• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    層狀TI飽和半空間均布斜線荷載及孔隙水壓動力格林函數(shù)

    2020-08-13 07:29:41巴振寧段化貞梁建文
    振動工程學報 2020年4期

    巴振寧 段化貞 梁建文

    摘要: 基于Biot流體飽和多孔介質模型,采用動力剛度矩陣方法結合傅里葉變換,給出了層狀橫觀各向同性(TI)飽和半空間中均布斜線荷載及孔隙水壓的動力格林函數(shù)。方法首先將荷載作用層固定,在波數(shù)域內求得層內響應和固端反力,進而由剛度矩陣方法求得反加固端反力于整個層狀半空間而產(chǎn)生的響應,最后疊加層內解和固端反力解經(jīng)由傅里葉逆變換求得空間域內解。所給出的層狀TI飽和半空間格林函數(shù)為建立相應邊界元方法進而求解層狀TI飽和介質相關波動問題提供了一組完備基本解。通過與已發(fā)表的各向同性飽和結果和TI彈性結果進行對比,驗證了方法的正確性。進而給出了數(shù)值計算結果并進行了參數(shù)分析。結果表明:TI飽和介質與各向同性飽和介質對應的動力響應差異顯著,且介質的各向異性參數(shù)對動力響應有著重要影響。此外,荷載埋深越小,地表位移和孔壓波動更劇烈;介質滲透系數(shù)起到類似阻尼的作用,減小滲透系數(shù)可降低動力響應;隨著頻率的增大,位移、應力和孔壓的波動也更為劇烈。

    關鍵詞: 橫觀各向同性飽和介質; 層狀半空間; 動力剛度矩陣法; 格林函數(shù)

    中圖分類號: TU435 ?文獻標志碼: A ?文章編號: 1004-4523(2020)04-0784-012

    DOI:10.16385/j.cnki.issn.1004-4523.2020.04.017

    引 言

    動力荷載作用于半空間的響應問題(動力格林函數(shù))一直是地震工程、地震學和巖土工程等領域中的重要研究課題。自Lamb[1]開創(chuàng)性地采用回路積分方法給出了均勻彈性半空間表面或埋置集中荷載的動力格林函數(shù)之后,大量學者針對該問題開展了研究。如針對單相彈性介質,Achenbach[2],Aki和Richards[3],Miklowitz[4],Kausel[5]、劉中憲和梁建文[6]分別采用不同的方法研究了均勻和層狀半空間動力格林函數(shù)問題;針對兩相飽和多孔介質,在Biot[7-9]建立的流體飽和多孔介質彈性波傳播理論基礎上,Paul[10],Philippacopoulos[11-13],Senjuntichai和Rajapakse[14] 、Jin和Liu[15]研究了簡諧荷載作用于均勻飽和多孔半空間的動力響應問題。Lu和Hanyga[16]使用傳播矩陣法,Knopoff[17],Rajapakse和Senjuntichai[18],Liang和You[19-20]利用動力剛度矩陣法給出了層狀飽和半空間的動力格林函數(shù)。

    值得指出地是以上研究均將半空間介質假定為各向同性(單相彈性或兩相飽和)。然而,由于長期風化和沉積作用,天然巖土體表現(xiàn)出明顯的橫觀各向異性(TI)性質(水平與豎向材料參數(shù)存在差異)[21-22]。目前亦有諸多學者針對單相TI半空間的動力格林函數(shù)進行了研究。Rajapakse和Wang[23]給出了均勻TI半空間作用簡諧荷載時的二維格林函數(shù)。Liu等[24]研究了TI彈性半空間的軸對稱波傳播問題。Wang和Liao[25]提出了各種埋置荷載作用于均勻TI半空間的位移和應力閉合解。Shodja和Eskandari[26]解決了軸對稱簡諧荷載作用于上覆TI土層半空間的動力響應問題。Khojasteh等[27]借助勢函數(shù),推導了均勻TI半空間的非軸對稱動力格林函數(shù)。Ai等[28-30]提出了一種解析層元法求解了層狀TI半空間的軸對稱、非軸對稱和平面應變情況的動力響應問題。

    值得指出,上述研究仍限于單相彈性TI介質。然而很多情況下,巖土不僅是TI的,而且是流體飽和的(濱海地區(qū)),將巖土體視為TI飽和多孔介質更為合理。目前關于TI飽和介質中波動問題的研究還很少。Taguchi和Kurashige[31]利用Kupradze方法結合Fourier-Hankel變換求解了階梯狀點源荷載作用于TI飽和全空間的動力格林函數(shù)。何芳社等[32]研究了TI飽和半空間地基上圓環(huán)板的簡諧振動問題。最近Ba等[33]求解了二維層狀TI飽和半空間表面和內部作用簡諧荷載的動力響應問題。

    鑒于TI飽和半空間(尤其是層狀TI飽和半空間)中動力格林函數(shù)研究還很少,本文在文獻[33]的基礎上,采用剛度矩陣方法結合傅里葉變換給出了層狀TI飽和半空間中作用均布斜線荷載及孔隙水壓的動力格林函數(shù)。所求得的層狀TI飽和半空間動力格林函數(shù),為建立相應邊界元方法進而求解層狀TI飽和介質相關波動問題提供了一組完備基本解。斜線荷載動力格林函數(shù)由Wolf[34]首次于各向同性彈性半空間中給出,進而由Liang和You[19-20]拓展到了各向同性飽和半空間,由Ba等[35]拓展到了單相TI半空間。研究表明以均布斜線荷載動力格林函數(shù)為基本解的邊界元方法,相較于以集中荷載動力格林函數(shù)為基本解的邊界元方法具有荷載可以直接施加在真實邊界上而無奇異性的優(yōu)點,因而精度較高且對復雜邊界有著更好的適應性[36]。

    本文首先求解了TI飽和多孔介質波動方程,給出了層狀TI飽和半空間中均布斜線荷載及孔隙水壓動力格林函數(shù)的求解公式;然后對給出的格林函數(shù)的正確性進行了驗證,并以均勻TI飽和半空間和單一TI飽和土層半空間中作用均布斜線荷載及孔隙水壓模型為例,進行了數(shù)值計算分析,研究了介質各向異性參數(shù)、界面透水條件、荷載埋深和滲透率等對動力響應的影響;最后給出了本文的結論。

    1 模型與計算方法

    如圖1所示,均布斜線荷載作用于層狀TI飽和半空間內部。層狀TI飽和半空間由N層水平TI飽和土層和其下的TI飽和半空間組成,介質均由Biot[7-9]飽和多孔介質模型描述。土層之間以及土層與其下半空間之間考慮為完全接觸(位移、應力和孔壓連續(xù)),各土層厚度為dn(n=1-N)。層狀TI飽和半空間滿足表面零應力邊界條件和無窮遠輻射條件,同時本文考慮兩種透水條件,分別為排水條件(地表完全透水)和不排水條件(地表完全不透水)。沿x和z向的均布荷載密度為px0和pz0,孔壓密度為pf0,斜線與x軸的夾角為θ。

    LiuZhongxian,LiangJianwen.SolutiontodynamicGreensfunctionforthree-dimensionalconcentratedloadsintheinteriorofviscoelasticlayeredhalf-space[J].ChineseJournalofTheoreticalandAppliedMechanics,2013,34(6):579-589.

    [7]BiotMA.Theoryofpropagationofelasticwavesinafluid-saturatedporoussolid.I.Low-frequencyrange[J].TheJournaloftheAcousticalSocietyofAmerica,1956,28(2):168.

    [8]BiotMA.Theoryofpropagationofelasticwavesinafluid-saturatedporoussolid.II.Higherfrequencyrange[J].TheJournaloftheAcousticalSocietyofAmerica,1956,28(2):179-191.

    [9]BiotMA.Mechanicsofdeformationandacousticpropagationinporousmedia[J].JournalofAppliedPhysics,1962,33(4):1482-1498.

    [10]PaulS.Onthedisturbanceproducedinasemi-infiniteporoelasticmediumbyasurfaceload[J].PureandAppliedGeophysics,1976,114(4):615-627.

    [11]PhilippacopoulosAJ.Lambsproblemforfluid-saturated,porousmedia[J].BulletinoftheSeismologicalSocietyofAmerica,1988,78(2):908-923.

    [12]PhilippacopoulosAJ.Wavesinpartiallysaturatedmediumduetosurfaceloads[J].JournalofEngineeringMechanics,1988,114(10):1740-1759.

    [13]PhilippacopoulosAJ.Buriedpointsourceinaporoelastichalf-space[J].JournalofEngineeringMechanics,1997,123(8):860-869.

    [14]SenjuntichaiT,RajapakseR.DynamicGreen'sfunctionsofhomogeneousporoelastichalf-plane[J].JournalofEngineeringMechanics,1994,120(11):2381-2404.

    [15]JinB,LiuH.Dynamicresponseofaporoelastichalfspacetohorizontalburiedloading[J].InternationalJournalofSolidsandStructures,2001,38(44-45):8053-8064.

    [16]LuJF,HanygaA.Fundamentalsolutionforalayeredporoushalfspacesubjecttoaverticalpointforceorapointfluidsource[J].ComputationalMechanics,2005,35(5):376-391.

    [17]KnopoffL.Amatrixmethodforelasticwaveproblems[J].BulletinoftheSeismologicalSocietyofAmerica,1964,54(1):431-438.

    [18]RajapakseR,SenjuntichaiT.Dynamicresponseofamulti-layeredporoelasticmedium[J].EarthquakeEngineering&StructuralDynamics,1995,24(5):703-722.

    [19]LiangJ,YouH.Dynamicstiffnessmatrixofaporoelasticmulti-layeredsiteanditsGreensfunctions[J].EarthquakeEngineeringandEngineeringVibration,2004,3(2):273-282.

    [20]LiangJ,YouH.Greensfunctionsforuniformlydistributedloadsactingonaninclinedlineinaporoelasticlayeredsite[J].EarthquakeEngineeringandEngineeringVibration,2005,4(2):233-241.

    [21]PickeringDJ.Anisotropicelasticparametersforsoil[J].Geotechnique,1970,20(3):271-276.

    [22]AtkinsonJH.AnisotropicelasticdeformationsinlaboratorytestsonundisturbedLondonClay[J].Geotechnique,1975,25(2):357-374.

    [23]RajapakseR,WangY.Green'sfunctionsfortransverselyisotropicelastichalfspace[J].JournalofEngineeringMechanics,1993,119(9):1724-1746.

    [24]LiuK,LiX,SunX.Anumericalmethodforaxisymmetricwavepropagationproblemofanisotropicsolids[J].ComputerMethodsinAppliedMechanicsandEngineering,1997,145(1-2):109-116.

    [25]WangCD,LiaoJJ.Elasticsolutionsforatransverselyisotropichalf-spacesubjectedtoburiedasymmetric-loads[J].InternationalJournalforNumericalandAnalytical[JP2]MethodsinGeomechanics,1999,23(2):115-139.[JP]

    [26]ShodjaHM,EskandariM.Axisymmetrictime-harmonicresponseofatransverselyisotropicsubstrate-coatingsystem[J].InternationalJournalofEngineeringScience,2007,45(2-8):272-287.

    [27]KhojastehA,RahimianM,EskandariM,etal.Asymmetricwavepropagationinatransverselyisotropichalf-spaceindisplacementpotentials[J].InternationalJournalofEngineeringScience,2008,46(7):690-710.

    [28]AiZY,LiZX.Time-harmonicresponseoftransverselyisotropicmultilayeredhalf-spaceinacylindricalcoordinatesystem[J].SoilDynamicsandEarthquakeEngineering,2014,66:69-77.

    [29]AiZY,LiZX,CangNR.Analyticallayer-elementsolutiontoaxisymmetricdynamicresponseoftransverselyisotropicmultilayeredhalf-space[J].SoilDynamicsandEarthquakeEngineering,2014,60:22-30.

    [30]AiZY,ZhangYF.Planestraindynamicresponseofatransverselyisotropicmultilayeredhalf-plane[J].SoilDynamicsandEarthquakeEngineering,2015,75:211-219.

    [31]TaguchiI,KurashigeM.Fundamentalsolutionsforafluid-saturated,transverselyisotropic,poroelasticsolid[J].InternationalJournalforNumericalandAnalyticalMethodsinGeomechanics,2002,26(3):299-321.

    [32]何芳社,黃義,郭春霞.橫觀各向同性飽和彈性半空間地基上圓環(huán)板的簡諧振動[J].力學季刊,2010,31(1):124-130.

    HeFangshe,HuangYi,GuoChunxia.Harmonicavibrationofannularplatesontransverselyisotropicsaturatedporoushalfspace[J].ChineseQuarterlyofMechanics,2010,31(1):124-130.

    [33]BaZN,KangZQ,LeeVW.Planestraindynamicresponsesofamulti-layeredtransverselyisotropicsaturatedhalf-space[J].InternationalJournalofEngineeringScience,2017,119:55-77.

    [34]WolfJP.DynamicSoil-StructureInteraction[M].EnglewoodCliffs:Prentice-Hall,1985.

    [35]BaZ,KangZ,LiangJ.In-planedynamicGreensfunctionsforinclinedanduniformlydistributedloadsinamulti-layeredtransverselyisotropichalf-space[J].EarthquakeEngineeringandEngineeringVibration,2018,17(2):293-309.

    [36]LiangJ,YouH,LeeVW.ScatteringofSVwavesbyacanyoninafluid-saturated,poroelasticlayeredhalf-space,modeledusingtheindirectboundaryelementmethod[J].SoilDynamicsandEarthquakeEngineering,2006,26(6-7):611-625.

    [37]LiuY,LiuK,TanimuraS.Wavepropagationintransverselyisotropicfluid-saturatedporoelasticmedia[J].JSMEInternationalJournalSeriesASolidMechanicsandMaterialEngineering,2002,45(3):348-355.

    Abstract:BasedontheBiotstheoryofsaturatedporoelasticmedium,theGreensfunctionsofuniformlydistributedinclinedloadsandporefluidpressureinamulti-layeredtransverselyisotropic(TI)saturatedhalf-spacearederivedbyusingtheexactdynamicstiffnessmatrixmethodcombinedwiththeFouriertransform.First,theloadedlayerisfixed.Sothedynamicresponseofthelayerandreactionforcesofthefixedendcanbederivedinwavenumberdomain.Next,withoppositeofreactionforcesoffixedendbeingappliedtothewholesystem,thedynamicstiffnessmatrixmethodisadoptedtoobtainthedynamicresponseofthewholesystem.Finally,thedynamicresponseinspacedomaincanbesolvedbyperformingtheinverseFouriertransformonthesummationoftheloadedlayerresponseandreactionresponse.TheGreensfunctionsforamulti-layeredTIsaturatedhalf-spacearepresented,whichprovidesacompletesetofbasicsolutionsfortheestablishmentofthecorrespondingboundaryelementmethodandthensolvingthescatteringproblemofthelayeredTImedium.ThegivenGreensfunctionscanbedegeneratedintosolutionsofisotropicsaturatedandTIelasticmedia.BycomparingwiththepublishedisotropicsaturateandTIelasticresults,thecorrectnessofthemethodisverified.Thenthenumericalresultsaregivenandtheparametersareanalyzedindetail.TheresultsshowthatthedynamicresponsesofTIsaturatedmediumandisotropicsaturatedmediumaresignificantlydifferent,andtheTIparametersofthemediumhaveanimportantinfluenceonthedynamicresponse.Thefluctuationofsurfacedisplacementandporepressurearemoreviolentwithalowerburieddepthofload.Thepermeabilitycoefficientofthemediumhasasimilareffecttothemediumdamping.Withtheincreaseoffrequency,thefluctuationofdisplacement,stressandporepressurebecomesmoreviolent.

    Keywords:transverselyisotropicsaturatedporoelasticmedium;multi-layeredhalf-space;dynamicstiffnessmatrixmethod;Green′sfunction

    郑州市| 龙州县| 建宁县| 新密市| 扎兰屯市| 孝义市| 新干县| 宁阳县| 凌源市| 邵武市| 长沙市| 瑞安市| 汶上县| 南江县| 郑州市| 郎溪县| 威信县| 独山县| 龙州县| 万荣县| 阳泉市| 运城市| 沙田区| 郑州市| 柯坪县| 大悟县| 鄱阳县| 山阴县| 天祝| 安龙县| 卫辉市| 永春县| 扎兰屯市| 荆门市| 龙井市| 奎屯市| 新田县| 虎林市| 垫江县| 桃园市| 云和县|