• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      PGPR菌劑配合化肥減施對(duì)植煙土壤nosZ型細(xì)菌群落的影響

      2020-07-18 16:01:15余偉閆芳芳馮文龍陳強(qiáng)張映杰張宗錦辜運(yùn)富
      中國煙草科學(xué) 2020年3期

      余偉 閆芳芳 馮文龍 陳強(qiáng) 張映杰 張宗錦 辜運(yùn)富

      摘 ?要:研究化肥減施情況下PGPR(plant growth promoting rhizobacteria)菌劑對(duì)植煙土壤反硝化作用的微生物調(diào)控機(jī)制,為植煙土壤科學(xué)施肥、培肥地力提供理論依據(jù)。本試驗(yàn)在四川攀枝花米易縣的傳統(tǒng)烤煙種植區(qū)通過化學(xué)分析和末端限制性長度多態(tài)性分析手段(T-RFLP)分別對(duì)PGPR菌劑配合化肥減肥處理下的植煙土壤理化性質(zhì)及土壤nosZ型細(xì)菌群落組成和多樣性進(jìn)行研究。結(jié)果表明,與常規(guī)施肥相比,PGPR菌劑配合化肥減施的處理土壤pH和堿解氮含量顯著提高,有機(jī)質(zhì)、全氮含量提高但未達(dá)顯著水平,部分處理速效磷、速效鉀含量顯著提高。PGPR菌劑配合化肥減施改變了nosZ型細(xì)菌的物種組成,Rhodobacter (紅桿菌屬)和Bacterium(桿菌屬)為5個(gè)施肥處理共有的優(yōu)勢菌屬,而Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)僅為施用PGPR菌劑處理的優(yōu)勢菌。全量化肥配施PGPR菌劑處理下的Shannon多樣性指數(shù)和均勻度顯著低于其他處理,其他各處理細(xì)菌群落多樣性之間無顯著差異。冗余分析表明,土壤pH、有機(jī)質(zhì)和速效鉀是影響植煙土壤nosZ型細(xì)菌群落結(jié)構(gòu)變化的主要因子。綜上所述,PGPR菌劑配合化肥減施影響了土壤理化性質(zhì)進(jìn)而導(dǎo)致土壤nosZ型細(xì)菌群落結(jié)構(gòu)組成發(fā)生改變。

      關(guān)鍵詞:PGPR菌劑;化肥減施;T-RFLP;nosZ細(xì)菌群落

      Abstract: The nosZ-type bacterial community variation in flue-cured tobacco cultivation soils under the condition of plant growth promoting rhizobacteria (PGPR) application plus reduction of chemical fertilizer (RCF) was investigated so as to reveal the microbial mediated mechanisms of the denitrifying process in these specific soils, and to establish reasonable fertilizer regimes and provide theoretical foundations for maintaining soil quality. The study was carried out in a traditional flue-cured tobacco cultivation field in Miyi County, Sichuan Province. Chemical analysis and terminal restriction fragment length polymorphism (T-RFLP) were conducted to study the variation of soil physicochemical parameters and nosZ-type bacterial community composition under the condition of PGPR+RCF fertilizer. The results showed that the soil pH and available nitrogen were significantly increased under the treatment of PGPR+RCF fertilizer as compared with the conventional fertilization (CK) (p<0.05). Meanwhile, the soil organic carbon and total nitrogen were also increased although not significantly, and available phosphorus and available potassium were also increased under some fertilizer treatments (30% RCF). The T-RFLP experiment showed that using PGPR in combination with fertilizers increased the composition and diversity of the nosZ-type bacterial community. Rhodobacter and Bacterium were the dominant genera in the soils under the five different fertilization treatments, while Bradyrhizobium and Azospirillum were dominant in the soil treated with only PGPR inocula. The Shannon diversity index and Evenness in the soil under total amount chemical fertilizer plus PGPR inoculant were the lowest among the five different fertilizer treatments, while those diversity indexes in the soil under the other four fertilizer treatments showed no significantly difference. Redundancy Analysis (RDA) showed that soil pH, soil organic matter and available potassium were the most important factors in shaping nosZ-type bacterial community in the flue-cured tobacco cultivation soil. Taken together, the using of PGPR in combination with reduced chemical fertilizers would change the soil physicochemical properties thus modify the composition of nosZ-type bacterial community composition, and increase their diversity.

      Keywords: PGPR inoculum; chemical fertilizer reduction; T-RFLP; nosZ-type bacterial community

      反硝化作用是土壤氮素?fù)p失的主要途徑,也是溫室氣體N2O的主要來源[1]。研究表明,全球大部分的N2O排放來自土壤,其中45%歸因于農(nóng)業(yè)微生物氮循環(huán)。長期施用化肥為反硝化提供充足的底物,促進(jìn)土壤反硝化作用及N2O的產(chǎn)生,并導(dǎo)致農(nóng)田土壤酸化,進(jìn)而顯著提高反硝化對(duì)N2O產(chǎn)生的貢獻(xiàn)[2-3]。由反硝化微生物介導(dǎo)的N2O還原為N2,是減少溫室氣體N2O產(chǎn)生的主要途徑,同時(shí)還能達(dá)到清除土壤過多活性氮素的目的[4]。在N2O還原過程中,由nosZ基因編碼的N2O還原酶(nosZ)是唯一一種將N2O轉(zhuǎn)化為N2的酶,而nosZ基因的豐度和多樣性往往用來反映土壤N2O還原能力[1,5]。nosZ型反硝化細(xì)菌群落對(duì)施肥的響應(yīng)較為敏感[4],在石灰性紫色土中,化肥和有機(jī)肥配施顯著促進(jìn)nosZ型反硝化細(xì)菌的群落組成、豐度和分布[6]。因此,研究化肥施用與nosZ型反硝化細(xì)菌群落的關(guān)系,對(duì)于理解農(nóng)業(yè)生態(tài)系統(tǒng)中氮素?fù)p失與溫室氣體的排放至關(guān)重要。

      氮肥施用過量是造成農(nóng)田生態(tài)環(huán)境惡化的主要原因,優(yōu)化施氮技術(shù)和嚴(yán)控施氮量是提高氮肥利用率和降低環(huán)境污染的有效途徑[7-9]。研究表明,在化肥減量20% ~ 30%的范圍內(nèi)配施生物有機(jī)肥提高了土壤酶活性及養(yǎng)分含量,進(jìn)而優(yōu)化了土壤根際環(huán)境,最終提高作物產(chǎn)量[10-11]。生物有機(jī)肥是有機(jī)肥與多種有益微生物菌群結(jié)合形成的新型有機(jī)復(fù)合肥,兼具微生物肥料和有機(jī)肥的效應(yīng),其中獨(dú)特的生物菌活性對(duì)土壤有一定的改良作用[12]。植物根際促生菌(plant growth promoting rhizobacteria,PGPR)是一類重要的微生物肥料。研究表明,PGPR對(duì)西紅柿和辣椒抵抗水分脅迫具有潛在的積極作用,對(duì)小麥、玉米、豌豆和黃瓜等產(chǎn)生有益作用,能有效提高作物產(chǎn)量,此外,PGPR還可以增加大豆結(jié)瘤、氮素吸收、促進(jìn)生長和高產(chǎn)[13-15]。由此可見,應(yīng)用PGPR菌劑減少化肥施用或部分替代化肥有利于促進(jìn)作物生長。

      本試驗(yàn)通過PGPR菌劑配合化肥減施的方式,研究其對(duì)植煙區(qū)土壤nosZ細(xì)菌群落組成及多樣性的影響,以期為在減少化肥投入量的同時(shí),提高土壤質(zhì)量和土壤肥力,實(shí)現(xiàn)植煙土壤環(huán)境的可持續(xù)發(fā)展提供理論依據(jù)。

      1 ?材料與方法

      1.1 ?研究區(qū)概況

      本試驗(yàn)在四川攀枝花米易煙區(qū)進(jìn)行(29°10'50'' N,105°09'26'' E)。該地區(qū)屬亞熱帶季風(fēng)氣候,冬無嚴(yán)寒,夏無酷暑,雨熱同季,光照充足,是煙葉種植區(qū)劃中烤煙生態(tài)最適宜區(qū)。試驗(yàn)地土壤為滲育紫泥田土屬,成土母質(zhì)為紫色頁巖風(fēng)化殘坡積物,酸紫泥田土種。土壤基礎(chǔ)養(yǎng)分為:pH 6.25,有機(jī)質(zhì)1.30%,全氮1.47 g/kg,堿解氮124.63 mg/kg,有效磷9.69 mg/kg,速效鉀137.94 mg/kg。

      1.2 ?試驗(yàn)設(shè)計(jì)

      本試驗(yàn)設(shè)5個(gè)處理,采用田間隨機(jī)區(qū)組排列,每個(gè)處理3次重復(fù)。化肥減量只針對(duì)基肥中的復(fù)合肥而言,常規(guī)施肥基肥中復(fù)合肥用量為750 kg/hm2。具體處理為:(T1)常規(guī)施肥(酒糟有機(jī)肥750 kg/hm2+復(fù)合肥750 kg/hm2);(T2)PGPR菌劑+酒糟有機(jī)肥750 kg/hm2+復(fù)合肥750 kg/hm2;(T3)PGPR菌劑+酒糟有機(jī)肥750 kg/hm2+復(fù)合肥675 kg/hm2(化肥減施10%);(T4)PGPR菌劑+酒糟有機(jī)肥750 kg/hm2+復(fù)合肥600 kg/hm2(減施20%);(T5)PGPR菌劑+酒糟有機(jī)肥750 kg/hm2+復(fù)合肥525 kg/hm2(減施30%)。試驗(yàn)所用酒糟有機(jī)肥及復(fù)合肥均由攀枝花煙草公司提供。酒糟有機(jī)肥養(yǎng)分含量為:有機(jī)質(zhì)含量≥45%,氮+磷+鉀≥5%,pH 5.5~8.5。復(fù)合肥中N、P2O5、K2O質(zhì)量分?jǐn)?shù)分別為12%、12%、25%。移栽后30 d各處理均追施復(fù)合肥225 kg/hm2。PGPR菌劑是由本實(shí)驗(yàn)室前期篩選出的產(chǎn)IAA、溶磷溶鉀等最佳的3株放線菌CNS42(Streptomycete sp.)、P29(Streptomycete sp.)和P60(Streptomycete sp.),稀釋成含活菌濃度約為1×107 cfu/mL的菌液,按1:1:1的比例混合制成PGPR菌劑。2016年4月21日施基肥、起壟、覆膜及烤煙移栽。相關(guān)的田間管理均按當(dāng)?shù)厣a(chǎn)規(guī)范進(jìn)行。

      1.3 ?土壤樣品采集

      于烤煙收獲后,每個(gè)小區(qū)按照五點(diǎn)取樣法結(jié)合抖根法采取0~20 cm烤煙根際土樣,混勻?yàn)橐粋€(gè)樣品,放入有冰袋的保溫箱中迅速運(yùn)回實(shí)驗(yàn)室,挑出石礫和雜草落葉,一部分土壤保存于?20 ℃,一部分風(fēng)干磨碎后過2 mm篩用于測定土壤理化性質(zhì)。

      1.4 ?測定方法

      1.4.1 ?土壤理化性質(zhì)測定 ?土壤理化性質(zhì)的具體測定方法參見文獻(xiàn)[16]。其中,土壤pH用玻璃電極法測定,m土:V水=1:2.5,全氮和堿解氮分別采用凱氏定氮法和堿擴(kuò)散滴定法測定,有機(jī)質(zhì)采用重鉻酸鉀容量法測定,有效磷采用浸提-鉬銻抗比色法測定,速效鉀采用火焰光度計(jì)法測定。

      1.4.2 ?土壤微生物總DNA提取 ?稱取0.5 g于–20 ℃ 保存的新鮮土壤樣品,采用Fast DNA SPIN Kit For Soil (Qbiogene, Carlsbad, CA, USA)試劑盒,按照說明書上的步驟提取土壤微生物總DNA。

      1.4.3 ?nosZ基因末端限制性片段長度多態(tài)性(T-RFLP)分析 ?nosZ基因擴(kuò)增所用引物為nosZF(5′-CGYTGTTCMTCGACAGCCAG-3′)[17]和nosZ1622 R(5′-CGSACCTTSTTGCCSTYGCG-3′)[18]。其中每對(duì)引物的正向引物都帶有FAM熒光標(biāo)記。擴(kuò)增體系為50 μL:PCR Mix 25 μL,引物各2.5 μL(10 μmol/L),DNA模板10 μL(10 ng/μL),超純水補(bǔ)至50 μL。擴(kuò)增程序:95 ℃預(yù)變性3 min;94 ℃變性30 S,57 ℃退火45 S,72 ℃ 延伸55 S,32 個(gè)循環(huán);72 ℃最終延伸10 min。PCR產(chǎn)物用BstUI和HhaI兩種限制性內(nèi)切酶進(jìn)行酶切。在37 ℃ 的恒溫培養(yǎng)箱中放置 14~16 h后取出在80 ℃的恒溫箱中失活30 min。最后送生工生物工程股份有限公司(上海)對(duì)末端帶有熒光標(biāo)記的片段(末端限制性片段,T-RFs)進(jìn)行檢測和分析。處理后的T-RFs片段在NCBI數(shù)據(jù)庫中進(jìn)行比對(duì),計(jì)算nosZ細(xì)菌群落組成和多樣性指數(shù)的統(tǒng)計(jì),多樣性指數(shù)主要為Shannon多樣性指數(shù)、豐富度和均勻度等指標(biāo)[19]。

      1.5 ?數(shù)據(jù)分析

      土壤理化性質(zhì)及nosZ細(xì)菌群落多樣性指數(shù)等基礎(chǔ)數(shù)據(jù)的處理和繪圖利用Excel 2013進(jìn)行,單因素方差分析利用SPSS 21.0完成。利用CANOCO 5.0軟件對(duì)土壤環(huán)境參數(shù)和nosZ細(xì)菌群落相關(guān)性進(jìn)行冗余分析(Redundancy Analysis, RDA)。

      2 ?結(jié) ?果

      2.1 ?PGPR菌劑配合化肥減施對(duì)植煙土壤理化性質(zhì)的影響

      由表1可知,與不施PGPR菌劑處理(T1)相比,在全量化肥基礎(chǔ)上加施菌肥(T2),土壤各理化指標(biāo)均無顯著變化。而與T1相比,PGPR菌劑配合化肥減施的處理(T3、T4、T5)土壤pH均顯著提高,T3處理最高,但各減肥處理之間差異不顯著;土壤有機(jī)質(zhì)、全氮含量略有提高,但未達(dá)到顯著差異;土壤堿解氮含量顯著提高;除T4外,有效磷和有效鉀含量均較T1、T2提高,其中減少30 %化肥用量的處理土壤有效磷含量最高,減施化肥10%的處理土壤有效鉀含量最高,與T1、T2處理達(dá)到顯著差異。此可見,施用PGPR菌劑同時(shí)減施10%~30%的化肥對(duì)提高植煙區(qū)土壤肥力、改善土壤質(zhì)量具有一定促進(jìn)作用。

      2.2 ? PGPR菌劑配合化肥減施對(duì)植煙土壤nosZ細(xì)菌群落組成的影響

      圖1示出了nosZ細(xì)菌群落T-RFLP分析中豐度排名前10的優(yōu)勢菌。結(jié)果表明,PGPR菌劑配合化肥減施明顯改變土壤nosZ土壤細(xì)菌的群落組成。各處理中共有的優(yōu)勢菌屬為Polymorphum(多形菌屬),Rhodobacter(紅桿菌屬)和Bacterium(桿菌屬)。其中,Polymorphum(多形菌屬)隨著化肥施用量減少呈先增加后降低的趨勢,在減肥10%~20%的處理中占主導(dǎo);Bacterium(桿菌屬)在施用PGPR菌劑處理中豐度均有所提高;Rhodobacter 則在不施PGPR菌劑的處理中占優(yōu)勢,配施菌劑之后隨化肥施用量減少有逐漸減少趨勢;而Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)僅為施用PGPR菌劑處理的優(yōu)勢菌??傮w而言,PGPR菌劑配合化肥減施會(huì)對(duì)土壤中的nosZ細(xì)菌群落組成產(chǎn)生明顯影響。

      2.3 ?PGPR菌劑配合化肥減施對(duì)植煙土壤nosZ細(xì)菌群落多樣性的影響

      由表2可知,除T2處理Shannon多樣性指數(shù)和均勻度顯著低于其他處理外,其他處理之間Shannon多樣性指數(shù)、豐富度和均勻度均未見顯著差異。說明在全量化肥的條件下加施菌劑(Streptomycete sp.),會(huì)對(duì)部分nosZ細(xì)菌造成競爭,導(dǎo)致其群落多樣性的下降,而化肥減施后則不產(chǎn)生影響。

      2.4 ?土壤環(huán)境因子與nosZ細(xì)菌群落組成的相關(guān)性分析

      運(yùn)用冗余分析(RDA),對(duì)植煙土壤nosZ細(xì)菌群落組成與土壤理化性質(zhì)相關(guān)性進(jìn)行分析(圖2)。從RDA排序圖中可以看出,第 1 排序軸解釋了土壤理化性質(zhì)對(duì)nosZ細(xì)菌群落變異貢獻(xiàn)率的44.62%,第2排序軸解釋了土壤理化性質(zhì)對(duì)nosZ細(xì)菌群落變異貢獻(xiàn)率的21.47%,累計(jì)貢獻(xiàn)率為66.09%。nosZ細(xì)菌群落與土壤pH、有機(jī)質(zhì)和速效鉀含量顯著相關(guān)(p<0.05),可見,土壤pH、有機(jī)質(zhì)(SOM)和速效鉀(AK)含量是影響nosZ細(xì)菌群落的主要環(huán)境因子。圖2顯示,不施用PGPR菌劑(T1)處理與施用菌劑的T2、T4和T5處理相距較遠(yuǎn),這表明,PGPR菌劑對(duì)nosZ細(xì)菌群落影響較大。施用菌劑的T2、T4、T5處理相對(duì)較為集中,表明施用PGPR菌劑及減施化肥20%~30%的土壤中nosZ細(xì)菌群落的差異性較小,而當(dāng)PGPR菌劑配合減少10%的化肥施用量(T3)時(shí),植煙土壤的nosZ細(xì)菌群落與其他處理差異較大。

      3 ?討 ?論

      目前PGPR菌劑已廣泛應(yīng)用在不同作物的生產(chǎn)中,其中許多報(bào)道指出外源PGPR可以改變根際土壤中微生物結(jié)構(gòu)和種群數(shù)量,且總體變化表現(xiàn)為細(xì)菌數(shù)量增加,真菌數(shù)量減少,放線菌數(shù)量變化不一致[20-21]。但關(guān)于PGPR菌劑結(jié)合化肥減施對(duì)土壤肥力的影響的報(bào)道尚不多見。本試驗(yàn)表明,PGPR菌劑配合化肥減量施用對(duì)提高土壤肥力具有重要影響。PGPR菌劑配合化肥減量施用顯著增加土壤pH、堿解氮含量,一定程度上提高速效磷和速效鉀含量,而土壤有機(jī)質(zhì)、全氮也有不顯著的增加,表明施用PGPR菌劑同時(shí)減施化肥對(duì)提高土壤肥力、改善土

      壤狀況具有積極影響。主要原因可能是本試驗(yàn)中所用PGPR菌劑為具有溶磷溶鉀能力的抗病促生型菌株,有利于活化土壤中的磷鉀元素,促進(jìn)植物吸收,進(jìn)而為土壤反饋更多的細(xì)胞脫落物及有機(jī)代謝物,從而提高土壤有機(jī)質(zhì)[12]。

      已有研究證實(shí)施用PGPR菌劑能增加土壤微生物菌群種類和數(shù)量,如施用PGPR菌劑配合有機(jī)肥,增加了玉米收獲期土壤中的固氮菌、溶磷菌及纖維素分解菌數(shù)量[22],而施用PGPR菌劑和適量的氮肥能增加土壤纖維素分解菌、硝化細(xì)菌及固氮菌數(shù)量[23]。關(guān)于nosZ型反硝化細(xì)菌的研究已有大量報(bào)道,HARTER等[24]研究發(fā)現(xiàn),Bradyrhizobium(慢生根瘤菌屬)是nosZ反硝化細(xì)菌中最豐富的物種。Azoarcus(固氮弓菌屬)和Bradyrhizobium(慢生根瘤菌屬)能夠在自由生活狀態(tài)下進(jìn)行脫氮作用,并能誘導(dǎo)豆科植物大量結(jié)瘤,與豆科植物形成共生關(guān)系,刺激植物生長。此外,Bradyrhizobium(慢生根瘤菌屬)對(duì)土壤具有生物修復(fù)功能[24]。ITELIMA等[25]認(rèn)為Azospirillum(固氮螺菌屬)能夠分泌赤霉素、乙烯和生長素,還可以刺激植物中黃酮類化合物的分泌,進(jìn)而刺激根瘤菌中結(jié)瘤基因(nod)的表達(dá)。本試驗(yàn)中,施用PGPR菌劑均增加了土壤中Bradyrhizobium和Bacterium的豐度,并使Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)豐度增加成為優(yōu)勢菌屬,這表明施用PGPR改變了土壤含nosZ反硝化細(xì)菌群落組成且增加了有益微生物的數(shù)量。

      研究表明,在煙草上應(yīng)用PGPR菌劑能夠增加土壤微生物群落多樣性,促進(jìn)煙株生長[26]。PGPR菌劑配合化肥減施對(duì)植煙土壤nosZ細(xì)菌群落多樣性無顯著影響,而全量化肥配施PGPR菌劑則降低了nosZ細(xì)菌群落多樣性。這可能是由于化肥的施入調(diào)節(jié)土壤中的C/N從而影響了不同菌群的定殖能力,使PGPR菌劑中的菌群與nosZ菌群造成競爭導(dǎo)致。適當(dāng)降低化肥用量有助于保持土壤中nosZ群落的多樣性。這也再次證實(shí)了nosZ型反硝化細(xì)菌群落對(duì)施肥的響應(yīng)較為敏感[4]。

      環(huán)境因子與土壤微生物群落相互作用,密切相關(guān)[27]。大量研究表明土壤pH、有機(jī)碳、氮是影響反硝化細(xì)菌群落組成的重要環(huán)境因子[28-29],也有研究指出,nosZ菌群與土壤水分含量和有效磷相關(guān)性最強(qiáng)[30]。這都證實(shí)了土壤環(huán)境質(zhì)量與功能微生物的生存息息相關(guān)。本試驗(yàn)中,RDA相關(guān)性分析表明土壤pH、有機(jī)質(zhì)和有效鉀是影響植煙土壤nosZ細(xì)菌群落組成的主要環(huán)境因子,其次是速效鉀、全氮及堿解氮。這與前人的研究結(jié)果[31-32]一致。

      4 ?結(jié) ?論

      研究表明PGPR菌劑結(jié)合化肥減施改變了土壤理化性質(zhì),不同程度地提高了土壤pH、堿解氮、速效磷和速效鉀等養(yǎng)分含量。PGPR菌劑配合化肥減施對(duì)植煙土壤nosZ細(xì)菌群落多樣性無顯著影響,卻明顯改變了其結(jié)構(gòu)組成;而全量化肥配施PGPR菌劑則降低細(xì)菌群落多樣性。紅桿菌屬 (Rhodobacter)和桿菌屬(Bacterium)是該地區(qū)植煙土壤主要nosZ型反硝化細(xì)菌,而慢生根瘤菌屬(Bradyrhizobium)和固氮螺菌屬(Azospirillum)等nosZ基因型反硝化細(xì)菌對(duì)施用PGPR菌劑處理響應(yīng)最敏感。土壤pH、有機(jī)質(zhì)及有效鉀是影響植煙土壤nosZ型細(xì)菌群落的主要環(huán)境因子。相關(guān)研究可為在攀枝花煙區(qū)植煙土壤上建立合理的施肥制度、保護(hù)土壤質(zhì)量提供理論依據(jù)。

      參考文獻(xiàn)

      [1]CONTHE M, WITTORF L, KUENEN J G, et al. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture[J]. The ISME Journal, 2018, 12(4): 1142-1153.

      [2]JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9): 801-805.

      [3]DOBBIE K E, SMITH K A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003, 9(2): 204-218.

      [4]鄭燕,侯海軍,秦紅靈,等. 施氮對(duì)水稻土N2O釋放及反硝化功能基因(narG/nosZ)豐度的影響[J]. 生態(tài)學(xué)報(bào), 2012, 32(11):3386-3393.

      ZHENG Y,HOU H J,QIN H L, et al. Effect of N application on the abundance of denitrifying genes (narG /nosZ) and N2O emission in paddy soil[J]. Acta Ecologica Sinica, 2012, 32(11): 3386-3393.

      [5]STRES B, MAHNE I, AVGUSTIN G, et al. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated michigan soils[J]. Applied and Environmental Microbiology, 2004, 70(1): ?301-307.

      [6]WANG Y Y, LU S E, XIANG Q J, et al. Responses of N2O reductase gene (nosZ)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil[J]. Journal of Integrative Agriculture, 2017(11): 2597-2611.

      [7]ZHONG W H, CAI Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2): 84-91.

      [8]JASKULSKA I, JASKULSKI D, KOBIERSKI M. Effect of limingon the change of some agrochemical soil properties in a long-term fertilization experiment[J]. Plant Soil and Environment, 2014, 60(4): 146-150.

      [9]MADARAS M, LIPAVSKY J. Interannual dynamics of available potassium in a long-term fertilization experiment[J]. Plant Soil and Environment, 2009, 55(8): 334-343.

      [10]姜蓉,湯利,李淼,等. 設(shè)施土壤微生物結(jié)構(gòu)和酶活性對(duì)減量化肥配施有機(jī)肥的響應(yīng)[J]. 土壤通報(bào),2017, 48(3):639-646.

      JIANG R, TANG L, LI M, et al. Response of greenhouse soil microbial community and enzyme activities to combined application of chemical fertilizer reduction with organic fertilizer [J]. Chinese Journal of Soil Science, 2017, 48(3): 639-646.

      [11]宋以玲,于建,陳士更,等. 化肥減量配施生物有機(jī)肥對(duì)油菜生長及土壤微生物和酶活性影響[J]. 水土保持學(xué)報(bào),2018,32(1):352-360.

      SONG Y L, YU J, CHEN S G, et al. Effects of reduced chemical fertilizer with application of bioorganic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360.

      [12]周莉華,李維炯,倪永珍. 長期施用 EM 生物有機(jī)肥對(duì)冬小麥生產(chǎn)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(S1): 221-224.

      ZHOU L H, LI W J, NI Y Z. Effects of long-term application of EM biological-organic fertilizer on winter wheat production. Transactions of the CSAE, 2005, 21(S1): 221-224.

      [13]KHALID A, ARSHAD M, ZAHIR Z A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology, 2010, 96(3): 473-480.

      [14]CAKMAKCI R, DONMEZ F, AYDIN A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions[J]. Soil Biology and Biochemistry, 2006, 38(6): 1482-1487.

      [15]BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350.

      [16]鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2000.

      BAO S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.

      [17]KLOOS K, MERGEL A, ROSCH C, et al. Denitri?cation within the genus Azospirillum and other associative bacteria[J]. Australian Journal of Plant Physiology, 2001, 28(9): 991-998.

      [18]ENEALL K, PHILIPPOT L, HALLIN S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.

      [19]BHARTI N, BARNAWAL D, MAJI D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress[J]. Microbial Ecology, 2015, 70(1): 196-208.

      [20]劉方春,邢尚軍,馬海林,等.根際促生細(xì)菌(PGPR)對(duì)冬棗根際土壤微生物數(shù)量及細(xì)菌多樣性影響[J].林業(yè)科學(xué),2013,49(8):75-80.

      LIU F C, XING S J, MA H L, et al. Effect of plant growth-promoting rhizobacteria (PGPR) on the microorganism population and bacterial diversity in Ziziphus jujuba rhizosphere soil[J]. Scientia Silvae Sinicae, 2013, 49(8): 75-80.

      [21]BUDDRUS-SCHIEMANN K, SCHMID M, SCHREINER K, et al. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley[J]. Microbial Ecology, 2010, 60(2): 381-393.

      [22]GULNAZ Y, FATHIMA P S, KULMITRA A K, et al. Effect of PGPR and PSB on soil chemical properties, nutrient status and microbial population changes after harvest of irrigated maize under varying levels of phosphorus[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10): 1707-1712.

      [23]SALVO L P D, CELLUCCI G C, CARLINO M E, et al. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays, L.) grain yield and modified rhizosphere microbial communities[J]. Applied Soil Ecology, 2018, 126: 113-120.

      [24]HARTER J, EI-HADIDI M, HUSON D H, et al. Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation[J]. Scientific Reports, 2017, 7(3338): 1-14.

      [25]ITELIMA J U, BANG W J, ONYIMBA I A, et al. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: a review[J]. Direct Research Journal of Agriculture and Food Science, 2018, 6(3): 73-83.

      [26]黃闊,江其鵬,姚曉遠(yuǎn),等. 微生物菌劑對(duì)煙草根結(jié)線蟲及根際微生物群落多樣性的影響[J]. 中國煙草科學(xué),2019,40(5):36-43.

      HUANG K, JIANG Q P, YAO X Y, et al. Effects of microbial agents on tobacco root-knot nematode and diversity of rhizosphere microbial communities[J]. Chinese Tobacco Science, 2019, 40(5): 36-43.

      [27]GAIMSTER H, LSTON M, RICHARDSON D. Andrew gates and gary rowley transcriptional and environmental control of bacterial denitrification and N2O emissions[J]. FEMS Microbiology Letters, 2017, 365(5): 277-297.

      [28]STEHFEST E, BOUWMAN A F. N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228.

      [29]ZENG J, LOU K, ZHANG C J. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China[J]. Frontiers in Microbiology, 2016, 7: 1353-1365.

      [30]JHA N, SAGGAR S, GILTRAP D, et al. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture[J]. Biogeosciences Discussions, 2017, 14(18): 1-19.

      [31]WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270.

      [32]GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2): 112-129.

      库尔勒市| 北安市| 晋中市| 平湖市| 漳州市| 潜山县| 南宁市| 潮州市| 葵青区| 松江区| 文水县| 平潭县| 镇坪县| 三门县| 文登市| 临洮县| 安阳县| 青神县| 北安市| 永济市| 通城县| 微山县| 嘉鱼县| 宜宾县| 崇文区| 华蓥市| 嵩明县| 客服| 炉霍县| 桦甸市| 乌兰县| 湛江市| 沐川县| 龙里县| 鸡泽县| 忻州市| 宽甸| 靖江市| 凤凰县| 泰宁县| 澄迈县|