• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON APPROXIMATE EFFICIENCY FOR NONSMOOTH ROBUST VECTOR OPTIMIZATION PROBLEMS?

    2020-08-02 05:29:30TadeuszANTCZAK

    Tadeusz ANTCZAK

    Faculty of Mathematics and Computer Science, University of Lód′z, Banacha 22, 90-238 Lódz, Poland E-mail: tadeusz.antczak@wmii.uni.lodz.pl

    Yogendra PANDEY

    Department of Mathematics, Satish Chandra College, Ballia 277001, India

    Vinay SINGH

    Department of Mathematics, National Institute of Technology, Aizawl-796012, Mizoram, India

    Shashi Kant MISHRA

    Department of Mathematics, Banaras Hindu University, Varanasi-221005, India

    Abstract In this article,we use the robust optimization approach(also called the worst-case approach) for finding ?-efficient solutions of the robust multiobjective optimization problem defined as a robust (worst-case) counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions.Namely, we establish both necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the considered robust multiobjective optimization problem. We also use a scalarizing method in proving these optimality conditions.

    Key words Robust optimization approach; robust multiobjective optimization; ?-efficient solution; ?-optimality conditions; scalarization

    1 Introduction

    Robust optimization methodology (the worst-case approach) is a powerful approach for examining and solving optimization problems under data uncertainty. In robust optimization,the data is uncertain but bounded, that is, the data is varying in a given uncertainty set,and we choose the best solution among the robust feasible ones; for detail, we refer to [1–6,9, 12, 20–26, 28, 29, 31, 32, 38]. Ben-Tal et al. [5] introduced the concept of the uncertain linear optimization problem and its robust counterpart, and discussed the computational issues. Also, Bertsimas et al. [6] characterized the robust counterpart of a linear mathematical programming problem with uncertainty set described by an arbitrary norm. Jeyakumar and Li[23, 24] presented basic theory and applications of an uncertain linear mathematical program problem. Jeyakumar and Li [25] derived a robust theorem of the alternative for parameterized convex inequality systems using conjugate analysis and introduced duality theory for convex mathematical programming problems in the face of data uncertainty via robust optimization.Jeyakumar et al. [26] considered a nonlinear optimization problem with face of data uncertainty and established robust KKT necessary and sufficient optimality conditions for a robust minimizer. Furthermore, Jeyakumar et al. [26] introduced robust duality theory for generalized convex mathematical programming problems in the face of data uncertainty within the framework of robust optimization and established robust strong duality between an uncertain nonlinear primal optimization problem and its uncertain Lagrangian dual.

    Robust optimization for solving multiobjective optimization problems with uncertain data is a current topic of research. Kuroiwa and Lee [31] defined three kind of robust efficient solutions and established necessary optimality theorems for weakly and properly robust efficient solutions for the considered uncertain multiobjective optimization problem. Recently, Chuong[9]established the necessary optimality conditions and,under the generalized convexity assumptions, sufficient optimality conditions for a (weakly) robust efficient solution of the considered uncertain multiobjective programming problem. Besides, robust multiobjective optimization with optimality defining by a partial order has been widely applied to solve many practical problems like internet routing, portfolio optimization, energy production scheduling in microgrids, transport, agriculture, industry-specific applications, health care applications, among others (see, for example, [3, 7, 8, 10, 14–17, 27, 30]).

    In recent years, many authors have established epsilon optimality conditions for several kind of optimization problems (see, for example, [13, 18, 19, 32–36, 39, 40]). Lee and Lee [32]established optimality theorems for epsilon solutions of the scalar robust convex optimization problem.

    In this article, we treat the robust approach for the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions which is the worst case approach for finding approximate efficient solutions for such multiobjective optimization problems. In this approach, for the considered uncertain multiobjective optimization problem, its robust (worst-case) counterpart is constructed as an associated robust multiobjective optimization problem. Then, motivated by works of Kuroiwa and Lee [31] and Lee and Lee[32],we derive the ?-efficiency theorem for the considered uncertain multiobjective programming problem by examining its robust (worst-case) counterpart. In other words, we prove necessary and sufficient optimality conditions for a feasible solution to be an ?-efficient solution (an approximate efficient solution) of the robust multiobjective optimization problem.Moreover, we use a scalarizing method in proving these optimality results. In this method,for the robust multiobjective optimization problem, its associated scalar optimization problem is constructed. Then, we prove the equivalence between an approximate efficient solution of the robust multiobjective optimization problem and an approximate solution of its associated scalar optimization problem constructed in the scalarizing method which is used in this article.The ?-efficiency theorem established in this article for the considered uncertain multiobjective programming problem is illustrated by an example of such a vector optimization problem with the uncertainty in both objective and constraint functions.

    2 Preliminaries

    The following convention for equalities and inequalities will be used throughout this article.

    For any vectors x=(x1,...,xn)T,y =(y1,...,yn)Tin Rn,we give the following definitions:

    (i) x=y if and only if xi=yifor all i=1,...,n;

    (ii) x

    (iii) x ≦y if and only if xi≦yifor all i=1,...,n;

    (iv) x ≤y if and only if x ≦y and

    In this section, we provide some definitions and results that we shall use in the sequel.

    The inner product in Rnis defined by 〈x,y〉:=xTy for all x,y ∈Rn: The set C is convex whenever λx+(1 ?λ)y ∈C for all x,y ∈C and any λ ∈[0,1]. The set C ?Rnis a cone if αC ?C for all α ≧0. The indicator function δC:Rn→R ∪{+∞} of a set C is defined by

    A function f :Rn→R∪{+∞}is said to be convex on Rnif the inequality f(λx+(1?λ)y)≦λf(y)is satisfied for all x,y ∈Rnand any λ ∈[0,1].The effective domain of f,denoted by domf,is defined by domf :={x ∈Rn:f(x)<+∞}.The epigraph of the function f :Rn→R∪{+∞},denoted by epif, is defined by

    Let f :Rn→R∪{+∞}be a convex function. The ?-subdifferential of f at∈domf is defined by

    Let f be a proper convex function on Rn. Its conjugate function f?: Rn→R ∪{+∞} is defined at x?∈Rnby

    Clearly, f?is a proper lower semicontinuous convex function and, moreover,

    Proposition 2.1([25, 32]) Let f1: Rn→R be a continuous convex function and f2:Rn→R ∪{+∞} be a proper lower semicontinuous convex function. Then,

    Proposition 2.2([25]) Let fi,i ∈I,(where I is an arbitrary index set)be a proper lower semicontinuous convex function on Rn.Furthermore,assume that there exists∈Rnsuch that. Then,

    Now, let gj(·,vj) : Rn×Rq→R,vj∈Vj?Rq,j = 1,...,m, be convex functions. Then,the set

    is called a robust characteristic cone.

    Proposition 2.3([25]) Let gj: Rn×Rq→R,j = 1,...,m, be a continuous function,such that for each vj∈Vj?Rq,gj(·,vj) is a convex function. Then, the following set

    is a cone.

    Proposition 2.4([25]) Let gj: Rn×Rq→R,j = 1,...,m, be continuous functions and, for each j = 1,...,m,Vj?Rqbe a convex set. Furthermore, assume that, for each vj∈Vj,gj(·,vj) is a convex function on Rnand, for each x ∈Rn,gj(x,·) is a concave function on Vj. Then,

    is a convex cone.

    Proposition 2.5([21, 32]) Let f : Rn→R ∪{+∞} be a proper lower semicontinuous convex function and∈domf. Then,

    Proposition 2.6([25]) Let gj:Rn×Rq→R,j =1,...,m,be continuous functions such that, for each vj∈Vj?Rq,gj(·,vj) be a convex function on Rn. Furthermore, assume that each set Vj,j = 1,...,m, is compact, and there exists∈Rnsuch that gj(,vj) < 0 for any vj∈Vj,j =1,...,m. Then, the set

    is closed.

    3 ?-Optimality Conditions

    In this section, we derive both necessary and sufficient optimality conditions for a feasible solution to be an ?-robust efficient solution of the considered uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions by examining its robust (worst-case) counterpart, that is, its associated robust multiobjective programming problem.

    In this article, we consider an uncertain multiobjective programming problem defined as follows:

    where fi: Rn×Rp→R,i = 1,...,s, and gj: Rn×Rp→R,j = 1,...,m, are continuous functions and ui∈Ui,vj∈Vj, are uncertain parameters,that is,the data vectors uiand vjare not known exactly at the time when the solution has to be determined, Uiand Vjare convex compact subsets of Rpand Rq, respectively.

    Hence, the robust counterpart (RMP) of the uncertain multiobjective programming problem (UMP) is defined as the following multiobjective programming problem:

    Let us denote by S the set of all feasible solutions for the robust multiobjective programming problem (RMP), that is, S ={x ∈Rn:gj(x,vj)≦0,j =1,...,m,?vj∈Vj}.

    Definition 3.1A point x ∈Rnis a robust feasible solution of the considered uncertain robust multiobjective programming problem (RMP) if gj(x,vj)≦0,j =1,...,m,?vj∈Vj.

    Now,we give the definition of ?-efficiency(approximate efficiency)for the defined uncertain robust multiobjective programming problem (RMP) which is, at the same time, a robust ?efficient solution of the original uncertain multiobjective programming problem (UMP).

    Definition 3.2(?-efficient solution of (RMP)) Let ? ∈Rs,? ≧0 be given. A point∈S is said to be an ?-efficient solution of the robust multiobjective programming problem (RMP)(thus, a robust ?-efficient solution of the considered uncertain multiobjective programming problem (UMP)) if there is no a feasible solution x of (RMP) such that

    In this article, we shall assume that, for any ? ∈Rs,? ≧0, the set of ?-efficient solutions of the robust multiobjective programming problem (RMP) is nonempty.

    Now, for the considered uncertain robust multiobjective programming problem(RMP), we define its associated scalar optimization problem.

    Now, we give the definition of a γ-optimal solution of the scalar optimization problem(SMRP?).

    Definition 3.3Let γ be a given nonnegative real number. A feasible pointof the scalar optimization problem (SMRP?) is said to be a γ-optimal solution of the scalar optimization problem (SMRP?) if the inequality

    holds for all feasible solutions of the problem (SMRP?).

    Now, we prove the equivalency between the problems (RMP) and (SMRP?).

    Lemma 3.4Let ? ≧0 be given. Then,∈S is an ?-efficient solution of (RMP) if and only ifis a γ-optimal solution of (SMRP?), where

    ProofLetbe an ?-efficient solution of(RMP). Asis an ?-efficient solution of(RMP),by Definition 3.2, there is no other feasible solution x ∈S such that

    This means that there is no x ∈satisfying both (3.1) and (3.2). Then, by (3.1) and (3.2),it follows that the inequality

    is not fulfilled for any x ∈. Thus,by Definition 3.3,this means thatis a γ-optimal solution of (SMRP?).

    Now, we extend the result established by Jeyakumar and Li (Theorem 2.4 [25]) to the vectorial case.

    Lemma 3.5Let fi(·,ui),i = 1,...,s, be a convex and continuous function and gj:Rn×Rn→R,j =1,...,m, be a continuous function such that, for each vj∈Vj, where Vjis a compact subset of Rq,gj(·,vj) is a convex function. Furthermore, assume that S is nonempty.Then, exactly one of the following two statements holds:

    ProofAssume that condition (ii) is fulfilled. Then, the following relation

    By Proposition 2.2, it follows that

    Then, by Proposition 2.1, (3.7) is equivalent to

    Thus, by the definition of the epigraph, we have

    Hence, by the definition of the conjugate function, (3.9) is equivalent to

    By the definition of an indicator function, it follows that δA?(x) = 0 for any x ∈. Hence,(3.10) is equivalent to F(x) ≧0 for any x ∈. Thus, we have shown that the case when the condition (ii) is fulfilled is equivalent to the fact that the condition (i) is not satisfied. This completes the proof of this lemma.

    Now, we use Lemma 3.5 to prove the next result.

    Theorem 3.6Let fi: Rn×Rp→R,i=1,...,s, be continuous functions such that, for each ui,fi(·,ui) is a convex function. Also, let gj: Rn×Rq→R,j = 1,...,m, be continuous functions such that, for each vj∈Rq,gj(·,vj) is a convex function. Furthermore, assume that the set

    is closed and convex. Then,is a γ-optimal solution of (SMRP?), if and only if there existsuch that the following inequality

    ProofLetbe a γ-optimal solution of(SMRP?). Then,by Definition 3.2,it follows that the inequality F(x) ≧F()?γ holds for all x ∈, whereLet H(x)=F(x)?F()+γ. Then, by the above inequality, the inequality

    Using the definition of the function H, (3.13) can be re-written as follows:

    Thus, (3.14) gives

    Again by using the definition of the conjugate function, (3.15) yields

    By(3.12),it follows that the condition(i) in Lemma 3.5 is not satisfied. Hence,by Lemma 3.5,it follows that the condition (ii) is fulfilled, that is, the relation

    holds. By assumption, the set

    is closed and convex. Thus, (3.17) gives

    By (3.18), it follows that there existsuch that the relation

    holds. Then, there exist t?∈Rn,a ≧0,∈Rn,bi≧0,i = 1,...,s,∈Rn, and cj≧0,j =1,...,m, such that

    Hence, the above relation yields, respectively,

    and

    By (3.19), it follows that

    Combining(3.20)and(3.21),and by the definition of a conjugate function,then we obtain that the relation

    holds for any x ∈Rn. Then, (3.22) yields

    By the definition of a conjugate function for the functionswe have

    By the definition of the function F, it follows that the inequality

    Conversely, assume that there exist≧0,i = 1,...,s,∈Vj,j = 1,...,m, such that inequality (3.11) is fulfilled for any x ∈. As≧0,i = 1,...,s,≧0,j = 1,...,m, and x ∈, (3.11) implies that

    Using Lemma 3.4 and Lemma 3.5, we prove the following ?-efficiency theorem for the considered robust multiobjective programming problem (RMP).

    Theorem 3.7(?-efficiency theorem) Let fi: Rn×Rp→R,i = 1,...,s, be continuous functions such that, for each ui, every function fi(·,ui) is convex. Also, let gj: Rn×Rp→R,j =1,...,m, be continuous functions such that, for each vj∈Rq, every function gj(·,vj) is convex. Furthermore, assume that the setis closed and convex. Then, the following statements are equivalent:

    (i) x ∈S is an ?-efficient solution of the robust multiobjective programming problem(RMP);

    and

    ProofThe equivalency between the conditions (i) and (ii) follows by Theorem 3.6.

    Now, we prove the equivalency between the conditions (ii) and (iii).

    Now, we prove the equivalency of conditions (iii) and (iv).

    Let us assume that the condition (iii) is fulfilled, that is, (3.18) is satisfied. Hence, by(3.18), it follows that there existsuch that the relation

    holds. Then, by Proposition 2.5, it follows that there exist≧0,i=1,...,s,≧0,∈Vj,j =1,...,m, such that

    holds. The above relation implies equivalently that there existsuch that

    and

    Relation (3.25) is equivalent to the fact that there existj =1,...,m, such that

    Hence, (3.27) and (3.26) are precisely the condition (iv).

    Thus, the proof of this theorem is completed.

    In order to illustrate the results established in Theorem 3.7, we give the example of an uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions.

    Example 3.8Consider the following uncertain multiobjective programming problem with the uncertainty in both objective and constraint functions defined as follows:

    where u1∈U1= [0,1],u2∈U2= [0,1],v1∈V1= [], v2∈V2= [?1,0] are uncertain parameters. Its robust counterpart,that is,the uncertain multiobjective programming problem(RMP1), is defined as follows:

    Condition (i)Note that the following inequalities, if at least one of them is strict,

    are not satisfied for any feasible solutionof the robust multiobjective programming problem (RMP1). Hence, by Definition 3.2,= (0,) is, in fact, an ?-efficient solution of(RMP1).

    Condition (ii)LetHence,. Note that the following inequalityis satisfied for all feasible solutions of the associated scalar optimization problem(SRMP?)defined for the robust multiobjective programming problem(RMP).Then,by Definition 3.3,=(0,12)is a γ-optimal solution of the problem (SRMP?).

    Condition (iii)By the definition of the conjugate function, we have

    Hence, by the definition of the epigraph of a function, we have

    By the definition of the epigraph of a function, Proposition 2.1, and (2.4), we have

    Now, we check the condition (iii). Thus, we have

    Condition (iv)In order to check condition (iv), we set

    Taking into account the calculated above ?-subdifferentials of the appropriate functions, we have

    Hence, it follows that

    Furthermore, note that also the second relation in condition (iv) is fulfilled at the considered case. Indeed, we haveThen, we have shown that condition (iv) is also fulfilled.

    4 Conclusions

    In this article, the robust approach is used for finding approximate efficient solutions of the considered multiobjective programming problem with the uncertainty in both objective and constraint functions. Namely, we study the ?-efficiency theorem for the considered uncertain convex multiobjective programming problem by examining its robust(worst-case)counterpart.In other words,we establish both necessary and sufficient optimality conditions for an ?-efficient solution of the robust multiobjective optimization problem. In proving this result, we also use a scalarizing method. Furthermore, the ?-efficiency theorem established in this article is illustrated by the example of a nondifferentiable multiobjective programming problem with the uncertainty in both objective and constraint functions.

    However, some interesting topics for further research remain. Also, it would be interesting to prove similar optimality results for other classes of uncertain multiobjective optimization problems. We shall investigate these questions in subsequent papers.

    国产精品乱码一区二三区的特点 | 欧美日韩乱码在线| 精品一区二区三区四区五区乱码| 91精品国产国语对白视频| 国产乱人伦免费视频| 国产三级在线视频| 亚洲av日韩精品久久久久久密| 午夜精品在线福利| 亚洲 欧美一区二区三区| 日韩国内少妇激情av| 神马国产精品三级电影在线观看 | www.999成人在线观看| 亚洲五月天丁香| 国产区一区二久久| 热re99久久国产66热| 亚洲专区国产一区二区| 欧美黑人精品巨大| 中亚洲国语对白在线视频| 老司机福利观看| 国产伦一二天堂av在线观看| 国产精品久久久av美女十八| 欧美成人性av电影在线观看| 久久草成人影院| 中文字幕av电影在线播放| 精品一区二区三区视频在线观看免费| 91精品三级在线观看| 日韩高清综合在线| 我的亚洲天堂| 999精品在线视频| 亚洲第一av免费看| 精品久久久精品久久久| 欧洲精品卡2卡3卡4卡5卡区| 熟女少妇亚洲综合色aaa.| 国产片内射在线| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 夜夜看夜夜爽夜夜摸| 国产一区在线观看成人免费| 99在线人妻在线中文字幕| 日韩三级视频一区二区三区| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 国产高清有码在线观看视频 | 十分钟在线观看高清视频www| 日本vs欧美在线观看视频| 可以在线观看的亚洲视频| 欧美黄色淫秽网站| www.精华液| 久久久久精品国产欧美久久久| 欧美一级a爱片免费观看看 | 一级,二级,三级黄色视频| 久久午夜亚洲精品久久| 日韩有码中文字幕| √禁漫天堂资源中文www| 波多野结衣巨乳人妻| 精品少妇一区二区三区视频日本电影| 亚洲国产看品久久| 母亲3免费完整高清在线观看| 精品日产1卡2卡| 欧美激情久久久久久爽电影 | 黄色a级毛片大全视频| 成人特级黄色片久久久久久久| 国产精品久久久av美女十八| 久久天躁狠狠躁夜夜2o2o| 法律面前人人平等表现在哪些方面| 精品久久久精品久久久| 欧美黑人精品巨大| 欧美人与性动交α欧美精品济南到| 国产激情欧美一区二区| 丝袜在线中文字幕| 日韩视频一区二区在线观看| 日本vs欧美在线观看视频| 国产精品亚洲美女久久久| 色在线成人网| 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 亚洲成人久久性| 国产精品一区二区三区四区久久 | 最新在线观看一区二区三区| 成年版毛片免费区| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 精品高清国产在线一区| 精品人妻1区二区| 免费观看人在逋| 最新在线观看一区二区三区| 黄片播放在线免费| 搡老妇女老女人老熟妇| 99在线人妻在线中文字幕| 亚洲av熟女| 给我免费播放毛片高清在线观看| 精品久久蜜臀av无| 最近最新中文字幕大全电影3 | 大香蕉久久成人网| 精品国产一区二区久久| 精品熟女少妇八av免费久了| 国产麻豆成人av免费视频| 午夜成年电影在线免费观看| 午夜老司机福利片| 首页视频小说图片口味搜索| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 国产精品影院久久| 视频区欧美日本亚洲| 免费观看人在逋| 日韩av在线大香蕉| 黄色片一级片一级黄色片| 日本vs欧美在线观看视频| 制服人妻中文乱码| 窝窝影院91人妻| 国产乱人伦免费视频| www.自偷自拍.com| 动漫黄色视频在线观看| 日本黄色视频三级网站网址| 亚洲欧美日韩无卡精品| 亚洲七黄色美女视频| 亚洲男人的天堂狠狠| 一级a爱视频在线免费观看| 1024香蕉在线观看| 欧美色欧美亚洲另类二区 | 日本 欧美在线| 亚洲人成网站在线播放欧美日韩| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 亚洲一区高清亚洲精品| 国产成人av激情在线播放| 在线观看舔阴道视频| 亚洲成人久久性| 国产一区二区激情短视频| videosex国产| 99riav亚洲国产免费| bbb黄色大片| 国产aⅴ精品一区二区三区波| 色综合婷婷激情| 亚洲电影在线观看av| www.自偷自拍.com| 91麻豆精品激情在线观看国产| 国产av精品麻豆| 69精品国产乱码久久久| 久久影院123| 日韩国内少妇激情av| 九色亚洲精品在线播放| 国产成人欧美| 美女大奶头视频| 变态另类丝袜制服| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 成年版毛片免费区| 一个人免费在线观看的高清视频| 多毛熟女@视频| 亚洲 欧美 日韩 在线 免费| 国产成人精品在线电影| 精品久久蜜臀av无| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| 亚洲国产欧美一区二区综合| 精品久久久久久久人妻蜜臀av | 欧美乱妇无乱码| 色播在线永久视频| 国产欧美日韩一区二区三| 真人一进一出gif抽搐免费| 亚洲av片天天在线观看| 久久精品aⅴ一区二区三区四区| tocl精华| 无限看片的www在线观看| 久久婷婷人人爽人人干人人爱 | 成人三级黄色视频| 久久午夜亚洲精品久久| 熟妇人妻久久中文字幕3abv| 亚洲成av片中文字幕在线观看| 很黄的视频免费| 免费无遮挡裸体视频| 一二三四社区在线视频社区8| 久久久久久亚洲精品国产蜜桃av| 欧美成人午夜精品| videosex国产| 国产精品 欧美亚洲| 免费在线观看影片大全网站| 久久中文字幕人妻熟女| 50天的宝宝边吃奶边哭怎么回事| avwww免费| 国产av又大| 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱 | 男女下面进入的视频免费午夜 | 国产亚洲欧美98| 久久国产精品影院| 久久中文字幕一级| 怎么达到女性高潮| 在线永久观看黄色视频| 国产麻豆69| 久热爱精品视频在线9| 日韩三级视频一区二区三区| 正在播放国产对白刺激| 村上凉子中文字幕在线| 亚洲人成电影免费在线| 女同久久另类99精品国产91| 嫩草影院精品99| 亚洲国产中文字幕在线视频| 国产精品影院久久| 国产精华一区二区三区| 老司机在亚洲福利影院| 少妇裸体淫交视频免费看高清 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图av天堂| 国产一区二区在线av高清观看| 91麻豆av在线| 亚洲少妇的诱惑av| 香蕉国产在线看| 中文字幕精品免费在线观看视频| 黄色视频不卡| 亚洲精品国产色婷婷电影| 91字幕亚洲| av网站免费在线观看视频| 日日摸夜夜添夜夜添小说| 日本 av在线| 美女 人体艺术 gogo| 久久国产精品影院| 久久久久久久精品吃奶| 国产亚洲精品一区二区www| 久久精品国产清高在天天线| 亚洲第一欧美日韩一区二区三区| 午夜福利高清视频| 久久九九热精品免费| 久久精品亚洲熟妇少妇任你| 一个人免费在线观看的高清视频| 啦啦啦韩国在线观看视频| 国产真人三级小视频在线观看| 精品欧美国产一区二区三| 欧美 亚洲 国产 日韩一| 色综合亚洲欧美另类图片| 亚洲色图 男人天堂 中文字幕| 99久久综合精品五月天人人| 亚洲一区二区三区不卡视频| 99久久久亚洲精品蜜臀av| 午夜视频精品福利| 欧美在线黄色| 亚洲国产毛片av蜜桃av| or卡值多少钱| 亚洲色图 男人天堂 中文字幕| 看免费av毛片| 999精品在线视频| 国产精品一区二区三区四区久久 | 久久人妻熟女aⅴ| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 久热爱精品视频在线9| 久热这里只有精品99| 人成视频在线观看免费观看| 成人亚洲精品av一区二区| 日韩免费av在线播放| 免费人成视频x8x8入口观看| av电影中文网址| 男女床上黄色一级片免费看| 欧美大码av| 巨乳人妻的诱惑在线观看| 在线观看日韩欧美| 精品一区二区三区视频在线观看免费| 久久精品成人免费网站| 一进一出抽搐动态| 999久久久精品免费观看国产| 99国产精品一区二区蜜桃av| 欧美性长视频在线观看| 国产精品九九99| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 亚洲黑人精品在线| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产麻豆69| 999精品在线视频| 色精品久久人妻99蜜桃| 天天一区二区日本电影三级 | 免费无遮挡裸体视频| 99国产综合亚洲精品| 欧美最黄视频在线播放免费| 亚洲av美国av| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 一进一出好大好爽视频| 香蕉国产在线看| 熟妇人妻久久中文字幕3abv| 久久精品aⅴ一区二区三区四区| 成人手机av| 色综合婷婷激情| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 啦啦啦韩国在线观看视频| 亚洲av成人不卡在线观看播放网| 国产精品精品国产色婷婷| 极品人妻少妇av视频| 一本综合久久免费| 国产av在哪里看| 亚洲黑人精品在线| 日本在线视频免费播放| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 精品久久久久久久毛片微露脸| 日韩有码中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产免费男女视频| 在线视频色国产色| 最近最新中文字幕大全免费视频| 伦理电影免费视频| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 成人欧美大片| 老汉色av国产亚洲站长工具| 脱女人内裤的视频| 亚洲熟妇中文字幕五十中出| 黄片播放在线免费| 99国产精品免费福利视频| 国产精品永久免费网站| 国产精品久久久久久精品电影 | 国产精品国产高清国产av| 国产亚洲精品久久久久5区| 9191精品国产免费久久| 国产精品爽爽va在线观看网站 | 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 欧美精品亚洲一区二区| 夜夜爽天天搞| 免费无遮挡裸体视频| 亚洲一码二码三码区别大吗| 国产精品乱码一区二三区的特点 | 一边摸一边做爽爽视频免费| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 黄片大片在线免费观看| 夜夜看夜夜爽夜夜摸| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 国内毛片毛片毛片毛片毛片| 一级毛片高清免费大全| 精品久久久久久久毛片微露脸| 国产成人免费无遮挡视频| 国产黄a三级三级三级人| 欧美久久黑人一区二区| 一二三四社区在线视频社区8| 9色porny在线观看| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| av有码第一页| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 丁香欧美五月| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 老司机福利观看| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 成人精品一区二区免费| 免费av毛片视频| 两人在一起打扑克的视频| 黄网站色视频无遮挡免费观看| 大陆偷拍与自拍| 久久影院123| 亚洲国产毛片av蜜桃av| tocl精华| 一边摸一边抽搐一进一出视频| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 日本五十路高清| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 男人舔女人下体高潮全视频| 国产高清videossex| 宅男免费午夜| 亚洲色图综合在线观看| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 亚洲一区二区三区色噜噜| 如日韩欧美国产精品一区二区三区| 国产午夜福利久久久久久| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡 | 亚洲第一av免费看| 日本三级黄在线观看| 亚洲视频免费观看视频| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 欧美绝顶高潮抽搐喷水| 色精品久久人妻99蜜桃| 色哟哟哟哟哟哟| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| 亚洲视频免费观看视频| 免费在线观看日本一区| 免费高清在线观看日韩| 欧美激情久久久久久爽电影 | 日本免费一区二区三区高清不卡 | 久久婷婷人人爽人人干人人爱 | 天天添夜夜摸| 欧美激情久久久久久爽电影 | 91字幕亚洲| 亚洲成a人片在线一区二区| 丁香欧美五月| 亚洲精品国产色婷婷电影| 人人妻人人爽人人添夜夜欢视频| 中文字幕久久专区| 亚洲三区欧美一区| 69精品国产乱码久久久| 国产野战对白在线观看| 多毛熟女@视频| 岛国视频午夜一区免费看| 国产精品电影一区二区三区| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 久久久久久久精品吃奶| 精品国产亚洲在线| 操出白浆在线播放| 国产成人系列免费观看| 欧美中文日本在线观看视频| 精品人妻在线不人妻| 黄片播放在线免费| 嫩草影院精品99| 亚洲国产精品合色在线| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 国产在线精品亚洲第一网站| 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 久久久久国内视频| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| avwww免费| 久久人人爽av亚洲精品天堂| 视频区欧美日本亚洲| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 欧美中文日本在线观看视频| 亚洲激情在线av| 国产激情欧美一区二区| 久久人妻福利社区极品人妻图片| 亚洲专区国产一区二区| 久久久国产成人免费| 男女午夜视频在线观看| www.精华液| 天堂动漫精品| 成人永久免费在线观看视频| 欧美成人一区二区免费高清观看 | 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 夜夜躁狠狠躁天天躁| 嫩草影院精品99| 欧美不卡视频在线免费观看 | 中国美女看黄片| 一区二区三区高清视频在线| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看| 中文字幕久久专区| 精品国产乱码久久久久久男人| av免费在线观看网站| 午夜精品在线福利| 免费看a级黄色片| 美女扒开内裤让男人捅视频| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃| 免费人成视频x8x8入口观看| 亚洲成人久久性| 国产单亲对白刺激| 久久中文看片网| 在线国产一区二区在线| av视频在线观看入口| 久久香蕉精品热| 精品国产一区二区久久| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 欧美日韩亚洲综合一区二区三区_| av免费在线观看网站| 亚洲人成电影免费在线| 国产又爽黄色视频| 91老司机精品| 性色av乱码一区二区三区2| 中文亚洲av片在线观看爽| 欧美日韩福利视频一区二区| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 香蕉丝袜av| 亚洲欧美日韩另类电影网站| 国产麻豆69| 黄色女人牲交| 亚洲av片天天在线观看| 日本 欧美在线| 亚洲一区二区三区色噜噜| 亚洲人成电影免费在线| 成人国产一区最新在线观看| av中文乱码字幕在线| 免费观看人在逋| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 女人被狂操c到高潮| 成人国产一区最新在线观看| 女人被狂操c到高潮| 日韩精品免费视频一区二区三区| www.精华液| 久久久久久人人人人人| 青草久久国产| 亚洲一区二区三区色噜噜| 国产av又大| 好男人电影高清在线观看| 久9热在线精品视频| 免费观看精品视频网站| 亚洲中文av在线| 精品久久久精品久久久| 日日干狠狠操夜夜爽| 在线观看舔阴道视频| 日韩欧美一区二区三区在线观看| 精品午夜福利视频在线观看一区| 精品国产美女av久久久久小说| 国产人伦9x9x在线观看| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 久久中文看片网| 国产成人免费无遮挡视频| av在线天堂中文字幕| 岛国在线观看网站| 欧美成人一区二区免费高清观看 | 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 99国产精品99久久久久| 极品教师在线免费播放| 脱女人内裤的视频| 日韩三级视频一区二区三区| 国产1区2区3区精品| 国产av精品麻豆| 精品国产乱子伦一区二区三区| 国产欧美日韩精品亚洲av| 欧美大码av| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 国产高清有码在线观看视频 | 深夜精品福利| 两个人看的免费小视频| 91精品三级在线观看| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 精品久久久精品久久久| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 日韩 欧美 亚洲 中文字幕| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 女性生殖器流出的白浆| 久久精品国产综合久久久| 最近最新中文字幕大全免费视频| 丝袜美足系列| 国产成人精品无人区| 欧美乱色亚洲激情| 老鸭窝网址在线观看| 妹子高潮喷水视频| 最近最新免费中文字幕在线| 老汉色∧v一级毛片| 黄片大片在线免费观看| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 涩涩av久久男人的天堂| svipshipincom国产片| 18禁国产床啪视频网站| 麻豆一二三区av精品| 久久中文字幕一级| 日日夜夜操网爽| 露出奶头的视频| 久久 成人 亚洲| 大陆偷拍与自拍| 高潮久久久久久久久久久不卡| 免费高清在线观看日韩| 精品国产乱子伦一区二区三区| 亚洲人成77777在线视频| 亚洲午夜理论影院| 日本 av在线| 看免费av毛片| 欧美午夜高清在线| 一级毛片高清免费大全| 露出奶头的视频| 国产伦一二天堂av在线观看| 国产精品 国内视频| 欧美精品亚洲一区二区| 久久香蕉激情| 少妇粗大呻吟视频| 久久草成人影院| 999久久久国产精品视频| 色综合欧美亚洲国产小说| 国产成年人精品一区二区| 亚洲av成人一区二区三| 免费搜索国产男女视频| 亚洲国产高清在线一区二区三 |