毛片在线播放| 国产在视频线精品| 国产精品久久久久久久电影| 日本一二三区视频观看| 三级国产精品欧美在线观看| 在线 av 中文字幕| 欧美精品一区二区大全| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| 色婷婷久久久亚洲欧美| 午夜福利高清视频| 99热6这里只有精品| 日韩av在线免费看完整版不卡| 国产 精品1| 边亲边吃奶的免费视频| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 在线免费观看不下载黄p国产| 插逼视频在线观看| 一区二区三区免费毛片| 肉色欧美久久久久久久蜜桃 | 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 午夜福利高清视频| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 精华霜和精华液先用哪个| 极品教师在线视频| 一区二区av电影网| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看a级毛片全部| 美女视频免费永久观看网站| 成人国产麻豆网| 高清毛片免费看| 国产伦精品一区二区三区视频9| 午夜精品国产一区二区电影 | 青春草国产在线视频| 自拍偷自拍亚洲精品老妇| 性色av一级| 亚洲成人精品中文字幕电影| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 九九爱精品视频在线观看| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| 美女国产视频在线观看| 夜夜爽夜夜爽视频| 综合色av麻豆| 国产伦在线观看视频一区| av在线天堂中文字幕| 人人妻人人爽人人添夜夜欢视频 | 欧美bdsm另类| 尤物成人国产欧美一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇丰满av| 国产久久久一区二区三区| 亚洲综合色惰| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 小蜜桃在线观看免费完整版高清| 青青草视频在线视频观看| 亚洲欧美日韩东京热| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 久久国内精品自在自线图片| 两个人的视频大全免费| 日韩一区二区三区影片| 看非洲黑人一级黄片| 别揉我奶头 嗯啊视频| 色吧在线观看| 成人欧美大片| 青青草视频在线视频观看| 亚洲国产日韩一区二区| 性色avwww在线观看| 大话2 男鬼变身卡| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 嘟嘟电影网在线观看| 国内揄拍国产精品人妻在线| 在线观看人妻少妇| 国产国拍精品亚洲av在线观看| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 在线a可以看的网站| 亚洲四区av| 日韩一本色道免费dvd| 色视频www国产| 精品久久久久久久久亚洲| 日本三级黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 男人添女人高潮全过程视频| 欧美性猛交╳xxx乱大交人| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区性色av| 少妇 在线观看| 国产 一区精品| 成人亚洲精品av一区二区| 99热网站在线观看| 久久这里有精品视频免费| 在线观看国产h片| 国产欧美亚洲国产| 亚洲精品国产av成人精品| 欧美精品人与动牲交sv欧美| 国产精品伦人一区二区| 九九久久精品国产亚洲av麻豆| 国产色爽女视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 中国国产av一级| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频 | 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 日本午夜av视频| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 欧美xxxx性猛交bbbb| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 一级毛片 在线播放| 岛国毛片在线播放| 日韩av免费高清视频| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 在线看a的网站| 亚洲精品国产av成人精品| 欧美区成人在线视频| 精品一区二区三区视频在线| 只有这里有精品99| 直男gayav资源| 九色成人免费人妻av| 亚洲性久久影院| 日日摸夜夜添夜夜爱| 国产午夜福利久久久久久| 久久久久性生活片| 精品一区二区免费观看| 欧美潮喷喷水| av国产精品久久久久影院| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕人妻熟人妻熟丝袜美| 亚州av有码| 99热这里只有是精品50| 亚洲av福利一区| 秋霞伦理黄片| 欧美国产精品一级二级三级 | 综合色丁香网| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 亚洲精品一二三| 视频中文字幕在线观看| 在线精品无人区一区二区三 | 国精品久久久久久国模美| 免费看光身美女| 69人妻影院| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 欧美+日韩+精品| 观看美女的网站| 精品少妇黑人巨大在线播放| 少妇裸体淫交视频免费看高清| kizo精华| 91久久精品国产一区二区三区| 亚洲av中文字字幕乱码综合| 欧美另类一区| 80岁老熟妇乱子伦牲交| 成人特级av手机在线观看| 亚洲人成网站在线观看播放| 国产一区二区亚洲精品在线观看| 成人欧美大片| 一级毛片电影观看| 国产精品人妻久久久久久| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| 六月丁香七月| 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 国产成人福利小说| 成年版毛片免费区| 最近2019中文字幕mv第一页| 国产精品秋霞免费鲁丝片| 亚洲av中文字字幕乱码综合| 天天躁日日操中文字幕| av网站免费在线观看视频| 亚洲av不卡在线观看| 午夜激情久久久久久久| 国产毛片a区久久久久| 亚洲综合精品二区| 亚洲真实伦在线观看| av黄色大香蕉| 国产精品精品国产色婷婷| 精品国产一区二区三区久久久樱花 | 亚洲综合精品二区| 国产黄频视频在线观看| 久久久久久久亚洲中文字幕| 色视频在线一区二区三区| 成年女人看的毛片在线观看| 一级av片app| 亚洲精品色激情综合| 国产探花极品一区二区| av女优亚洲男人天堂| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 一区二区三区免费毛片| av在线观看视频网站免费| 国产综合懂色| 18禁在线播放成人免费| 亚洲欧美一区二区三区黑人 | a级毛色黄片| 18禁裸乳无遮挡动漫免费视频 | 美女cb高潮喷水在线观看| 街头女战士在线观看网站| 一级爰片在线观看| av在线播放精品| 两个人的视频大全免费| 欧美高清性xxxxhd video| 久久久精品94久久精品| 99精国产麻豆久久婷婷| 女人被狂操c到高潮| 又粗又硬又长又爽又黄的视频| 看免费成人av毛片| 国产美女午夜福利| 国产精品av视频在线免费观看| 国产久久久一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 日韩av免费高清视频| 少妇的逼水好多| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱| 亚洲aⅴ乱码一区二区在线播放| 大陆偷拍与自拍| 热99国产精品久久久久久7| av网站免费在线观看视频| 99热这里只有是精品在线观看| eeuss影院久久| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 精品久久久久久久人妻蜜臀av| 在线观看美女被高潮喷水网站| 网址你懂的国产日韩在线| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 建设人人有责人人尽责人人享有的 | 精品久久久噜噜| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 丰满少妇做爰视频| 麻豆久久精品国产亚洲av| 建设人人有责人人尽责人人享有的 | 老女人水多毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产最新在线播放| 两个人的视频大全免费| 韩国高清视频一区二区三区| 久久久久精品久久久久真实原创| 国产日韩欧美亚洲二区| 日本猛色少妇xxxxx猛交久久| av在线亚洲专区| 久久97久久精品| 天堂中文最新版在线下载 | 特级一级黄色大片| 午夜老司机福利剧场| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 国产成人免费观看mmmm| 精品视频人人做人人爽| 观看美女的网站| 国产老妇女一区| 狂野欧美激情性bbbbbb| 欧美bdsm另类|