• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LIE-TROTTER FORMULA FOR THE HADAMARD PRODUCT *

    2020-08-02 05:11:48JingWANG王靜
    關(guān)鍵詞:王靜

    Jing WANG (王靜) ?

    School of Information, Beijing Wuzi University, Beijing 101149, China E-mail: wangjingzzumath@163.com

    Yonggang LI (李永剛)

    College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China E-mail: liyonggang914@126.com

    Huafei SUN (孫華飛)

    School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China Beijing Key Laboratory on MCAACI, Beijing 100081, China E-mail: huafeisun@bit.edu.cn

    Abstract Suppose that A and B are two positive-definite matrices, then, the limit of (Ap/2BpAp/2)1/p as p tends to 0 can be obtained by the well known Lie-Trotter formula. In this article, we generalize the usual product of matrices to the Hadamard product denoted as ? which is commutative, and obtain the explicit formula of the limit (Ap? Bp)1/p as p tends to 0. Furthermore, the existence of the limit of (Ap? Bp)1/p as p tends to +∞ is proved.

    Key words Lie-Trotter formula; reciprocal Lie-Trotter formula; Hadamard product; positive-definite matrix

    1 Introduction

    Let M(n,C) denote the space of all n×n matrices with complex entries, H(n) denote the vector space of Hermitian n×n matrices, and H+(n) denote the set of n×n positive-definite matrices. For X, Y ∈ M(n,C), the well-known Lie-Trotter formula, as originally established in [1, 2], is

    The Lie-Trotter formula can easily be modified to symmetric form ([3]), especially, when restricted to matrices A, B ∈H+(n), the formula (1.1) can be rephrased as

    A similar formula holds for the limit of(Ap?Bp)2/pas p tends to 0,where A?B is the geometric mean of A and B ([4]). In [5, 6], the authors considered the explicit formula of the limit of(Ap/2BpAp/2)1/pas p tends to+∞, which is called the reciprocal Lie-Trotter formula,and this formula can be obtained by the log-majorization relation ([7]).

    It is known that for any two positive-definite matrices A, B, the Hadamard product of A and B denoted by A ?B is also a positive-definite matrix ([8]). For A, B ∈H+(n), T. Ando settled affirmatively the conjecture of Johnson and Bapat on the Hadamard product ([9])

    where λi(A) are the eigenvalues of A, and λ1(A) ≥λ2(A) ≥···≥λn(A). In [10], by studying the eigenvalues of(Ap?Bp)1/pfor p ∈(0,1],G.Visick presented a number of intervening terms for inequality (1.3). Besides, to progress further on the Lie-Trotter formula (1.2), we find that the limit of (Ap?Bp)1/pas p tends to 0 is related to formula (1.2). That is, according to the latter case for the Hadamard product, the Lie-Trotter formula can be derived. Within this motivation, we investigate the Lie-Trotter problem that the limit of (Ap?Bp)1/pas p →0 for positive-definite matrices A and B, as well as the reciprocal Lie-Trotter problem. It is interesting that the explicit Lie-Trotter formula for the Hadamard product is obtained,and the existence of the reciprocal Lie-Trotter formula for the Hadamard product is proved.

    The remainder of the article is organized as follows. In Section 2,we review the fundamental notions and definitions, and show some important conclusions of operator-monotone function.The Lie-Trotter formula for the Hadamard product is obtained in Section 3. In Section 4, we prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    2 Preliminaries

    In this section, we recall some notions and definitions from matrix analysis, and introduce some important results of the operator-monotone function, which are used through the article(refer to [11–15]).

    Let Cnbe the n-dimensional complex vector space with the inner product

    where x,y ∈Cn, and superscript xHdenotes the conjugated transpose of x.

    We say A ∈H(n) is positive-semidefinite, that is, A ≥0, if A satisfies

    and positive-definite, that is, A>0, if

    We denote that A ≥B, B ∈H(n), if

    2.1 The Hadamard product and the tensor product

    For any two matrices A=(aij), B =(bij) in M(n,C), the Hadamard product (also known as the Schur product or the entrywise product) A ?B is defined as ([16, 17])

    It is noticed that the Hadamard product is different from the usual matrix product, and the most important is the commutativity of Hadamard multiplication, that is, A ?B =B ?A.

    An important way of putting matrices together is to construct their tensor product (sometimes called the Kronecker product). If A, B ∈M(n,C), then, their tensor product is defined as

    The matrix A ?B is an n2-square matrix. The following formulas for tensor product are well known ([18])

    In [19, 20], the authors showed that the Hadamard product is a principal submatrix of the tensor product, and the main result can be summarized as follows.

    Lemma 2.1For any A, B ∈M(n,C), then,

    where Q?= [E11,··· ,Enn], and the n×n matrices Eiifor i = 1,··· ,n have a 1 in position(i,i) and zeros elsewhere.

    Remark 2.2The n2×n matrix Q satisfies the property Q?Q=I,where I is an n-square identity matrix.

    2.2 The operator-monotone function

    The operator-monotone function is a generalization of the real-valued function, and the special case is the matrix monotone function. For A ∈H+(n), using the spectral theorem, we have ([21])

    where U is a unitary matrix.

    For the function f(x) (x ∈(0,+∞)), we define the matrix function as

    where the operator-monotone function satisfies that

    In 1933,K.L?wner successfully characterized the operator monotonicity in term of positive semi-definiteness of the so-called L?wner matrices. A part of the deep theory of L?wner is summarized in the following lemma. A complete account of L?wner’s theory can be found in the book [22].

    Lemma 2.3The following statements are equivalent for a real-valued continuous function f on (0,+∞):

    (i) f is operator-monotone;

    (ii) fadmits an analytic continuation to the whole domain Im z≠0 in such a way that Im f(z)·Im z ≥0;

    (iii) f admits an integral representation

    where α is a real number,β is a non-negative real number,and dμ(t)is a finite positive measure on (?∞,0].

    According to L?wner’s theory, T. Ando gave a characterization for the operator-monotone function associated with the normalized positive linear map in [23].

    Lemma 2.4If a function f is operator-monotone on (0,+∞), then, the map A →f(A)is concave on H+(n). And if Φ is a normalized positive linear map on H(n), then, for any A ∈H+(n)

    3 Lie-Trotter Formula for the Hadamard Product

    This section aims at investigating the Lie-Trotter problem for the Hadamard product, and finding the explicit expression. At the same time, the proving method is applied to derived the well-known Lie-Trotter formula.

    3.1 Limit of (Ap ?Bp)1/p as p →0

    At first, we prove the following lemma.

    Lemma 3.1If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to (2.1) and (2.2), we have

    From now on, we will prove

    that is, for the Frobenius norm,

    As (A ?B)H=AH?BH=A ?B, we have

    From the fact that Q?Q=I, we have

    and

    Noticing that the functions tr ln(Q?(A ?B)pQ), and tr ln2(Q?(A ?B)pQ) are continuously differentiable with respect to p, using the L′H?ospital’s rule, we obtain

    and

    Let g(p) = tr ln(Q?(A ?B)pQ)· (Q?(A ?B)pQ)?1· Q?(A ?B)pln(A ?B)Q. As g(p) is continuously differentiable and

    equality (3.7) can be recast as

    where

    Furthermore, we have

    where

    Thus, according to (3.5), (3.6), and (3.9), we have

    which verifies conclusion (3.4). Therefore, (3.1) can be obtained from (3.2) and (3.3).

    The main result of this article is the next theorem showing the Lie-Trotter formula for the Hadamard product.

    Theorem 3.2If A, B ∈H+(n) and p ∈(0,+∞), then, the following result holds

    ProofAccording to Lemma 3.1,and noticing that the exponential function is continuous,we have

    This completes the proof of Theorem 3.2.

    According to Theorem 3.2, we can obtain the following corollary.

    Corollary 3.3If A1,A2,··· ,Am∈H+(n)(m ≥2)and p ∈(0,+∞),the following result holds,

    3.2 Application

    Note that A, B >0,

    The Lie-Trotter formula for the Hadamard product can be rewritten as

    The result (3.10) has been studied to present some intervening terms for the log-majorization relation (1.3) as follows (see [10])

    In the following part, we provide a link between Theorem 3.2 and the Lie-Trotter formula(1.2).

    Let A, B ∈H+(n). By using the spectral decomposition, we have

    Thus,

    In fact, by calculations, we have

    Furthermore,

    According to (3.12), (3.11) is recast as

    4 Reciprocal Lie-Trotter Formula for the Hadamard Product

    In this section, we will prove the existence of the reciprocal Lie-Trotter formula for the Hadamard product. For A,B ∈H+(n), using the spectral theorem, we have

    where U = (uij) and V = (vij) are unitary matrices. Firstly, we show that the limit of(Ap?Bp)1/pas p →+∞exists for the special case that A and B are diagonal matrices of H+(n), that is

    In fact, noticing that

    we have

    If A and B are any positive-definite matrices,we have not obtained the accurate expression of the limit (Ap?Bp)1/pas p tends to +∞. However, the following result gives the existence of the reciprocal Lie-Trotter formula for the Hadamard product.

    Theorem 4.1If A,B ∈H+(n) and p ∈(0,+∞), then, the following limit exists

    ProofLetBecause the mapis a normalized positive linear map, we have

    which shows that Q?is operator-monotone. By Lemma 2.4, for the operator-monotone map f :, p ∈(1,+∞), we have

    We can verify that (Q?Q)1/pis monotonically increasing with respect to p ∈(1,+∞). In fact, let(s ∈(1,+∞)), then, (4.3) can be rewritten as

    Furthermore, we have

    As

    and Ap≤(A)I, Bp≤(B)I for any p ∈(0,+∞), according to (4.2) and (4.5), we can obtain

    and

    where λ1(A) and λ1(B) are the maximum eigenvalues of A and B, respectively.

    Consequently, for p ∈(1,+∞), from (4.6), we have

    From now on, we will prove the existence of the following limit

    In fact, we denote the following Schatten 1-norm as

    where si(A) (i = 1,··· ,n) are the singular values of A, and s1(A) ≥s2(A) ≥··· ≥sn(A),especially, for A ∈H+(n),

    where λi(A) are the eigenvalues of A, and λ1(A)≥λ2(A)≥···≥λn(A).

    Because (Q?(A ?B)pQ)1/pfor p ∈(1,+∞) is monotonically increasing, that is, for 1

    Notice that if A ≤B, then, tr A ≤tr B. Thus, according to (4.9), we have

    that is, ?ε>0, ?N >0, when P1,P2>N, then,

    Therefore, we have

    where the first equality in (4.11)holds because (Q?(A ?B)pQ)1/pis an operator-monotone for p ∈(1,+∞). This verifies conclusion (4.8). From formula (3.2), we finishe the proof of the existence of (4.1).

    From the proof of Theorem 4.1, we can obtain the following corollaries.

    Corollary 4.2If A1,A2,··· ,Am∈H+(n) (m ≥2) and p ∈(0,+∞), then, the following limit exists

    Corollary 4.3If A1,A2,··· ,Am∈H+(n) (m ≥2), then, the following inequality of the H?lder type holds

    In this article,we can not give the explicit expression of the reciprocal Lie-Trotter formula,but we can obtain the first eigenvalue of the reciprocal Lie-Trotter formula for the Hadamard product (refer to [6]).

    Proposition 4.4If A, B ∈H+(n), then, the first eigenvalue of the following limit

    ProofLetBy the definition of matrix function, we have

    On the one hand, we have

    thus,

    On the other hand, noting that

    we have

    According to (4.12) and (4.13), we have

    猜你喜歡
    王靜
    Reciprocal transformations of the space–time shifted nonlocal short pulse equations
    Fusionable and fissionable waves of(2+1)-dimensional shallow water wave equation
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    王靜博士簡(jiǎn)介
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks?
    鳳崗鬼事
    RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
    国产男人的电影天堂91| 美女扒开内裤让男人捅视频| 90打野战视频偷拍视频| 国产1区2区3区精品| 国产av精品麻豆| 日本91视频免费播放| 久久久久久久大尺度免费视频| videos熟女内射| 男男h啪啪无遮挡| 视频区图区小说| 一个人免费在线观看的高清视频 | 久久精品国产亚洲av香蕉五月 | 国产福利在线免费观看视频| 久久久精品免费免费高清| 麻豆乱淫一区二区| 精品国产国语对白av| 欧美日韩福利视频一区二区| 国产精品久久久人人做人人爽| 黄网站色视频无遮挡免费观看| 免费在线观看日本一区| 99久久精品国产亚洲精品| 性色av乱码一区二区三区2| 精品人妻在线不人妻| 99re6热这里在线精品视频| 中文字幕制服av| 国产成+人综合+亚洲专区| 亚洲avbb在线观看| 如日韩欧美国产精品一区二区三区| 天天添夜夜摸| 午夜福利乱码中文字幕| 老司机靠b影院| 午夜日韩欧美国产| 国产激情久久老熟女| 一区在线观看完整版| 亚洲中文av在线| 日本欧美视频一区| 啦啦啦啦在线视频资源| 日日夜夜操网爽| 国产亚洲欧美精品永久| tocl精华| 国内毛片毛片毛片毛片毛片| 亚洲视频免费观看视频| 亚洲精品国产av蜜桃| 老司机在亚洲福利影院| 日日夜夜操网爽| 国产精品免费大片| 一进一出抽搐动态| 天天添夜夜摸| 美女高潮喷水抽搐中文字幕| videos熟女内射| 热re99久久精品国产66热6| 亚洲专区字幕在线| 久久久久久久久免费视频了| 亚洲国产av影院在线观看| 麻豆av在线久日| 亚洲av电影在线进入| 国产欧美日韩一区二区三 | 五月开心婷婷网| 两个人免费观看高清视频| 中文字幕制服av| 狂野欧美激情性bbbbbb| 搡老熟女国产l中国老女人| 青青草视频在线视频观看| 大码成人一级视频| 香蕉国产在线看| 亚洲欧美精品自产自拍| 在线精品无人区一区二区三| 十八禁高潮呻吟视频| 麻豆乱淫一区二区| 夜夜骑夜夜射夜夜干| 黄色怎么调成土黄色| 老司机午夜福利在线观看视频 | 久久久水蜜桃国产精品网| 免费观看人在逋| 国产亚洲精品久久久久5区| 日韩一卡2卡3卡4卡2021年| 中文字幕人妻熟女乱码| 国产成人精品在线电影| 两性夫妻黄色片| av网站免费在线观看视频| 国产精品偷伦视频观看了| 爱豆传媒免费全集在线观看| 一区二区三区四区激情视频| 午夜激情久久久久久久| 老司机午夜十八禁免费视频| 青草久久国产| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久免费视频了| 亚洲专区国产一区二区| 亚洲精品中文字幕在线视频| 国产在视频线精品| 乱人伦中国视频| 另类亚洲欧美激情| 欧美激情 高清一区二区三区| 国产欧美日韩精品亚洲av| 男女边摸边吃奶| 亚洲精品乱久久久久久| 欧美久久黑人一区二区| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 两个人免费观看高清视频| 丝袜美腿诱惑在线| 成人黄色视频免费在线看| 视频在线观看一区二区三区| 女警被强在线播放| 国产成人一区二区三区免费视频网站| 精品久久久久久电影网| 成人国语在线视频| 9色porny在线观看| 99久久99久久久精品蜜桃| 黄网站色视频无遮挡免费观看| 国产日韩欧美在线精品| 亚洲av电影在线进入| 欧美精品一区二区免费开放| 久久久久视频综合| 黄色怎么调成土黄色| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三 | 亚洲免费av在线视频| 丝袜美足系列| 超碰97精品在线观看| 成年动漫av网址| 男女免费视频国产| 操美女的视频在线观看| 又黄又粗又硬又大视频| 91字幕亚洲| av在线老鸭窝| 大型av网站在线播放| 99热网站在线观看| 男女高潮啪啪啪动态图| 我的亚洲天堂| 97精品久久久久久久久久精品| 日韩精品免费视频一区二区三区| 国产男女超爽视频在线观看| 十八禁人妻一区二区| 18禁裸乳无遮挡动漫免费视频| 女人爽到高潮嗷嗷叫在线视频| 精品人妻1区二区| 18禁国产床啪视频网站| 国产在线视频一区二区| 久久精品亚洲av国产电影网| 亚洲九九香蕉| 国产精品偷伦视频观看了| av天堂久久9| 黄色视频在线播放观看不卡| av在线老鸭窝| 国产免费福利视频在线观看| 成人国产av品久久久| 欧美精品一区二区免费开放| 欧美国产精品一级二级三级| av不卡在线播放| 久久久精品区二区三区| 蜜桃在线观看..| 欧美日本中文国产一区发布| 亚洲美女黄色视频免费看| 欧美久久黑人一区二区| 欧美日韩黄片免| 高清视频免费观看一区二区| 久久久国产成人免费| 精品欧美一区二区三区在线| 窝窝影院91人妻| 亚洲自偷自拍图片 自拍| 一区二区三区激情视频| 欧美日韩av久久| 亚洲欧美清纯卡通| 欧美 亚洲 国产 日韩一| 岛国在线观看网站| 成人av一区二区三区在线看 | 欧美精品一区二区大全| 久久久久久久久久久久大奶| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 两个人看的免费小视频| www.精华液| 国产日韩一区二区三区精品不卡| 9191精品国产免费久久| 每晚都被弄得嗷嗷叫到高潮| 另类亚洲欧美激情| 天天操日日干夜夜撸| 1024视频免费在线观看| 麻豆av在线久日| 国产熟女午夜一区二区三区| 亚洲欧美成人综合另类久久久| av片东京热男人的天堂| 国产男人的电影天堂91| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 丁香六月天网| 亚洲第一av免费看| 午夜福利在线免费观看网站| 欧美在线一区亚洲| 久久国产精品大桥未久av| 国产亚洲精品久久久久5区| 免费在线观看黄色视频的| 国产男女内射视频| 老司机在亚洲福利影院| 性色av一级| 成年av动漫网址| 国产精品麻豆人妻色哟哟久久| 久久久国产精品麻豆| 女性生殖器流出的白浆| 99精国产麻豆久久婷婷| 电影成人av| 日韩制服骚丝袜av| 亚洲伊人久久精品综合| 一区在线观看完整版| 欧美另类亚洲清纯唯美| 一级毛片精品| 悠悠久久av| av天堂在线播放| 国产三级黄色录像| 国产精品偷伦视频观看了| www.熟女人妻精品国产| 国产成人精品久久二区二区免费| 建设人人有责人人尽责人人享有的| 国产亚洲av高清不卡| 亚洲国产欧美日韩在线播放| 亚洲精品国产av蜜桃| 丁香六月天网| 青春草视频在线免费观看| 啦啦啦免费观看视频1| h视频一区二区三区| 亚洲视频免费观看视频| 亚洲国产日韩一区二区| 美女脱内裤让男人舔精品视频| 69av精品久久久久久 | 日韩三级视频一区二区三区| 国产男女超爽视频在线观看| 国产福利在线免费观看视频| 汤姆久久久久久久影院中文字幕| 麻豆国产av国片精品| 国产精品秋霞免费鲁丝片| 大码成人一级视频| 久久国产精品人妻蜜桃| 高清欧美精品videossex| 欧美精品亚洲一区二区| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 大型av网站在线播放| 欧美亚洲 丝袜 人妻 在线| 男人操女人黄网站| 国产一区二区在线观看av| 熟女少妇亚洲综合色aaa.| 亚洲av电影在线观看一区二区三区| 日日爽夜夜爽网站| 无限看片的www在线观看| 精品福利观看| 婷婷成人精品国产| 丝瓜视频免费看黄片| 啦啦啦免费观看视频1| 欧美黄色片欧美黄色片| 久久国产精品大桥未久av| 伊人亚洲综合成人网| 一区在线观看完整版| 狂野欧美激情性xxxx| 国产精品一区二区在线不卡| 国产成人a∨麻豆精品| 精品福利观看| 18禁观看日本| 国产真人三级小视频在线观看| 欧美老熟妇乱子伦牲交| 老司机影院毛片| 丝袜人妻中文字幕| 国产成人av教育| 亚洲精品国产一区二区精华液| 淫妇啪啪啪对白视频 | 久久久久久久国产电影| 国产成人系列免费观看| 亚洲成av片中文字幕在线观看| 丝袜美腿诱惑在线| 成人手机av| 久久久久久亚洲精品国产蜜桃av| 男女高潮啪啪啪动态图| 一级毛片精品| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 19禁男女啪啪无遮挡网站| 亚洲黑人精品在线| 国产精品秋霞免费鲁丝片| av一本久久久久| 91九色精品人成在线观看| 国产视频一区二区在线看| 亚洲精品一区蜜桃| 久久亚洲国产成人精品v| 丝袜美腿诱惑在线| 男人操女人黄网站| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 亚洲专区国产一区二区| videos熟女内射| 十八禁网站网址无遮挡| 纵有疾风起免费观看全集完整版| 久久香蕉激情| 日本猛色少妇xxxxx猛交久久| 国产成人a∨麻豆精品| 精品免费久久久久久久清纯 | 老熟妇乱子伦视频在线观看 | a级片在线免费高清观看视频| 国产男女超爽视频在线观看| 免费人妻精品一区二区三区视频| 性少妇av在线| 制服人妻中文乱码| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 欧美97在线视频| 国产成人精品在线电影| 国产精品偷伦视频观看了| 91麻豆av在线| 大片免费播放器 马上看| 激情视频va一区二区三区| 国产一区有黄有色的免费视频| 99国产精品免费福利视频| 久久久久久久久久久久大奶| 色婷婷av一区二区三区视频| 精品国产乱子伦一区二区三区 | 精品国产乱码久久久久久男人| 青草久久国产| 国产精品欧美亚洲77777| 高清欧美精品videossex| 纯流量卡能插随身wifi吗| a级片在线免费高清观看视频| 日本a在线网址| 亚洲国产av影院在线观看| 国产高清videossex| 我要看黄色一级片免费的| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产 | 亚洲av日韩在线播放| 极品人妻少妇av视频| 50天的宝宝边吃奶边哭怎么回事| 一边摸一边抽搐一进一出视频| 极品少妇高潮喷水抽搐| 老汉色av国产亚洲站长工具| 久久天躁狠狠躁夜夜2o2o| 少妇的丰满在线观看| 中文字幕高清在线视频| 欧美亚洲日本最大视频资源| 国产精品国产av在线观看| 性色av乱码一区二区三区2| 日韩制服骚丝袜av| 黄色毛片三级朝国网站| 建设人人有责人人尽责人人享有的| 成年动漫av网址| 亚洲七黄色美女视频| 老司机午夜十八禁免费视频| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 最近中文字幕2019免费版| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看. | 一级毛片电影观看| 久久久久国产精品人妻一区二区| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 久久热在线av| 亚洲国产精品成人久久小说| 天天影视国产精品| 亚洲九九香蕉| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 亚洲成av片中文字幕在线观看| 国产精品成人在线| 正在播放国产对白刺激| 一级a爱视频在线免费观看| 亚洲国产看品久久| 欧美xxⅹ黑人| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 国产成人av教育| 亚洲成人手机| 亚洲av成人不卡在线观看播放网 | 国产高清videossex| 侵犯人妻中文字幕一二三四区| 男女无遮挡免费网站观看| 国产福利在线免费观看视频| 色综合欧美亚洲国产小说| 老司机影院成人| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 久久久久网色| 国产主播在线观看一区二区| 老鸭窝网址在线观看| svipshipincom国产片| 日韩 亚洲 欧美在线| 国产精品久久久人人做人人爽| 视频在线观看一区二区三区| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 亚洲男人天堂网一区| 国产精品免费大片| 婷婷色av中文字幕| 国产一区二区激情短视频 | 另类精品久久| 人人妻人人澡人人爽人人夜夜| 色综合欧美亚洲国产小说| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 国产精品偷伦视频观看了| 久久精品国产综合久久久| 国产野战对白在线观看| 男女之事视频高清在线观看| av网站在线播放免费| 国产精品1区2区在线观看. | a级毛片在线看网站| www.熟女人妻精品国产| 国产亚洲一区二区精品| 在线精品无人区一区二区三| 99热国产这里只有精品6| 精品国产国语对白av| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 男人舔女人的私密视频| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 精品卡一卡二卡四卡免费| 一个人免费看片子| 欧美在线一区亚洲| 搡老乐熟女国产| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 国产成人免费观看mmmm| 久久精品亚洲熟妇少妇任你| 亚洲精品久久成人aⅴ小说| 麻豆av在线久日| 精品少妇久久久久久888优播| 亚洲av成人不卡在线观看播放网 | 啦啦啦在线免费观看视频4| 精品亚洲乱码少妇综合久久| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 宅男免费午夜| 99久久国产精品久久久| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 亚洲av日韩在线播放| 99国产精品99久久久久| 韩国高清视频一区二区三区| 亚洲精品中文字幕一二三四区 | 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 色综合欧美亚洲国产小说| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 国产精品1区2区在线观看. | 亚洲欧美一区二区三区久久| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| 嫩草影视91久久| tocl精华| 黄色视频在线播放观看不卡| 黄频高清免费视频| 精品国产国语对白av| 黄色视频不卡| 我的亚洲天堂| 一本一本久久a久久精品综合妖精| 一区在线观看完整版| 国产成+人综合+亚洲专区| 国产精品国产av在线观看| 日韩制服骚丝袜av| 99热全是精品| 国内毛片毛片毛片毛片毛片| 久久综合国产亚洲精品| 亚洲欧美色中文字幕在线| 男人操女人黄网站| 欧美激情久久久久久爽电影 | www日本在线高清视频| 在线天堂中文资源库| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 日韩欧美免费精品| 天堂8中文在线网| 精品一区二区三卡| 亚洲人成电影免费在线| 亚洲欧美精品综合一区二区三区| 久久女婷五月综合色啪小说| 中国国产av一级| 在线观看一区二区三区激情| 中文字幕人妻熟女乱码| 午夜激情av网站| 99精国产麻豆久久婷婷| 黄色a级毛片大全视频| 精品视频人人做人人爽| bbb黄色大片| 国产精品国产三级国产专区5o| 男女之事视频高清在线观看| 国产av国产精品国产| 他把我摸到了高潮在线观看 | 成年女人毛片免费观看观看9 | 国产亚洲精品久久久久5区| 50天的宝宝边吃奶边哭怎么回事| 日韩电影二区| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 伊人亚洲综合成人网| 国产亚洲精品一区二区www | 男人爽女人下面视频在线观看| 国产91精品成人一区二区三区 | 久久综合国产亚洲精品| 国产精品二区激情视频| 制服人妻中文乱码| 午夜福利,免费看| 黄色a级毛片大全视频| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 欧美在线黄色| 三级毛片av免费| 日韩中文字幕欧美一区二区| 欧美xxⅹ黑人| 欧美国产精品va在线观看不卡| 国产成人精品无人区| 黄色视频在线播放观看不卡| 亚洲精品国产精品久久久不卡| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 91精品三级在线观看| 国产成人啪精品午夜网站| 亚洲伊人色综图| 欧美日韩视频精品一区| av免费在线观看网站| 欧美激情高清一区二区三区| 9191精品国产免费久久| 女人久久www免费人成看片| 一级毛片精品| 国产在线免费精品| 国产99久久九九免费精品| 中文字幕人妻丝袜一区二区| 午夜久久久在线观看| 午夜福利视频在线观看免费| 性少妇av在线| 搡老岳熟女国产| 可以免费在线观看a视频的电影网站| 97在线人人人人妻| e午夜精品久久久久久久| 久久久久久久大尺度免费视频| 亚洲欧美成人综合另类久久久| 国产日韩欧美在线精品| 成人影院久久| 美女中出高潮动态图| av又黄又爽大尺度在线免费看| 一个人免费看片子| 久久久久视频综合| 十八禁高潮呻吟视频| 最黄视频免费看| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 女警被强在线播放| 国产精品熟女久久久久浪| 一个人免费在线观看的高清视频 | 午夜日韩欧美国产| 久久久久精品人妻al黑| 中国国产av一级| 久久久精品免费免费高清| 18禁裸乳无遮挡动漫免费视频| 亚洲专区中文字幕在线| 国产一区二区三区av在线| 黑人巨大精品欧美一区二区mp4| 久久99一区二区三区| 无限看片的www在线观看| 免费高清在线观看日韩| 日日摸夜夜添夜夜添小说| 在线精品无人区一区二区三| 久久ye,这里只有精品| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 亚洲免费av在线视频| 国产在线一区二区三区精| 国产极品粉嫩免费观看在线| 妹子高潮喷水视频| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区mp4| av超薄肉色丝袜交足视频| 曰老女人黄片| 精品福利永久在线观看| 91九色精品人成在线观看| 91成年电影在线观看| 99国产精品99久久久久| 国产三级黄色录像| 国产1区2区3区精品| 十八禁网站免费在线| 久久久久久久久免费视频了| av视频免费观看在线观看| 91麻豆av在线| 精品一区二区三卡| 欧美另类亚洲清纯唯美| 日韩电影二区| 国产成人啪精品午夜网站| 午夜福利乱码中文字幕| 多毛熟女@视频| 久久精品国产亚洲av香蕉五月 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 成年女人毛片免费观看观看9 | 国产有黄有色有爽视频| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区 | 一区二区三区乱码不卡18| 美女脱内裤让男人舔精品视频| 在线观看舔阴道视频| 大陆偷拍与自拍| 一本大道久久a久久精品| 欧美日韩亚洲综合一区二区三区_| 一本综合久久免费| 亚洲精品中文字幕一二三四区 | 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91| 9热在线视频观看99|