馬前進(jìn) 郭士英 楊晶 董馳 仝春玥
摘????? 要:參閱了大量中外文文獻(xiàn)綜述了抽油桿柱力學(xué)特性研究成果。通過波動(dòng)方程分析、微分方程分析、簡(jiǎn)支梁模型分析、線性方程組分析、電學(xué)分析以及屈曲分析六個(gè)方面,比較詳盡地介紹了各個(gè)分析方法的優(yōu)缺點(diǎn)和適用范圍,對(duì)于從事相關(guān)工作或此研究的人員提供一定的參考。
關(guān)? 鍵? 詞:抽油桿;力學(xué)特性;受力分析;屈曲
中圖分類號(hào):TQ 520.5?????? 文獻(xiàn)標(biāo)識(shí)碼: A?????? 文章編號(hào): 1671-0460(2020)06-1193-07
A Review of Mechanical Properties of Sucker Rod String
MA Qian-jin1,2, GUO Shi-ying3, YANG Jing1,2, DONG Chi1,2, TONG Chun-yue1,2
(1. Key Laboratory of Education Ministry for Enhanced Oil and Gas Recovery, Northeast Petroleum University,
Daqing Heilongjiang 168318, China;
2. Northeast Petroleum University, Daqing Heilongjiang 168318,China;
3. Technical Center of Daqing Toutai Oilfield Development Limited Liability Company, Daqing Heilongjiang 168318, China)
Abstract: Through reviewing a large number of Chinese and foreign literatures, the research results of mechanical characteristics of sucker rod columns were introduced. The wave equation analysis, differential equation analysis, simple supported beam model analysis and linear equations analysis were discussed, and their advantages and disadvantages were analyzed.
Key words: Sucker rod; Mechanical properties; Force analysis; Buckling
自石油行業(yè)結(jié)束了以藤條打撈石油的階段以來,有桿抽油系統(tǒng)在很大程度上占據(jù)著采油工作的核心地位。而采油系統(tǒng)中最重要的一部分就是抽油桿,它是將曲柄的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為抽油泵柱塞往復(fù)運(yùn)動(dòng)的連接件。抽油桿的工作周期,決定著一口井的采油量。因而,對(duì)抽油桿柱力學(xué)特性的分析就顯得尤為重要。
1? 抽油桿損傷危害
在有桿抽油系統(tǒng)中,由于抽油桿處于幾千米深的地下,且井筒內(nèi)環(huán)境惡劣而時(shí)常發(fā)生抽油桿斷、漏、脫等事故,對(duì)油田正常生產(chǎn)帶來嚴(yán)重的影響。為了說明情況的嚴(yán)重性,這里引用Lozanc[1]等的一項(xiàng)對(duì)于塞羅拖龍油田中抽油桿失效的數(shù)據(jù),如圖1和圖2所示。
從圖中可以看出,抽油桿柱的失效比其他管柱失效程度都要大,而抽油桿柱在有桿采油系統(tǒng)中占據(jù)著十分重要的地位,這就要求對(duì)抽油桿的力學(xué)特性進(jìn)行詳細(xì)系統(tǒng)的分析,以更好的預(yù)測(cè)其使用性能,從而減少因抽油桿事故而造成的油田生產(chǎn)損失。
2? 抽油桿力學(xué)特性
2.1? 抽油桿波動(dòng)方程
2.1.1 ?直井中抽油桿特性
波動(dòng)方程主要是用來刻畫抽油桿柱的振動(dòng)特性,最成功的描述抽油桿動(dòng)力學(xué)的仿真模型是由Gibbs [2]在1936年提出的波動(dòng)方程。次年,Paslay P R[3]等利用能量法研究了抽油桿軸向力、力矩和重力作用下桿件的穩(wěn)定性。在此之后,人們開始對(duì)抽油桿的力學(xué)特性展開了大量的研究。Gibbs[4]等和Neely [5] 等給出的有桿抽油系統(tǒng)動(dòng)力學(xué)行為的波動(dòng)方程,可以用于垂直井抽油桿柱的設(shè)計(jì)和診斷,但對(duì)于方程的求解方面均存在不準(zhǔn)確性。
李桂喜[6]等在假設(shè)抽油桿柱為等直彈性桿的條件下,建立抽油桿柱的動(dòng)力學(xué)模型,選取一小段微元進(jìn)行受力分析,在考慮抽油桿阻尼存在的情況下建立抽油桿柱的振動(dòng)方程。
這一方程比Gibbs提出的方程在形式上要簡(jiǎn)單一些,但他對(duì)于方程的解法卻有其自身獨(dú)特的地方。李桂喜將相對(duì)運(yùn)動(dòng)和牽連運(yùn)動(dòng)相互疊加,給出抽油桿柱振動(dòng)的絕對(duì)位移響應(yīng)的數(shù)值解如下:
2.4? 抽油桿線性方程組
以上的分析不管是波動(dòng)方程中的偏微分還是微分方程,均要進(jìn)行十分復(fù)雜煩瑣的方程求解,在邊界條件十分復(fù)雜的情況下,經(jīng)常得不到收斂的結(jié)果。因此,一些研究者另辟蹊徑[27-31],利用Bergeron方法,用線性代數(shù)方程組代替波動(dòng)方程,建立抽油桿柱的動(dòng)力學(xué)模型。這里通過Miska[27]等的相關(guān)研究來介紹此種方法。Miska等提出了一種簡(jiǎn)單的抽油桿抽油系統(tǒng)模型,慮抽油桿柱的動(dòng)態(tài)行為和系統(tǒng)各部件與流動(dòng)流體之間的復(fù)雜相互作用,特別是抽油桿與流體在環(huán)空中的相互作用。
將抽油桿和流體的動(dòng)力方程用計(jì)算機(jī)程序編寫在一個(gè)一致的單元系統(tǒng)中,并在適當(dāng)?shù)某跏紬l件和邊界條件下同時(shí)求解。使用算例對(duì)其進(jìn)行精確性實(shí)驗(yàn),通過結(jié)果分析,其精確度是很高的,進(jìn)而驗(yàn)證了模型的正確性。
2.5? 抽油桿電學(xué)
許多不同的物理現(xiàn)象可以用相同或相似的方程來表示,這一事實(shí)使得在一個(gè)科學(xué)領(lǐng)域中發(fā)現(xiàn)的結(jié)果可以應(yīng)用于另一個(gè)科學(xué)領(lǐng)域。因?yàn)殡姎庀到y(tǒng)的微分方程與抽油桿柱的微分方程相似如下所示,因而可以將其作為研究抽油桿應(yīng)力的另一種可能方法。
這種研究抽油桿應(yīng)力的方法為確定抽油桿載荷提供了一種簡(jiǎn)便的方法。許多研究者[32-35]對(duì)其展開來研究,取得一定的進(jìn)展。早先Kemler[32]提出的工作原理圖見文獻(xiàn)[32],圖中線路代表了油泵的上、下沖程。在這個(gè)電路中,需要另外兩個(gè)整流器才能移動(dòng)油柱總是在同一方向發(fā)生。這是通過使用整流器線路中的電阻來實(shí)現(xiàn)的,該電阻允許電流通過油管短路。通過改變?cè)撟枇Γ梢允乖谙聸_程的桿線中通過的任何量的電流通過油路。雖然從現(xiàn)有設(shè)備的操作角度來看,在下沖程時(shí)泵送大量油并不實(shí)際和可取,但小排量等于抽油桿的面積乘以柱塞的移動(dòng)量,這是無(wú)法避免的。Warren [35]提出了一種在計(jì)算機(jī)上電路模擬完成抽油桿泵送系統(tǒng)的方法。模擬過程中可以進(jìn)行簡(jiǎn)單的調(diào)整,可以獲得抽油桿柱上力和位移的時(shí)間歷史。用集總參數(shù)近似法對(duì)連續(xù)抽油桿進(jìn)行模擬。文獻(xiàn)[35]中,抽油桿被分成13節(jié),每節(jié)的質(zhì)量M為桿總質(zhì)量的1/13;每一節(jié)由兩個(gè)彈簧和一個(gè)質(zhì)量組成。每個(gè)彈簧都有一個(gè)常數(shù),2K,且各截面均施加黏性阻尼。
給出了抽油桿柱的運(yùn)動(dòng)方程。
此項(xiàng)技術(shù)的問世,對(duì)于抽油桿的力學(xué)分析又多了一種方法。隨著人們對(duì)于井下抽油桿柱力學(xué)行為認(rèn)知的增加,對(duì)于桿柱的分析使得人們有更多選擇的余地。
2.6? 抽油桿屈曲
抽油桿在工作期間內(nèi),做往復(fù)循環(huán)運(yùn)動(dòng),即上沖程和下沖程。在上沖程中,抽油桿由于受到頂部光桿的拉力的作用而處于拉升狀態(tài);在下沖程中,桿柱底端受到下行阻力而使得抽油桿常常處于受壓狀態(tài),極易可能發(fā)生屈曲變形。因此對(duì)于抽油桿柱的這另一力學(xué)特性的分析也是必不可少的。
1950年, Lubinski [36]首先分析了約束在垂直管中的細(xì)長(zhǎng)桿的屈曲問題,并給出了臨界屈曲載荷的近似解。隨后,大批研究者[37-42]對(duì)其展開大量的研究, 推導(dǎo)了臨界屈曲力的改進(jìn)公式,從理論和實(shí)驗(yàn)兩方面研究了抽油桿柱的屈曲臨界載荷。在屈曲類型方面,螺旋屈曲和正弦屈曲的研究也在如火如荼地進(jìn)行。并且對(duì)于抽油桿柱的屈曲和后屈曲行為也做了不少研究。
李子豐[43]等推導(dǎo)出了在直角坐標(biāo)下弦的靜態(tài)非線性屈曲微分方程組。
經(jīng)過一系列假設(shè)和邊界條件的假設(shè)得出抽油桿柱的屈曲臨界載荷。
這兩個(gè)方程與前人給出的正弦屈曲經(jīng)典方程一致,證明了建立方程的正確性。據(jù)此可以判斷抽油桿柱的穩(wěn)定性,當(dāng)桿的載荷大于正弦屈曲的臨界載荷時(shí),桿處于穩(wěn)定狀態(tài);當(dāng)桿的載荷在正弦屈曲與螺旋屈曲的臨界載荷之間時(shí),桿處于正弦屈曲狀態(tài);當(dāng)桿的載荷小于螺旋屈曲的臨界載荷時(shí),桿處于螺旋屈曲狀態(tài)。
LUKASIEWICZ[44]等利用虛功原理討論了橫向和螺旋兩種類型的臨界屈曲力。
由公式可以看出螺旋屈曲力近似為橫向屈曲力的四倍,因而如果桿先橫向彎曲,它就會(huì)變形,并與油管接觸。如果壓縮力增加,桿就會(huì)螺旋地彎曲。桿在屈曲后發(fā)生偏轉(zhuǎn),并與油管接觸。但是此計(jì)算公式與前人得出的有很大差距,為了驗(yàn)證自己公式的正確性,Lukasiewicz做了相應(yīng)的實(shí)驗(yàn)。
Zhang[45]將屈曲桿簡(jiǎn)化為活動(dòng)鉸鏈,在抽油桿運(yùn)動(dòng)過程中,只有中性點(diǎn)以下的桿段會(huì)發(fā)生屈曲。研究中性點(diǎn)下面的段落,它的總長(zhǎng)度為lx,每個(gè)交叉都是Li,其力學(xué)模型見文獻(xiàn)[45]。利用能量法推導(dǎo)了抽油桿柱的屈曲方程
Xing[46]等利用有限元軟件ANSYS進(jìn)行軟件模擬屈曲變形,給出了不同柱塞載荷下的分析結(jié)果。直觀地展現(xiàn)了抽油桿在井筒內(nèi)的屈曲變形形狀,且可以從中直接得到桿柱屈曲的臨界載荷,但在實(shí)際中,由于抽油桿的細(xì)長(zhǎng)特點(diǎn),很難將全部長(zhǎng)度模擬,只能選取部分長(zhǎng)度定性的進(jìn)行分析。
Sun[47]等針對(duì)目前的抽油桿靜態(tài)屈曲理論無(wú)法對(duì)桿、管磨損現(xiàn)象給出合理解釋的問題,建立了抽油桿柱在空間屈曲變形激勵(lì)下的橫向振動(dòng)模型,提出了一種新的抽油桿橫向振動(dòng)的動(dòng)力分析方法,使用Newmark-β法和差分法的兩種方法結(jié)合起來求解得到數(shù)值解。并通過工程實(shí)例,繪制抽油桿橫向振動(dòng)軌跡線,井深越深,抽油桿柱的縱向振動(dòng)頻率越高,根據(jù)深度位置的振動(dòng)情況不同,可以采取相應(yīng)的防磨措施,對(duì)實(shí)際工程起到指導(dǎo)作用[48]。
3? 總結(jié)與展望
本文從最早分析抽油桿柱的波動(dòng)方程出發(fā),詳細(xì)綜述了波動(dòng)方程的發(fā)展歷程,從直井到斜井對(duì)波動(dòng)方程進(jìn)行修正,其求解方法從原來的正常解法到有限差分法再到后來的計(jì)算機(jī)求解,使得求解結(jié)果越來越精確。但由于波動(dòng)方程求需要有一定的知識(shí)背景,研究者又發(fā)展了微分方程分析方法,并對(duì)波動(dòng)方程的不足進(jìn)行了修正,考慮環(huán)空中有流體存在的情況,完善了抽油桿柱分析的不足。后來,隨著人們對(duì)于電學(xué)的認(rèn)知加深,又發(fā)展了抽油桿計(jì)算機(jī)電學(xué)分析方法。最后本文對(duì)抽油桿屈曲進(jìn)行了綜述,豐富了抽油桿柱力學(xué)特性分析內(nèi)容。隨著油田數(shù)字化的到來,未來抽油桿柱力學(xué)特性分析將更加智能化,分析結(jié)果也將更加精確,這對(duì)于油田提高采油量、降低成本具有重要的意義。
參考文獻(xiàn):
[1] LOZANC A, BOERI J, ZALAZAR B. Development and field experience of a new concept in sucker rods technology[J]. Journal of Canadian Petroleum Technology, 2005 (44): 12.
[2] GIBBS S G. Predicting the behavior of sucker rod pumping systems[J]. SPE J Paper, 1963,15(7):769–78.
[3] PASLAY P R, BOGY D B. The stability of a circular rod laterally constrained to be in contact with an inclined Circular cylinder[J] . JAppl Mech, 1964, 31 (4): 605-610.
[4] GIBBS S G. A general method for design and analysis of rod pumping system Performance [R]. SPE 6850, 1977.
[5] NEELY A B. API recommend? practice? for? design? calculation? for? sucker? rod? pumping system[S]. API RP 11L, Thirded, Washington, D. C., 1977.
[6] 李桂喜. 抽油桿柱振動(dòng)載荷分析[J]. 石油機(jī)械, 1995, 5 (1): 49-51.
[7] LIU Xiufu.An approach to the design calculation of sucker rod pumping systems in coalbed methane wells[J]. Mechanical Engineering, 2011, 24 (6): 983-991.
[8]EVERITT T A,WJENNINGS J.An improved finite:difference calculation of downhole dynamometer cards for sucker-rod pumps[J]. SPE Production Engineering, 1992, 7(1):121-127.
[9] LOLLBACK P A, WANG G Y, RAHMAN S S. An alternative approach to the analysis of sucker-rod? dynamics? in? vertical? and? deviated? wells[J].? Journal? of? Petroleum? Science? and Engineering, 1997, 17 (3): 313-320.
[10]楊敏, 汪濤, 沈奇,等. 螺桿泵采油抽油桿柱動(dòng)力學(xué)研究[J].油氣田地面工程, 2011, 30 (02): 10-12.
[11] LOLLBACK P A, WANG G Y, RAHMAN S S.An improved sucker rod pumping system model and swabbing parameters optimized design[J]. Mathematical Problems in Engineering, 2018,2018(5):1-15.
[12]LUKASIEWICZ S. Dynamic behavior of the sucker rod string in the inclined well[C]. SPE Production Operations Symposium, Oklahoma City:SPE, 1991.
[13]GIBBS, S G Design and diagnosis of deviated rod-pumped wells[J]. Journal of Petroleum Technology, 1992, 44 (7): 774-781.
[14]XU J, DOTY D R. A comprehensive rod-pumping model and its applications to vertical and deviated[R]. SPE Mid-Continent Operations Symposium, 28-31 March, Oklahoma City, Oklahoma, 1999.
[15]DOTY D R. An improved model for suck rod pumping[R]. SPE 10245, 1982.
[16]LUKASIEWICZ S A. Dynamic behavior of the sucker rod string in the inclined well[R]. SPE 21665, 1991.
[17] CHANCIN J E, PURCUPILE J C. A new model for studying oil well pumping installations [R]. SPE 16918, 1987.
[18]LEKIA S D, EVANS R D. A coupled rod and fluid dynamic model for predicting? the behavior of sucker-rod pumping systems[J]. SPE Production & Facilities, 1995, 10 (1): 26-33.
[19]MISKA S, SHARAKI A, RAJTAR J M.? A? simple? model? for? computer -aided optimization and design of sucker-rod pumping systems[J]. Journal of Petroleum Science and Engineering, 1997, 17 (1): 303-312.
[20]WANG D Y, LIU H Z. Dynamic modeling and analysis of sucker rod pumping system in a directional well[J]. Mechanism and Machine Science, 2017, 408 (1): 1115-1127.
[21]BELLOW D G,KUMAR A. Stress analysis of bent sucker rods[J]. Canadian Petroleum,1978,17(3):76-81.
[22]王鳳山, 朱君, 王素玲, 等. 抽油機(jī)井桿柱振動(dòng)載荷有限元分析[J]. 大慶石油地質(zhì)與開發(fā), 2006 (1): 85-87.
[23]朱君,史海峰,周瑞芬,等.基于瞬態(tài)動(dòng)力學(xué)分析的抽油桿柱動(dòng)態(tài)特性研究[J]. 系統(tǒng)仿真學(xué)報(bào), 2008 (16): 4261-4263.
[24]LYU J, XING M M. Characteristic analysis of longitudinal vibration sucker Rod strin g with variable equivalent stiffness[C]. The 4th? International Conference on Mechatronics and Mechanical Engineering, 2018.
[25]XIANG Z Y, DUAN Y T. The analysis of sucker rod string in directional well[R]. SPE 29153, 1994.
[26]晏祥慧, 趙文章. 地面驅(qū)動(dòng)螺桿泵空心抽油桿系統(tǒng)的優(yōu)化設(shè)計(jì)[J].石油機(jī)械, 2002: 15-18.
[27]MISKA S Z, KHODABANDEH A, RAJTAR J M. Computer-aided design and optimization of sucker Rod Pumping Systems[R]. SPE 26966, 1994.
[28]KHODABANDEH A, MISKA S. A new approach for modeling fluid inertia effects on sucker- rod pump performance and design[R]. SPE 24329, 1992.
[29]KHODABANDEH A, MISKA S. A new approach for modeling fluid inertia effects on sucker-rod pump performance and design[C] .SPE Rocky Mountain Regional Meeting,1992.
[30]MISKA S Z, KHODABANDEH A, RAJTAR J M. Computer-aided design and optimization of sucker rod pumping systems[R]. SPE,1994.
[31]Miska S, SharakiA, Rajtarb J M. A simple model for computer-aided optimization and design of Sucker rod pumping systems[J]. Journal of Petroleum Science and Engineering , 1997 (17) :3–4+303-312.
[32]KEMLER E. An investigation of experimental methods of determining? sucker-rod Loads[J]. Transactions of the AIME, 1936, 118 (1): 89-99.
[33]HALDERSON M H. Artificial brain is required to solve the sucker-rod pumping problem[J]. Drilling and Production Practice, 1953, 12 (1): 210-222.
[34]KEMLER E N. Hydraulic? pumping:? a? patent? and? literature? survey? of? hydraulic Pumping of oil wells[R]. Texas, USA: Summary Reports, Spring Park, MN, 1955.
[35]SNYDER W E,BOSSERT A J. Analog computer simulation of sucker rod pumping systems[C].SPE Rocky Mountain Joint Regional Meeting, 27-28 May, Denver, Colorado,1963.
[36]LUBINSKI, A.A study of the buckling of rotary drilling strings[C].In Drilling and Production Practice,1950.
[37]KWON Y W. Analysis of helical buckling[J]. SPE Drilling Engineering,1988,3(2):211-216.
[38]HE X J, KYLLINGTAD A. Helical buckling and Lock-up conditions for coiled tubingin curved wells[J]. SPE, 1993,10(1):10-15.
[39]SURYANARAYANA P V R, MCCANN R C. Experimented study of curnature and frictional effects on buckling[C]. Offshore Technology Conference, 2-5 May, Houston, Texas,1994.
[40]KYLLINGSTAD? A.? Buckling? of? tubular? strings? in? curved? wells [J].? Journal? of? Petroleum Science and Engineering, 1995, 12 (3): 209-218.
[41]LEA, J F, PATTILLO, P. D., STUDENMUND, W. R. Interpretation of calculated forces on sucker rods[J]. Society of Petroleum Engineers,1995, 10(1):41-45.
[42]MISKA S, CUNHA, J C.An analysis of helical buckling of tubulars subjected to axial and torsional loading in inclined wellbores[C]. Society of Petroleum Engineers, 1995.
[43]LI Z,LI J. Fundamental equations for dynamic analysis of rod and pipe string in oil-gas wells and application in static buckling analysis[J]. Journal of Canadian Petroleum Technology, 2002, 41 (5): 44-53.
[44]LUKASIEWICZ S A, KNIGHT C. On lateral and helical buckling of a rod in a tubing[J]. Journal of Canadian Petroleum Technology,2006, 45 (3): 17-21.
[45]ZHANG J M. Stress analysis and applications of sucker rod in deviated wells[J]. Applied Mechanics and Materials, 2014, 527: 69-76.
[46]XING M M. Response analysis of longitudinal vibration of sucker rod string considering rod buckling[J]. Advances in Engineering Software, 2016 (99): 49-58.
[47]SUN X R, DONG S M, LIU M S, et al. The simulation model of sucker rod string transverse vibration under the space buckling deformation excitation and rod-tubing eccentric wear in vertical wells[J]. Journal of Vibroengineering, 2018 , 20 (1): 283-299.
[48]印樹明, 趙洋, 崔明磊, 等. 低滲油田保護(hù)油氣研究[J]. 當(dāng)代化工, 2019, 48 (6): 1162-1165.