馮晨毅,許祥,董維鵬,陳朝陽,燕炯
·醫(yī)藥生物技術(shù)·
CRISPR/Cas9敲除PLIN1基因增強(qiáng)3T3-L1脂肪細(xì)胞的脂解作用
馮晨毅,許祥,董維鵬,陳朝陽,燕炯
山西醫(yī)科大學(xué) 公共衛(wèi)生學(xué)院,山西 太原 030001
應(yīng)用CRISPR/Cas9技術(shù)敲除3T3-L1前脂肪細(xì)胞,觀察PLIN1缺失對脂肪細(xì)胞中脂肪水解的影響并探究可能機(jī)制。常規(guī)培養(yǎng)3T3-L1前脂肪細(xì)胞,電穿孔法轉(zhuǎn)染敲除載體,嘌呤霉素培養(yǎng)基挑選敲除細(xì)胞,觀察轉(zhuǎn)染及篩選后的細(xì)胞存活率。“雞尾酒”法誘導(dǎo)3T3-L1前脂肪細(xì)胞分化,酶法測定甘油和TG含量,油紅O染色觀察脂滴形態(tài)及數(shù)目的變化。Western blotting檢測PLIN1、PPARγ、Fsp27和脂肪酶的蛋白表達(dá);RT-PCR檢測PLIN1和脂肪酶的mRNA表達(dá)。對照組細(xì)胞誘導(dǎo)分化后,微小脂滴數(shù)目較少,單房脂滴數(shù)目較多并圍繞細(xì)胞核呈環(huán)型排列。相較于對照組,敲除組細(xì)胞誘導(dǎo)分化后微小脂滴數(shù)目增加,單房脂滴體積縮小,數(shù)目減少;細(xì)胞中PLIN1 mRNA及蛋白表達(dá)被顯著抑制(<0.05);甘油水平顯著上升(0.098 4±0.007 6),TG含量顯著下降(0.031 0±0.005 3);HSL和ATGL兩種脂肪酶的mRNA及蛋白表達(dá)均升高(<0.05);PPARγ和Fsp27的表達(dá)未有明顯變化。上述結(jié)果表明敲除后通過暴露脂滴中脂質(zhì)以及上調(diào)脂肪酶等效應(yīng)增強(qiáng)了3T3-L1脂肪細(xì)胞的脂解作用。
脂滴,甘油三酯,脂肪酶,基因敲除
心血管疾病、肥胖、2型糖尿病等代謝綜合征的發(fā)生發(fā)展與脂質(zhì)代謝異常關(guān)系密切[1-2]。過量的能量攝入引起的脂質(zhì)代謝異常導(dǎo)致三酰甘油(Triglyceride,TG) 在脂肪細(xì)胞中的累積,造成脂肪細(xì)胞肥大或增生,而脂滴作為儲存脂質(zhì)的主要場所,是脂肪細(xì)胞中最大的細(xì)胞器[3]。脂滴來源于內(nèi)質(zhì)網(wǎng),由中心的TG等中性脂質(zhì)及外周覆蓋鑲嵌蛋白的單層磷脂膜構(gòu)成。脂滴通過微小脂滴的相互融合或結(jié)合TG而增大,通過脂解作用而縮小[4-5]。周脂素(Perilipin1,PLIN1) 屬于脂滴表面蛋白perilipins家族,在白色脂肪組織中高度表達(dá)并雙向調(diào)控脂解作用[6-7],但其具體作用機(jī)制尚不明確。
第3代基因編輯技術(shù)CRISPR/Cas9具有高效穩(wěn)定、經(jīng)濟(jì)可行、易于操作等特點(diǎn),已廣泛應(yīng)用于多個(gè)學(xué)科領(lǐng)域[8]。本研究擬通過CRISPR/Cas9技術(shù)敲除3T3-L1前脂肪細(xì)胞中的,觀察細(xì)胞中脂滴形態(tài)大小及脂肪水解的變化,檢測脂滴表面相關(guān)蛋白和脂代謝調(diào)控因子的表達(dá),為進(jìn)一步了解的生物學(xué)功能,探究PLIN1對脂肪細(xì)胞中脂滴形成及脂肪水解作用并為后續(xù)實(shí)驗(yàn)提供重要的基礎(chǔ)和依據(jù)。
3T3-L1前脂肪細(xì)胞系(小鼠胚胎成纖維細(xì)胞)、山羊抗鼠IgG (1︰5 000)、山羊抗兔IgG (1︰5 000)抗體購自武漢博士德生物工程有限公司,HSL (兔單克隆,1︰1 000)、ATGL (鼠單克隆,1︰1 000)、Fsp27 (鼠單克隆,1︰500)、Perilipin1 (兔多克隆,1︰1 000)抗體購自 Abcam 公司,細(xì)胞總RNA提取試劑盒購自北京聚合美生物科技有限公司,TG檢測試劑盒、甘油含量檢測試劑盒購自南京建成生物工程研究所,CRISPR/Cas9載體PX459購自美國Addgene公司,PLIN1基因敲除載體(PLIN1- PX459-0,1,2,3) 由本課題組前期構(gòu)建,sgRNA1、2、3序列及靶標(biāo)基因序列如圖1所示。
含有10%胎牛血清的高葡萄糖型DEME完全培養(yǎng)基混入1%青鏈霉素,在37 ℃、5% CO2的無菌環(huán)境下培養(yǎng)前脂肪細(xì)胞,培養(yǎng)基顏色發(fā)黃時(shí)或每2 d更換一次。當(dāng)細(xì)胞在培養(yǎng)瓶底聚合至80%–90%時(shí)進(jìn)行傳代。
實(shí)驗(yàn)共分為5組:空白對照組(Control group,CG)、陰性對照組/PLIN1-PX459-0 (Negative control group,NG)及PLIN1-PX459-1組、PLIN1-PX459-2組、和PLIN1-PX459-3組基因敲除組。將敲除效果最好載體組作為敲除組(knock out group,KO)。電穿孔轉(zhuǎn)染:細(xì)胞觀察計(jì)數(shù)后加入100 μL含有質(zhì)粒的細(xì)胞懸液至0.2 mm電轉(zhuǎn)杯中,按預(yù)定條件置入Bio-Rad Gene Pulser Xcell系統(tǒng)中完成轉(zhuǎn)染。嘌呤霉素篩選:6×104/孔的細(xì)胞密度鋪板,分別加入稀釋為5個(gè)濃度梯度的嘌呤霉素培養(yǎng)基,37 ℃培養(yǎng)細(xì)胞并間隔2 d換液一次,記錄細(xì)胞日存活率,挑選出嘌呤霉素4 d內(nèi)使細(xì)胞致死的最佳濃度并用該濃度在轉(zhuǎn)染24 h后篩選轉(zhuǎn)染成功的細(xì)胞。細(xì)胞誘導(dǎo)分化:收集成功轉(zhuǎn)染敲除載體的細(xì)胞并采用優(yōu)化后的“雞尾酒”法誘導(dǎo)分化[9]。
圖1 sgRNA序列及靶標(biāo)序列
收集各組細(xì)胞至EP管中,加入200 μL PBS后冰水浴條件下破碎細(xì)胞制備勻漿。依據(jù)甘油檢測試劑盒說明書要求配制相應(yīng)的工作液并96孔板中進(jìn)行點(diǎn)樣20 μL,每孔中加入180 μL工作液后,37 ℃充分進(jìn)行反應(yīng)5 min,通過酶標(biāo)儀在550 nm測定各孔值。繪制的標(biāo)準(zhǔn)曲線并進(jìn)行BCA蛋白定量,在標(biāo)準(zhǔn)曲線的線性范圍內(nèi)計(jì)算甘油含量并通過勻漿液中每mg總蛋白濃度校正,TG含量測定同上。
收集各組細(xì)胞鋪板于6孔板中,加入1 mL4%預(yù)先配制的多聚甲醛固定細(xì)胞1 h后洗凈,再加入油紅O染液1 mL室溫染色1 h后洗凈染液,XDS-1型光學(xué)顯微鏡下觀察并拍照。Image pro plus 6.1圖像分析軟件測量脂滴直徑,定義直徑小于1 μm的為微小脂滴,1–2 μm的為中等脂滴,大于2 μm的為單房脂滴。
各組細(xì)胞誘導(dǎo)分化8 d后,RIPA裂解液提取細(xì)胞總蛋白并定量蛋白濃度,100 ℃金屬浴變性后制備SDS-PAGE凝膠。80 V,15 min;100 V,60 min電泳后;120 min,220mA恒流轉(zhuǎn)膜。5%的脫脂奶粉封閉后用稀釋的一抗進(jìn)行反應(yīng),4 ℃過夜。室溫二抗孵育120 min。NC膜漂洗數(shù)次后滴加現(xiàn)配的ECL,于ChemiDoc MP成像系統(tǒng)下曝光。Image J軟件檢測各蛋白條帶灰度值,以GAPDH或β-actin條帶進(jìn)行校正。
當(dāng)細(xì)胞匯合至80%左右時(shí),利用M5 TRIgent試劑提取細(xì)胞總RNA,按照試劑盒說明書去除gDNA后加入反轉(zhuǎn)錄體系,95℃加熱3 min獲得cDNA。按照天根Super Real彩色熒光定量預(yù)混 試劑要求以及Real-Time PCR儀使用說明操作配置反應(yīng)體系,PCR反應(yīng)程序:95 ℃ 10 s,60 ℃ 32 s,65 ℃ 5 s,共40個(gè)循環(huán)。上下游引物序列見表1。
表1 RT-PCR引物序列
轉(zhuǎn)染敲除載體后,各組細(xì)胞12 h存活率基本一致,均在80%以上;篩選出細(xì)胞的轉(zhuǎn)染效率約為30%;如圖2所示,嘌呤霉素培養(yǎng)基使細(xì)胞致死效果最佳的濃度為4 μg/mL;誘導(dǎo)分化0、6、12 d后油紅O染色觀察;對照組細(xì)胞中出現(xiàn)大量單房脂滴且圍繞細(xì)胞核呈環(huán)型分布;敲除組細(xì)胞中微小脂滴數(shù)目增多,單房脂滴體積明顯縮小,數(shù)目減少(圖3)。
圖2 嘌呤霉素濃度篩選
圖3 3T3-L1前脂肪細(xì)胞誘導(dǎo)分化
各組細(xì)胞誘導(dǎo)分化的6 d后檢測PLIN1蛋白及mRNA表達(dá)(圖3)。相比于對照組,敲除組細(xì)胞中PLIN1蛋白(圖4A)及mRNA表達(dá)均降低 (<0.05) (圖4B)。其中以PLIN1-PX459-2組敲除效果最好,作為敲除組。
各組細(xì)胞誘導(dǎo)分化8 d測量脂滴直徑。結(jié)果表明,相比于對照組,敲除組細(xì)胞中的微小脂滴數(shù)目增加;中等及單房脂滴數(shù)目減少(<0.05) (圖5)。
圖4 脂肪細(xì)胞中plin1敲除效果
圖5 電轉(zhuǎn)染后脂肪細(xì)胞內(nèi)脂滴比例
各組細(xì)胞誘導(dǎo)分化12 d后檢測細(xì)胞中甘油和TG水平,結(jié)果表明,相比于對照組,敲除組細(xì)胞中甘油水平顯著上升,TG水平顯著下降(<0.05) (表2)。
各組細(xì)胞誘導(dǎo)分化12 d后檢測兩種脂肪酶HSL和ATGL的mRNA及蛋白表達(dá)。結(jié)果顯示,相比于對照組,敲除組細(xì)胞中HSL和ATGL mRNA及蛋白表達(dá)均顯著升高(<0.05) (圖6)。
表2 各組脂肪細(xì)胞中甘油與TG水平
*: compared with the CG,<0.05; #: compared with the NG,<0.05.
各組細(xì)胞誘導(dǎo)分化12 d后檢測Fsp27和PPARγ的蛋白表達(dá),如圖7所示,相比于對照組,敲除組細(xì)胞中Fsp27和PPARγ的蛋白表達(dá)未有明顯變化(>0.05)。
圖6 plin1敲除后脂肪細(xì)胞中脂肪酶蛋白及mRNA 表達(dá)
圖7 plin1敲除后脂肪細(xì)胞中相關(guān)蛋白表達(dá)
肥大的脂肪細(xì)胞主要是脂滴之間的融合以及TG的累積,最終形成巨大的單房脂滴所導(dǎo)致 的[10]。當(dāng)脂解作用發(fā)生時(shí),TG被包括ATGL和HSL在內(nèi)的多種脂肪酶催化水解為游離脂肪酸和甘油,導(dǎo)致脂滴體積縮小[12-13]。而通過檢測細(xì)胞中甘油和TG含量即可說明脂肪細(xì)胞中脂解作用的強(qiáng)弱[11]。
本次研究電轉(zhuǎn)染敲除載體后,細(xì)胞中PLIN1蛋白及mRNA的表達(dá)水平證明3T3-L1脂肪細(xì)胞中的被成功敲除;在前脂肪細(xì)胞誘導(dǎo)分化的過程中,敲除組細(xì)胞存活率與對照組相比未有明顯差異,細(xì)胞分化比例基本一致;敲除組細(xì)胞中仍會出現(xiàn)脂滴并且增大。在誘導(dǎo)分化12 d后,酶法測定脂肪細(xì)胞中甘油和TG水平發(fā)現(xiàn)敲除組細(xì)胞中甘油水平顯著上升,TG水平顯著下降;油紅O染色以及脂滴直徑測量發(fā)現(xiàn)敲除組細(xì)胞中脂滴體積明顯減小,單房脂滴難以形成,數(shù)量減少,而微小脂滴的數(shù)目顯著增多。表明敲除后可能會增強(qiáng)3T3-L1脂肪細(xì)胞中的脂解作用并引起細(xì)胞中脂滴形態(tài)及數(shù)目的改變。這可能是由于PLIN1缺失后,脂解酶更易于接觸脂滴并水解其儲存的TG所導(dǎo)致的。此外,敲除組細(xì)胞在誘導(dǎo)分化過程中,脂肪甘油三酯脂肪酶(Adipose triglyceride lipase,ATGL) 與激素敏感脂肪酶(Hormone-sensitive lipase,HSL) 的基因表達(dá)明顯升高。而在腎上腺素、瘦素激素等刺激脂解過程中,ATGL與HSL的磷酸化和轉(zhuǎn)移雖然被改變,但基因表達(dá)卻未受到影響[14-15]。表明脂肪酶基因的上調(diào)可能是敲除增強(qiáng)脂肪細(xì)胞脂解的另一個(gè)因素。ATGL是脂肪細(xì)胞中主要的TG脂肪酶,受到比較識別基因-58 (Comparative gene identification-58,CGI-58) 與G0/G1轉(zhuǎn)換基因-2 (G0/G1 switch gene-2,G0S2) 的調(diào)控[16]。PLIN1磷酸化后會與CGI-58解離,激活A(yù)TGL的表達(dá)與活性[17]。因此,在敲除后脂肪細(xì)胞中ATGL表達(dá)增加可能是由于PLIN1缺失引起的CGI-58大量解離所引起的,但是否與G0S2有關(guān)尚未探究。而HSL表達(dá)升高的原因可能是與敲除后抑制了甾醇調(diào)節(jié)元件結(jié)合蛋白-1c (Sterol regulator element-binding protein-1c,SREBP-1c) 表達(dá)的激活有關(guān)[18]。但HSL需要通過磷酸化后,在磷酸化的PLIN1介導(dǎo)下轉(zhuǎn)移至脂滴表面才能發(fā)揮作用[15],敲除后其表達(dá)量升高是否會影響細(xì)胞的脂解作用也有待進(jìn)一步研究。相比于課題組前期研究中沉默或下調(diào)[19-20],CRISPR/ Cas9近乎完全抑制了PLIN1的表達(dá),完成了敲除,更加顯著提高了細(xì)胞中脂解酶的表達(dá)以及基礎(chǔ)脂解。
細(xì)胞死亡誘導(dǎo)DNA斷裂因子α樣效應(yīng)器(Cell death-inducing DNA fragmentation factor alpha-like effector,CIDE) 家族蛋白也是一類調(diào)控脂質(zhì)代謝的脂滴表面結(jié)合蛋白,其中Fsp27 (CIDEc) 與CIDEa蛋白在脂肪組織中特異表 達(dá)[21]。Fsp27蛋白的N端結(jié)構(gòu)域可以與PLIN1特異性結(jié)合從而被激活,F(xiàn)sp27激活后與CIDEa蛋白在脂滴間的結(jié)合點(diǎn)聚集,并介導(dǎo)微小脂滴間的相互融合,從而促進(jìn)單房脂滴的形成。Fsp27與PLIN1共同表達(dá)及協(xié)同作用可能是脂肪細(xì)胞中的單房脂滴或大脂滴形成的必要條件[22-23]。我們發(fā)現(xiàn)在敲除的脂肪細(xì)胞中,F(xiàn)sp27的表達(dá)并未受到影響,這是由于PLIN1與Fsp27的協(xié)同作用是通過蛋白-蛋白互作產(chǎn)生的[22],PLIN1可能并未影響Fsp27的轉(zhuǎn)錄及轉(zhuǎn)錄后調(diào)控。PLIN1缺失后Fsp27仍存在于脂滴表面,但不能獨(dú)立發(fā)揮促進(jìn)單房脂滴形成的作用。PPARγ是核受體過氧化物酶體增殖物激活受體(Peroxisome proliferators- activated receptors,PPARs)家族成員之一,調(diào)節(jié)3T3-L1前脂肪細(xì)胞生長分化與脂質(zhì)生成[24-26]。PPARγ被抑制時(shí)會導(dǎo)致前脂肪細(xì)胞分化障礙及脂質(zhì)合成減弱,引起脂滴形態(tài)的變化。另外,PPARγ也是的上游轉(zhuǎn)錄因子[26]。在本次研究中發(fā)現(xiàn)敲除組細(xì)胞中PPARγ的表達(dá)并未有明顯改變,表明細(xì)胞中脂質(zhì)生成作用并未減弱。這從側(cè)面支持了脂滴形態(tài)及數(shù)目變化是由于PLIN1缺失所導(dǎo)致的推論。但脂肪生成作用并不只受PPARγ調(diào)控,其表達(dá)量未變是否能說明脂肪生成作用的穩(wěn)定仍需進(jìn)一步研究。
本研究通過CRISPR/Ca9技術(shù)證實(shí)敲除后會通過暴露脂滴中脂質(zhì)以及上調(diào)脂肪酶等效應(yīng)增強(qiáng)3T3-L1脂肪細(xì)胞的脂解作用。進(jìn)一步闡述了的生物學(xué)功能,為后續(xù)實(shí)驗(yàn)以及代謝綜合征的防治提供了理論基礎(chǔ)。
[1] DeBose-Boyd RA. Significance and regulation of lipid metabolism. Semin Cell Dev Biol, 2018, 81: 97.
[2] Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis,lipogenesis and novel lipids. J Intern Med, 2016, 280(5): 465–475.
[3] Walther TC, Chung J, Farese RV. Lipid droplet biogenesis. Annu Rev Cell Dev Biol, 2017, 33: 491–510.
[4] Krahmer N, Guo Y, Farese RV, et al. SnapShot: lipid droplets. Cell, 2009, 139(5): 1024–1024 e1021.
[5] Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol, 2006, 7(5): 373–378.
[6] Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10): 1221–1232.
[7] Brasaemle DL, Rubin B, Harten IA, et al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem, 2000, 275(49): 38486–38493.
[8] Zhan CS, Xia XY. Research progress of CRISPR-Cas9 system for gene therapy. Chin J Biotechnol, 2016, 32(7): 861–869 (in Chinese).詹長生, 夏小雨. 基于CRISPR-Cas9技術(shù)的基因治療研究進(jìn)展. 生物工程學(xué)報(bào), 2016, 32(7): 861–869.
[9] Guo XL, Xu MG, Zhang XL, et al. Establishment of culture and differentiation of mouse 3T3-L1 preadipocytes. Zhongguo Yaowu Yu Linchuang, 2013, 13(12): 1542–1544, 1662 (in Chinese). 郭秀玲, 徐民崗, 張秀麗, 等. 小鼠3T3-L1前脂肪細(xì)胞培養(yǎng)與誘導(dǎo)分化方法的建立. 中國藥物與臨床,2013, 13(12): 1542–1544+1662.
[10] Suzuki M. Regulation of lipid metabolism via a connection between the endoplasmic reticulum and lipid droplets. Anat Sci Int, 2017, 92(1): 50–54.
[11] Langin D. Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol, 2006, 329(8): 598–607.
[12] Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, et al. Regulation of adipocyte lipolysis. Nutr Res Rev, 2014, 27(1): 63–93.
[13] Lampidonis AD, Rogdakis E, Voutsinas GE, et al. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene, 2011, 477(1/2): 1–11.
[14] Koltes DA, Spurlock ME, Spurlock DM. Adipose triglyceride lipase protein abundance and translocation to the lipid droplet increase during leptin-induced lipolysis in bovine adipocytes. Domest Anim Endocrinol, 2017, 61: 62–76.
[15] Granneman JG, Moore HP, Granneman RL, Greenberg AS, et al. Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem, 2007, 282(8): 5726–5735.
[16] Turnbull PC, Ramos SV, MacPherson RE, et al. Characterization of lipolytic inhibitor G(0)/G(1) switch gene-2 protein (G0S2) expression in male Sprague-Dawley rat skeletal muscle compared to relative content of adipose triglyceride lipase (ATGL) and comparitive gene identification-58 (CGI-58). PLoS ONE,2015, 10(3): e0120136.
[17] MacPherson RE, Ramos SV, Vandenboom R, et al. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am J Physiol, 2013, 304(8): R644–650.
[18] Zhang S, Liu G, Xu C, et al. Perilipin 1 Mediates lipid metabolism homeostasis and inhibits inflammatory cytokine synthesis in bovine adipocytes. Front Immunol, 2018, 9: 467.
[19] Zhang SH, Zhang ZW, Wang JS, et al. Combined effect of PLIN1 gene silencing and isoproterenol on lipolysis of 3T3-L1 adipocytes. Xiandai Yufang Yixue, 2018, 45(1): 2023–2027, 2038 (in Chinese).張少華, 趙志武, 王君實(shí), 等. 沉默PLIN1基因與異丙腎上腺素對3T3-L1脂肪細(xì)胞脂解的機(jī)制探究. 現(xiàn)代預(yù)防醫(yī)學(xué), 2018, 45(1): 2023–2027, 2038.
[20] Zhao ZW, Wang JS, Ma M, et al. Effect of down-regulated Perilipin 1 gene expression on lipolysis of 3T3-L1 adipocytes. Zhongguo Shengwu Gongcheng Zazhi, 2016, 36(3): 17–22 (in Chinese).趙志武, 王君實(shí), 馬敏, 等. 下調(diào)Perilipin 1基因表達(dá)對3T3-L1細(xì)胞脂解的影響. 中國生物工程雜志, 2016, 36(3): 17–22.
[21] Slayton M, Gupta A, Balakrishnan B, et al. CIDE proteins in human health and disease. Cells, 2019, 8(3).
[22] Grahn TH, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G, Fried SK, et al. FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem Biophys Res Commun, 2013, 432(2): 296–301.
[23] Gong J, Sun Z, Wu L, et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol, 2011, 195(6): 953–963.
[24] Xu X, Dong WP, Zhang SH, et al. Construction of Fsp27 gene silencing vector and its effect on cell lipolysis. Biotechnol Bull, 2020, 36(3): 65–70 (in Chinese).許祥, 董維鵬, 張少華, 等. Fsp27 基因沉默載體的構(gòu)建及其對細(xì)胞脂解的影響研究. 生物技術(shù)通報(bào), 2020, 36(3): 65–70.
[25] Shao X, Wang M, Wei X, et al. Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther, 2016, 11(3): 282–289.
[26] Zhu YX, Zhang ML, Zhong Y, et al. Modulation effect of peroxisome proliferator-activated receptor agonists on lipid droplet proteins in liver. J Diabetes Res, 2016, 2016: 8315454.
CRISPR/Cas9 knockoutenhances lipolysis in 3T3-L1 adipocytes
Chenyi Feng, Xiang Xu, Weipeng Dong, Zhaoyang Chen, and Jiong Yan
School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
We used CRISPR/Cas9 to delete plin1 of 3T3-L1 preadipocyte, to observe its effect on lipolysis in adipocytes and to explore regulatory pathways. We cultured 3T3-L1 preadipocytes, and the plin1 knockout vectors were transfected by electroporation. Puromycin culture was used to screen successfully transfected adipocytes, and survival rates were observed after transfection. The optimized “cocktail” method was used to differentiate 3T3-L1 preadipocytes. The glycerol and triglyceride contents were determined by enzymatic methods. The changes in lipid droplet form and size were observed by Oil red O staining. The protein expression of PLIN1, PPARγ, Fsp27, and lipases was measured by Western blotting. RT-PCR was used to measure the expression of PLIN1 and lipases mRNA. After the adipocytes in the control group were induced to differentiate, the quantity of tiny lipid droplets was decreased, and the quantity of unilocular lipid droplets was increased and arranged in a circle around the nucleus. Compared with the control group, the volume of unilocular lipid droplets decreased, and the quantity of tiny lipid droplets increased after induction of adipocytes in the knockout group. The expression of PLIN1 mRNA and protein in the adipocytes was significantly inhibited (<0.05); glycerol levels increased significantly (0.098 4± 0.007 6), TG levels decreased significantly (0.031 0±0.005 3); mRNA and protein expression of HSL and ATGL increased (<0.05); PPARγ and Fsp27 expression unchanged in adipocytes. The above results indicate that the knockout of plin1 enhances the lipolysis of 3T3-L1 adipocytes by exposing lipids in lipid droplets and up-regulating lipases effects.
lipid droplets, triglyceride, lipase, gene knockout
10.13345/j.cjb.190521
November 21, 2019;
January 19, 2020
Supported by: National Natural Science Foundation of China (No. 31772551), Natural Science Foundation of Shanxi Province, China (No. 201901D111182).
Zhaoyang Chen. Tel: +86-351-4135647; E-mail: ccytycn@126.com
Jiong Yan. Tel: +86-351-3985168; E-mail: yanjiong@126.com
國家自然科學(xué)基金(No. 31772551),山西省自然科學(xué)基金(No. 201901D111182) 資助。
馮晨毅, 許祥, 董維鵬, 等. CRISPR/Cas9敲除PLIN1基因增強(qiáng)3T3-L1脂肪細(xì)胞的脂解作用. 生物工程學(xué)報(bào), 2020, 36(7): 1386–1394.
Feng CY, Xu X, Dong WP, et al. CRISPR/Cas9 knockoutenhances lipolysis in 3T3-L1 adipocytes. Chin J Biotech, 2020, 36(7): 1386–1394.
(本文責(zé)編 陳宏宇)