卜凡娜,楊赫然,孫興偉,董祉序,王海燕,杜曉宇
(1.遼寧省復(fù)雜曲面數(shù)控制造技術(shù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽(yáng) 110870;2.沈陽(yáng)工業(yè)大學(xué) 機(jī)械工程學(xué)院,遼寧 沈陽(yáng) 110870;3.沈陽(yáng)白云機(jī)械有限公司,遼寧 沈陽(yáng) 110027;4.中國(guó)石油遼陽(yáng)石油化纖公司 芳烴公司,遼寧 遼陽(yáng) 111003)
隨著螺桿泵、螺桿馬達(dá)等零件在各行各業(yè)的廣泛應(yīng)用,螺桿轉(zhuǎn)子的加工和測(cè)量技術(shù)變得尤為重要。激光測(cè)量技術(shù)由于具有測(cè)量效率高、測(cè)量時(shí)與工件不發(fā)生接觸等優(yōu)點(diǎn),在螺桿測(cè)量中得到普遍應(yīng)用。但是在測(cè)量過(guò)程中,由于加工和定位誤差的存在、檢測(cè)環(huán)境以及人為因素,都會(huì)導(dǎo)致測(cè)量信號(hào)中存在噪聲。為保證測(cè)量精度,需要對(duì)測(cè)量信號(hào)進(jìn)行去噪處理。
文獻(xiàn)[1]使用EMD方法對(duì)激光超聲測(cè)量獲得的缺陷信號(hào)進(jìn)行了分析。文獻(xiàn)[2]中使用小波閾值去除激光雷達(dá)接受回波信號(hào)中的噪聲。由此可見(jiàn),EMD算法與小波閾值常被應(yīng)用于激光距離信號(hào)的噪聲去除當(dāng)中。含有噪聲的信號(hào)經(jīng)過(guò)EMD處理后可得到相應(yīng)的固有模態(tài)函數(shù)(IMF),而噪聲主要存在于高頻IMF中。若只對(duì)其低頻IMF進(jìn)行重構(gòu)可達(dá)到去噪的目的,但同時(shí)會(huì)造成高頻IMF中的有用信息缺失。
本文提出一種EMD-β[3]和改進(jìn)閾值函數(shù)結(jié)合的方法對(duì)螺桿轉(zhuǎn)子的激光距離信號(hào)進(jìn)行去噪處理,以解決上述問(wèn)題。
EMD-β算法是在EMD-H[4]基礎(chǔ)上提出的,利用全局收斂法(GCM)與牛頓下降法來(lái)計(jì)算形狀參數(shù)β的估計(jì)值,提高算法的計(jì)算速度。牛頓下降法提供了二次收斂率,其表達(dá)式如下:
(1)
GCM是單調(diào)可微凸函數(shù)[5],其表達(dá)式如下:
(2)
其中:x為IMF輸入信號(hào);n為信號(hào)長(zhǎng)度。
另外,提供了一個(gè)漸進(jìn)的(1-α)%的置信區(qū)間針對(duì)方差的穩(wěn)定轉(zhuǎn)換[6],表示形式如下:
(3)
在使用小波閾值進(jìn)行去噪時(shí),首先選擇小波基,確定分解層數(shù);然后確定閾值大小,選擇函數(shù)對(duì)小波系數(shù)進(jìn)行分解;最后進(jìn)行小波重構(gòu)。
為了克服軟閾值與硬閾值的缺點(diǎn),在兩者基礎(chǔ)上提出了改進(jìn)小波閾值函數(shù),其表達(dá)式為:
(4)
(5)
其中:σ為噪聲標(biāo)準(zhǔn)差。
本文算法的步驟如下:
(1) 采用EMD對(duì)含噪信號(hào)進(jìn)行分解,得到其IMF分量。
(2) 通過(guò)EMD-β算法得到高頻IMF與低頻IMF的分界點(diǎn)。
(3) 使用改進(jìn)小波閾值函數(shù)對(duì)高頻IMF進(jìn)行去噪處理。
(4) 對(duì)去噪后的高頻IMF與未去噪的低頻IMF進(jìn)行重構(gòu),得到去噪信號(hào)。
仿真實(shí)驗(yàn)采用的工件為五頭螺桿轉(zhuǎn)子,螺桿大徑為112.8 mm,小徑為79.8 mm,導(dǎo)程為600 mm,左旋。激光位移傳感器測(cè)量原理如圖1所示。
圖1 激光位移傳感器測(cè)量原理
激光束AB的延長(zhǎng)線(xiàn)通過(guò)螺桿轉(zhuǎn)子軸心O,距離AB可以通過(guò)激光位移傳感器測(cè)得,距離AO為激光束發(fā)出位置到螺桿軸心距離,距離BO為螺桿轉(zhuǎn)子被測(cè)點(diǎn)到其軸心距離,其中AB=AO-BO。
由上述原理可知,假設(shè)激光位移傳感器采樣頻率為10 kHz,激光束發(fā)出位置與螺桿軸心距離為128 mm,螺桿轉(zhuǎn)速為1.26 rad/s,根據(jù)理論螺桿的廓形數(shù)據(jù),可以得到螺桿轉(zhuǎn)子激光位移傳感器測(cè)量的理論信號(hào),如圖2所示。
圖2 激光位移傳感器測(cè)量的理論信號(hào)
對(duì)理論信號(hào)添加信噪比SNR=60的噪聲,形成的含噪聲信號(hào)如圖3所示。
圖3 含噪信號(hào)
采用本文算法對(duì)含噪信號(hào)進(jìn)行處理。首先,對(duì)含噪信號(hào)進(jìn)行EMD分解,得到IMF分量;然后,經(jīng)過(guò)EMD-β的篩選,求得噪聲主要存在于IMF1~I(xiàn)MF7分量中,對(duì)高頻的IMF進(jìn)行改進(jìn)小波閾值去噪處理,如圖4所示;最后,將去噪后的高頻IMF信號(hào)與未去噪的低頻IMF進(jìn)行信號(hào)重構(gòu),得到去噪后新信號(hào),如圖5所示。將本文算法去噪后的信號(hào)與理論信號(hào)進(jìn)行對(duì)比,如圖6所示,結(jié)果顯示含噪信號(hào)中的噪聲得到有效的去除,與理論信號(hào)基本相同。
采用EMD-β和改進(jìn)小波閾值兩種算法分別對(duì)含噪信號(hào)進(jìn)行去噪處理,并與本文算法進(jìn)行對(duì)比,如圖7所示。由圖7可知:本文算法在去噪處理過(guò)程中,相對(duì)于前兩種算法波動(dòng)小,去噪效果更好。
圖4 去噪后的高頻IMF信號(hào)
圖5 EMD-β與改進(jìn)小波閾值聯(lián)合去噪信號(hào)
本文選取信噪比(SNR)和均方根誤差(RMSE)來(lái)對(duì)算法的去噪性能進(jìn)行評(píng)價(jià),計(jì)算公式如下:
(6)
(7)
3種去噪算法的計(jì)算結(jié)果如表1所示。從兩個(gè)評(píng)價(jià)指標(biāo)可以看出:本文算法比EMD-β和改進(jìn)小波閾值算法的去噪效果更好。
圖6 理論信號(hào)與本文算法去噪信號(hào)對(duì)比
圖7 3種去噪算法的去噪信號(hào)對(duì)比
表1 3種去噪算法評(píng)價(jià)指標(biāo)對(duì)比
本文基于EMD-β算法和改進(jìn)小波閾值函數(shù)算法提出一種新型去噪算法,并將該算法應(yīng)用于螺桿轉(zhuǎn)子
曲面的激光測(cè)量信號(hào)去噪處理。選用信噪比和均方根誤差作為評(píng)價(jià)指標(biāo),對(duì)EMD-β、改進(jìn)小波閾值方法與本文提出的算法進(jìn)行比較。比較結(jié)果表明:本文提出的EMD-β和改進(jìn)小波閾值算法相結(jié)合的算法在去噪性能方面優(yōu)于單一使用EMD-β或改進(jìn)小波閾值方法,對(duì)激光位移傳感器的測(cè)量信號(hào)去噪效果較好,具有一定的應(yīng)用價(jià)值。