• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model*

    2017-03-09 09:09:38YingnanFu付英男XizengZhao趙西增FeifengCao曹飛鳳DakeZhang張大可DuCheng程都LiLi李莉
    關(guān)鍵詞:李莉張大

    Ying-nan Fu (付英男), Xi-zeng Zhao (趙西增), Fei-feng Cao (曹飛鳳), Da-ke Zhang (張大可), Du Cheng (程都), Li Li (李莉),3

    1.Ocean College, Zhejiang University, Hangzhou 310058, China

    2.Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China, E-mail: fyn_zju@163.com

    3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China

    4.Institute of Harbor-Channel and Coastal Engineering, Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

    (Received February 11, 2015, Revised December 11, 2016)

    Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model*

    Ying-nan Fu (付英男)1,2, Xi-zeng Zhao (趙西增)1,2, Fei-feng Cao (曹飛鳳)4, Da-ke Zhang (張大可)1, Du Cheng (程都)1, Li Li (李莉)1,3

    1.Ocean College, Zhejiang University, Hangzhou 310058, China

    2.Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China, E-mail: fyn_zju@163.com

    3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China

    4.Institute of Harbor-Channel and Coastal Engineering, Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

    (Received February 11, 2015, Revised December 11, 2016)

    The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University (CIP-ZJU). The model is established in the Cartesian coordinate system using the CIP method to discretise the Navier-Stokes equations. The fluid-structure interaction is treated as a multiphase flow of the liquid and solid phases to be solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The CFD model is first applied to the computation of the flow past a fixed square cylinder for its validation. Computations are then performed for the flow past a square cylinder oscillating in the streamwise direction. Considerable attention is paid to the symmetric and anti-symmetric modes of the vortex shedding in the oscillating square cylinder wake. Various oscillation amplitudes and frequencies are simulated and their effects on the vortex shedding modes are analyzed via Lissajous patterns of the unsteady lift coefficient. The relationship among the lift coefficient, the drag coefficient and the lock-on range is also investigated quantitatively.

    Flow past cylinder, oscillating square cylinder, lock-on, CIP method, immersed boundary method

    Introduction

    A flow past bluff or slender bodies can lead to vortex shedding from the tail and induce a considerable dynamic load on the bodies, resulting in the vibration of the structures[1,2]. The vortex shedding from bluff bodies involves an unsteady flow with a wide range of practical engineering applications. The flow past an in-line oscillating cylinder is one of the classic topics in this field. This study is a first step to investigate thecapability of coupled fluid-structure interactions with an in-house code which can be used later on for the vortex induced vibration of pipelines, like those in offshore engineering.

    Extensive experimental and numerical studies were reported about the flow past an in-line oscillating circular cylinder, focusing mainly on the appearance of the vortex shedding synchronization (lock-on). It is demonstrated that the lock-on occurs in a range nearfd/f0≈2(fdis the forcing frequency,f0is the frequency of the vortex shedding from a stationary cylinder, as is shown by an FFT analysis ofFl). Ongoren and Rockwell[3]concentrated on the modes of the vortex shedding by experimental studies, and five modes were identified: the symmetric S mode, the anti-symmetric A-I mode, the A-II mode, the A-III mode and the A-IV mode. Al-Mdallal et al.[4]analyzed the modes of the lock-on numerically through Lissajous patterns of the unsteady lift coefficient. Bai[5]employed the LES and the detached eddy simulation (DES) to study fixed and forced moving circular cylinders in turbulent flows, and the influences of oscillation amplitudes, frequencies and free stream velocities were discussed. Yokoi and Hirao[6]investigated the modes of the vortex shedding at the Reynolds number of 620 by laboratory experiments and numerical simulations. They found that the flow near the cylinder in the S mode is two-dimensional, but the vortex shedding along the cylinder is out of phase. Al-Mdallal[7]presented a computational study of the two-dimensional flow of a viscous fluid past a circular cylinder subject to a circular motion. The numerical simulations revealed the occurrence of multiple lock-in regions.

    Table 1 Comparison of mean drag coefficient (Cd)and Strouhal number (St)with those of other authors

    Most researches were focused on the oscillating circular cylinder, while the oscillating square cylinder was paid relatively less attention. Steggel and Rockliff[8]simulated the oscillatory flow past a rectangular-section cylinder at low Reynolds numbers using a discrete vortex method. It is shown that the aspect ratio has a great impact on the modes of the vortex shedding in the lock-on region. A strong regime of the symmetric vortex shedding is found atL/D=2.0 (whereLis the length along stream,Dis the width) when the forcing frequency is over twice of the natural shedding frequency. Chung and Kang[9]simulated the vortex shedding behind a square cylinder in an oscillatory incoming flow and obtained the relationship between the Reynolds shear stress and the phase difference between the flow velocity and the mean drag coefficient. Srikanth et al.[10]computed the flow past in-line oscillating rectangular cylinders of various aspect ratios and observed the competition between various modes by changing the aspect ratio of the rectangular section. Tudballsmith et al.[11]carried out experiments to investigate the response and the trends of the modes of streamwise oscillating cylinders, suggesting that the physical mechanism is similar regardless of the details of the body. In most of the studies listed above, the stationary cylinders with oscillatory flow were usually used. However, laboratory tests involve high costs and the technical limitation of experimental facilities. As a result, there is an increasing interest in numerically simulating such fluid-structure interactions.

    Fig.1 Sketch of computational domain for flow past an in-line oscillating square cylinder

    Fig.2 The computational mesh for flow past an in-line oscillating square cylinder

    One of the greatest challenges in the simulation of the fluid-structure interaction is to deal with the moving solid boundaries in complex geometries, especially for large amplitude body motions. The traditio-nal boundary-fitted, unstructured finite-element method is usually adopted to treat movable structure boundaries. However, the grid generation and the remeshing calculation are required and they are timeconsuming. In this paper, a computational fluid dynamics (CFD) model is proposed under the Cartesian grid system to avoid the grid updating. In the model, an immersed boundary method[12]is adopted to treat the movable structure boundaries. Meanwhile, the fluidstructure interaction is treated as a multi-phase problem. To do so, the constraint interpolation profile/ CIP combined, unified procedure (CIP/CCUP)[13]is combined with the Cartesian grid system where the multi-phase problem is solved in one set of equations. The CIP method has been applied for water-body intraction problems of free surface flow[14,15]. In the present study, the CIP method is used for the study of the flow over oscillating square cylinders without free surface.

    The objective of the present study is to extend the CIP-based method for investigating the vortex shedding and the lock-on phenomenon in the near-wake region of an oscillating square cylinder, characterized by a wide range of oscillation frequencies and large oscillation amplitudes.

    1. Mathematical modeling

    1.1Governing equations

    The basic equations governing the incompressible fluid flow are the mass conservation equation and the Navier-Stokes momentum equations as

    where the Cartesian tensor notation is used,(i=1,2),t,uj,pandxjare the time, the velocities, the hydrodynamic pressure and the spatial coordinates, respectively,firepresents the momentum forcing components, andSijis the viscous term given by

    whereρandμare the density and the viscosity, respectively, appropriate for the phase that occupies the particular spatial location at a given instant.

    Fig.3 Lissajous patterns inside lock-on range atA/D=0.1

    Fig.4 Vorticity contours in lock-on range over two periods of oscillation,2TatA/D=0.1,Re=200and different oscillation frequencies

    In the numerical model, the fluid-body interaction is considered as a multi-phase problem including the fluid and the structure. A fixed Cartesian grid that covers the whole computation domain is used. A volume function (or the color function)φm(m=1 and 2 indicate the water and the solid, respectively) is defined to represent and track the interface. The total volume function for the water and the body is solved by using the following advection equation

    Hereφ12=φ1+φ2. The density and the viscosity of the solid phase are assumed to be the same as those of a liquid phase to ensure stability. The volume function for the solid bodyφ2is determined by a Lagrangian method in which a rigid body is assumed. The volume function for the fluidφ1is then determined byφ1= 1.0?φ2. After all volume functions have been calculated, the physical propertyλ, such as the density and the viscosity, is calculated by the following formula.

    More details can be found in the Refs.[15-17].

    1.2Numerical methods

    Following Zhao and Hu[16], the governing equations are discretized using a high-order finite difference method on a Cartesian grid system. A staggered grid configuration is used to discretize the dependent variables. The governing Eqs.(1) and (2) are solved using a fractional step scheme.

    Fig.5 Lissajous patterns outside lock-on range atA/D=0.1 forfd/f0=0.5, 1.0, 1.4 and 2.4

    In the advection phase, the spatial derivatives of the velocities are needed in the CIP method[13]for this phase. In the first non-advection phase, the terms of diffusion and external forces are solved by the explicit method and the intermediate velocities are updated. In the final phase, the velocities are updated coupling with the pressure field.

    Fig.6 Lissajous patterns and vorticity contours in 3 periods atfd/f0=2.9 andA/D=0.1

    To model the body motions, the fluid-structure interaction is coupled by using the fractional area volume obstacle representation (FAVOR) method. The FAVOR was shown to be one of the most efficient methods to treat the immersed solid bodies[17]. Theeffect of a moving solid body on the flow is included by imposing the velocity field of the solid body in the flow at the solid edge. The following equation is introduced to update the local information of the fluid domain covered by the body.

    HereUbis the local velocity of the solid body andudenotes the flow velocity obtained from the fluid flow solver.Ub, the local velocity of the solid body, is tracked by a Lagrange method. By integrating the pressure on the body surface, the hydrodynamic forces on the body are first calculated. With the Newton’s law, the body accelerations and velocities are calculated. More details can be found in previous references[15-17].

    Fig.7 Mean values ofCd, maximum values ofCland the amplitudes ofCdversusfd/f0atA/D=0.1

    Fig.8 Lissajous patterns inside lock-on range atA/D=0.2 forfd/f0=1.3, 1.6, 1.9 and 2.2

    1.3Definition of the parameters

    The Reynolds number is defined asRe=ρUD/μ, whereρis the density of the liquid,Uis theinflow velocity,Dis the side length of the square cylinder andμis the dynamic viscosity coefficient.

    The drag coefficient is defined asCd=2Fd/ρU2D, whereFdis the force on the cylinder along the inflow velocity.

    The lift coefficient is defined asCl=2Fl/ρU2D, whereFlis the force on the cylinder perpendicular to the inflow velocity.

    The Strouhal number is defined asSt=f0D/U.

    2. Numerical results

    2.1Flow past a fixed square cylinder

    The convergence study is first performed for the flow past a stationary square cylinder at a low Reynolds number (Re=200)as a reference for further investigation. Three different non-uniform meshes are used with a minimum grid size ofΔx=Δy= 0.01D,0.03Dand 0.05D, respectively. Numerical results of the mean value of the drag coefficient(Cd) and the Strouhal number (St)are shown in Table 1 and compared with previous experimental and numerical results. It can be seen that the computation results converge fast and the results of Mesh 1 and Mesh 2 are in excellent agreements with both the experimental and numerical data in the existing literature. Thus mesh 2 is adopted in the following calculations.

    Fig.9 Vorticity contours atA/D=0.2forfd/f0=1.3, 1.6, 1.9 and 2.2

    Fig.10 Lissajous patterns inside S mode atA/D=0.2forfd/f0=2.3, 2.7 and 3.0

    2.2Flow past an oscillating square cylinder

    In this section, the flow past an oscillating square cylinder is computed atRe=200. A computational domain of30D×40Dis employed, as shown in Fig.1 and the corresponding arrangement of the mesh is plotted in Fig.2. The inlet boundary is located15Dupstream the center of the square cylinder and the outlet boundary is25Ddownstream. The upper and lower boundaries are located15Daway from the horizontal centerline of the computational domain. On the inlet, the streamwise velocity is set to makeRe=200for the fixed squa re cylinder and the transverse velocity is equaltozero.On the outlet, a zero gradient boundarycondition is specified. The horizontal motion of the square cylinder is set asX(t)=Asin(2πfdt). Various oscillation amplitudes,A/D=0.1, 0.2, 0.3 and a wide range of oscillation frequencies,0.5≤fd/f0≤3.0 are used in the following computations.

    Fig.11 Vorticity contours of S mode atA/D=0.2forfd/f0=2.3, 2.7 and 3.0

    2.2.1 AmplitudeA/D=0.1

    The case for a small oscillation amplitudeA/D= 0.1 is firstly considered with different oscillation frequencies. The Lissajous patterns (X(t)/AversusCl(t)) are shown in Fig.3 for 1.5≤fd/f0≤2.3. It is clear that these curves show the phase-locked pattern over two cycles of the cylinder oscillation,2T(Tis the period of the oscillation, equal to 1/fd), which suggests that the near wake is in the lock-on in the range offd/f0=1.5-2.3. Figure 4 displays the corresponding vorticity contours forfd/f0=1.5, 1.7, 1.9, 2.1 and 2.3 in two periods of the cylinder oscillation. Positive contours are plotted in solid lines and negative contours in dashed lines. It can be seen that the contours at 0Tand 2Tin these cases are almost identical. The vortex shedding from the cylinder in the nearwake region is locked-on over two periods. From Figs.4(a)-4(c), it is observed that a strong and a weak vortex shed from each side of the cylinder. Consequently, it is locked to the anti-symmetric A-IV mode per 2Tfor 0.5≤fd/f0≤1.9. The second weaker vortex soon decays downward owing to the lower power. In Fig.4(d), two vortexes from each side of the cylinder of nearly the same size are formed atfd/f0=2.1and soon coalesced with each other to form the A-II mode. And it is the A-II mode completely in Fig.4(e). It is observed that the primary wavelength is decreasing, while the width of the vortex street increases firstly and then decreases. They are both influenced by the second weaker vortex during the mode transition.

    Fig.12 Mean values ofCd, maximum values ofCland amplitudes ofCdversusfd/f0atA/D=0.2

    Figure 5 shows the Lissajous patterns atfd/f0=0.5 , 1.0, 1. 4, 2.4 outside the lock-on region. None of these curves shows a phase-locked form. Figure 6displays the Lissajous pattern and the corresponding vorticity contours forfd/f0=2.9in three oscillation periods. The motion of the cylinder andCl(t)are phase-locked again. The vorticity contours at 0Tand 3Tare nearly identical in the near-wake region. One vortex sheds from the upper side of the cylinder and simultaneously two shed from the lower side. This mode is referred as the anti-symmetricP+Smode every three oscillating periods,3T. It should be noted that this pattern is not observed for any other oscillating frequency. The effects of the oscillation frequency,fd/f0on the mean value of the drag coefficientCd, the maximum value of the lift coefficientCland the amplitude of the drag coefficientCdare plotted in Fig.7. The mean value of the drag coefficientCd, and the maximum value of the lift coefficientClshow a clear peak within the lock-on range, and decrease rapidly outside the synchronization region. The amplitude ofCddisplays a monotonic increase asfd/f0increases.

    Fig.13 Lissajous patterns inside lock-on range atA/D=0.3 forfd/f0=1.2, 1.5, 1.8 and 2.1

    Fig.14 Vorticity contours atA/D=0.3forfd/f0=1.2, 1.5, 1.8 and 2.1

    2.2.2 AmplitudeA/D=0.2

    This section shows the results ofA/D=0.2andRe=200. The lock-on phenomenon appears atfd/f0=1.3, earlier than that whenA/D=0.1. Symmetric S mode does not appear untilfd/f0=2.3, which is not found for the case ofA/D=0.1. The Lissajous patterns within the lock-on range are plotted in Fig.8. A good phase-locked pattern is found in the range of 1.3≤fd/f0≤2.2. Figure 9 shows the vorticity contours forfd/f0=1.3, 1.6, 1.9, and 2.2 atT. It can be noticed that the A-IV mode of the vortex sheddingis observed atfd/f0=1.3, 1.6 and 1.9. However, the A-II mode is observed atfd/f0=2.2. The smaller vortex decays in the progression and coalesces with the larger vortex. Figure 10 displays the Lissajous patterns in the S mode at a larger oscillation frequency,fd/f0=2.3, 2.7 and 3.0. These figures reveal thatClis close to zero due to the symmetric S vortex shedding mode. The vorticity contours of the S mode atfd/f0=2.3, 2.7 and 3.0 are displayed in Fig.11. It can be seen that the vortex shedding is not alternative but simultaneous from each side of the cylinder with an opposite rotation. Take the flow velocity around the cylinder and the oscillating motion into account, ifRe≤50, the vortex will not shed from the cylinder but shed with the oscillation of the cylinder, just like the vortex shedding from a cylinder oscillating in the still fluid. It is also noted that the near-wake structures show an identical pattern per oscillation period,Tand the vortex street is very narrow again. Figure 12 shows the main force coefficients versusfd/f0. A significant reduction of the mean value ofCdand the maximum value ofClis observed in the S mode. However, the amplitude ofCdis not affected. It steadily increases asfd/f0increases.

    Fig.15 Lissajous patterns inside S modes atA/D=0.3forfd/f0=2.2, 2.6 and 3.0

    Fig.16 Vorticity contours atA/D=0.3forfd/f0=2.2, 2.6 and 3.0

    2.2.3 AmplitudeA/D=0.3

    The case of a larger oscillation amplitudeA/D= 0.3 is computed finally atRe=200. Numerical results show that the lock-on phenomenon appears atfd/f0=1.2, and the vortex shedding is transformed to the S mode atfd/f0=2.2. The Lissajous patterns are plotted in Fig.13 and the phase-locked status is clearly shown. Figure 14 displays the corresponding vorticity contours atTforfd/f0=1.2, 1.5, 1.8, and 2.1, respectively. It is observed that the second weaker vortex becomes larger and stronger with the increase of the frequencyfd/f0, and the lock-on anti-symmetric A-IV mode is observed. Figure 15 shows the Lissajous patterns in the S mode atfd/f0=2.2, 2.6 and 3.0, the corresponding vorticity contours are shown in Fig.16. The S mode begins to appear atfd/f0=2.2, as shown in Fig.16(a). One sees almost no difference at 0Tand 2T. However, the near-wake structures are already locked atT. Figs.16(b) and 16(c) show the stabilized symmetric S mode atfd/f0=2.6 and 3.0. It can be observed that a pair of vortices is shed from each side of the cylinder. Each of the strong vortices is established by a weak counterrotating secondary vortex on the centerline of the rear side, and the secondary vortex decays quickly downward after its formation. It is defined as the S-III mode by Srikanth et al.[10]. The formations of the primary vortex and the secondary weaker vortex have different mechanisms. The fluid near the cylinder is accelerated by the primary vortex, which leads to the formation of the boundary layer. With enough area available at the lee side of the cylinder, the vortices of opposite sign are generated. Figure 17 shows the results from the dynamic forces acting on the cylinder as a function of the oscillating frequencyfd/f0. The mean value ofCdand the maximum ofClappear to decrease atfd/f0≈2.0when the vortex shedding begins to be transformed from the A-IV mode to the A-II mode. The small vortex mergers with the primary vortex, and then decays rapidly as a result of the appearance of the symmetric S mode. The amplitude ofCdincreases monotonically asfd/f0increases.

    Fig.17 Mean values ofCd, maximum values ofCland amplitudes ofCdversusfd/f0atA/D=0.3

    Fig.18 Mean values ofCd, maximum values ofCland the amplitudes ofCdversusfd/f0inside lock-on range

    Fig.19 Comparison of primaries frequencies of lift coefficient outside lock-on range

    2.2.4 Comparison of results atA/D=0.1, 0.2 and 0.3

    Figure 18 displays the comparison of the mean value ofCd, the maximum value ofCland the amplitude ofCdat different oscillation amplitudes inside the lock-on range. It can be noticed that the force coefficients decrease with the increase of the oscillation amplitudes. Because of the existence of the S mode, the maximum value ofCldecreases to a value close to zero atA/D=0.2 and 0.3 at the back of the lock-on range. While the amplitude ofCdincreases monotonically independent of the lock-on range and the S mode. Figure 19 shows the comparison of the primary frequencies of the lift coefficient outside the lock-on range. Atfd/f0=0.5, the primary frequency is close to the natural frequency of the vortex shedding from a stationary cylinderf0and plays a dominant role, while for other oscillation frequencies, the primary frequencies differ from each other at various oscillation amplitudes and the difference increases with the increase of the oscillation frequency. The primary frequency is observed to decrease as the oscillation amplitude increases. The amplitude of the primary frequency is observed to show a significant increase atA/D=0.3, while atA/D=0.1 and 0.2, the variation of the amplitude of the primary frequency is not as distinct as that ofA/D=0.3.

    3. Conclusion

    A CIP-ZJU model is utilized in this paper, which is established in the Cartesian coordinate system, using the CIP method as the base flow solver to discretise the N-S equations. The fluid-structure interaction is treated as a multiphase flow with the fluid and solid phases solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The flow past a stationary square cylinder atRe=200is computed firstly to validate the method. Good agreements are obtained comparing with existing data in literature. Then a two-dimensional flow around an in-line oscillating square is numerically computed atRe=200, and different oscillation amplitudesA/D=0.1, 0.2, 0.3 and in a wide oscillation frequency range of0.5≤fd/f0≤3.0. Symmetric and anti-symmetric modes are obtained clearly. The P+S mode is observed atA/D=0.1forfd/f0=2.9, which cannot be obtained under any other conditions. The S-III mode is observed atA/D=0.3for highfd. The proposed CIP-based model can effectively and accurately resolve the nonlinear fluid-structure interactions. Progress in this direction will be reported later on.

    [1] Wanderley J. B. V., Soares L. F. N. Vortex-induced vibration on a two-dimensional circular cylinder with low Reynolds number and low mass-damping parameter [J].Ocean Engineering, 2015, 97: 156-164.

    [2] Zhao M., Cheng L. Vortex-induced vibration of a circular cylinder of finite length [J].Physics of Fluids, 2014, 26(1): 015111.

    [3] Ongoren A., Rockwell D. Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake [J].Journal of Fluid Mechanics, 1988, 191: 225-245.

    [4] Al-Mdallal Q. M., Lawrence K. P., Kocabiyik S. Forced streamwise oscillations of a circular cylinder: Locked-on modes and resulting fluid forces [J].Journal of Fluids and Structures, 2007, 23(5): 681-701.

    [5] Bai W. Numerical simulation of turbulent flow around a forced moving circular cylinder on cut cells[J].Journal of Hydrodynamics, 2013, 25(6): 829-838.

    [6] Yokoi Y., Hirao K. The appearance of two lock-in states in the vortex flow around an in-line forced oscillating circular cylinder[C].EPJ Web of Conferences, 2014, 67(4): 02131.

    [7] AL-MDALLAL Q. M. Numerical simulation of viscous flow past a circular cylinder subject to a circular motion [J].European Journal of Mechanics B/Fluids, 2014, 49: 121-136.

    [8] Steggel N., Rockliff N. Simulation of the effects of body shape on lock-in characteristics in pulsating flow by the discrete vortex method [J].Journal of Wind Engineering, 1997, 69-71(5): 317-329.

    [9] Chung Y. J., Kang S. H. A study on the vortex shedding and lock-on behind a square cylinder in an oscillatory incoming flow [J].JSME International Journal, 2003, 46(2): 250-261.

    [10] Srikanth T., Dixit H. N., Rao T. et al. Vortex shedding patterns, their competition, and chaos in flow past inline oscillating rectangular cylinders [J].Physics of Fluids, 2011, 23(5): 1-9.

    [11] Tudballsmith D., Leontini J. S., Sheridan J. et al. Streamwise forced oscillations of circular and square cylinders [J].Physics of Fluids, 2012, 24(20): 111703.

    [12] Peskin C. S. Flow patterns around heart valves [J].Journal of Computational Physics, 1972, 10(2): 252-271.

    [13] Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis [J].Journal of Computational Physics, 2001, 169(2): 556-593.

    [14] Ye Z., Zhao X., Deng Z. Numerical investigation of the gate motion effect on a dam break flow [J].Journal of Marine Science and Technology, 2016, 21(4): 579-591.

    [15] Zhao X., Ye Z., Fu Y. Green water loading on a floating structure with degree of freedom effects [J].Journal of Marine Science and Technology, 2014, 19(3): 302-313

    [16] Zhao X., Hu C. Numerical and experimental study on a 2-D floating body under extreme wave conditions [J].Applied Ocean Research, 2012, 35(1): 1-13.

    [17] Zhao X., Ye Z., Fu Y. et al. A CIP-based numerical simulation of freak wave impact on a floating body [J].Ocean Engineering, 2014, 87: 50-63.

    [18] Breuer M., Bernsdorf J., Zeiser T. et al. Accurate computation of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume [J].International Journal of Heat and Fluid Flow, 2000, 21(2): 186-196.

    [19] Liu T. C., Ge Y. J., Cao F. C. et al. Reynolds number effects on flow around square cylinder based on lattice Boltzmann method [C].Proceedings of the Fluid International Conference on Fluid Mechanics. Shanghai, China, 2007.

    [20] Gera B., Pavan K. S., Singh R. K. CFD analysis of 2D unsteady flow around a square cylinder [J].International Journal of Applied Engineering Research, 2010, 1(3): 602-610.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51209184, 51479175 and 51679212), the Natural Science Foundation of Zhejiang Province (Grant No. LR16E090002).

    Biography:Ying-nan Fu (1990-), Male, Master Candidate

    Xi-zeng Zhao, E-mail: xizengzhao@zju.edu.cn

    猜你喜歡
    李莉張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    李莉作品(一)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    李莉作品(二)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    張大林美術(shù)作品欣賞
    故鄉(xiāng)一把土
    張大春讓健康從業(yè)者偉大起來
    Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps?
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    AN APPLICABLE APPROXIMATION METHOD AND ITS APPLICATION?
    亚洲精品aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 国产片特级美女逼逼视频| 亚洲精品中文字幕在线视频 | 新久久久久国产一级毛片| 国产伦在线观看视频一区| 国产爱豆传媒在线观看| 久久久成人免费电影| 超碰av人人做人人爽久久| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| 人妻制服诱惑在线中文字幕| 91aial.com中文字幕在线观看| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 内地一区二区视频在线| 日本黄色日本黄色录像| 看非洲黑人一级黄片| 一级毛片电影观看| 国产黄色视频一区二区在线观看| 精品久久久噜噜| 夫妻性生交免费视频一级片| 七月丁香在线播放| 日本一二三区视频观看| av黄色大香蕉| 国产成人一区二区在线| 精品少妇黑人巨大在线播放| 亚洲av综合色区一区| 久久久欧美国产精品| 国产在线一区二区三区精| 欧美 日韩 精品 国产| 超碰97精品在线观看| 妹子高潮喷水视频| 国产黄片视频在线免费观看| 日韩精品有码人妻一区| 在线天堂最新版资源| 中文字幕久久专区| 99热6这里只有精品| 丰满乱子伦码专区| av免费观看日本| 女人久久www免费人成看片| 男女无遮挡免费网站观看| 美女中出高潮动态图| 成人一区二区视频在线观看| 国产成人freesex在线| 免费大片黄手机在线观看| 女性生殖器流出的白浆| 日本黄大片高清| 交换朋友夫妻互换小说| 免费观看a级毛片全部| 日韩中字成人| 大码成人一级视频| 日韩成人av中文字幕在线观看| 免费大片18禁| av不卡在线播放| 色婷婷久久久亚洲欧美| 91精品国产九色| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 99热这里只有是精品50| 亚洲电影在线观看av| 亚洲国产av新网站| 最近手机中文字幕大全| 青春草视频在线免费观看| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩 亚洲 欧美在线| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 高清日韩中文字幕在线| 久久久色成人| 另类亚洲欧美激情| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| 老熟女久久久| 久久久精品免费免费高清| 2021少妇久久久久久久久久久| 欧美精品人与动牲交sv欧美| 国产毛片在线视频| 国产欧美日韩精品一区二区| 中文在线观看免费www的网站| 成年女人在线观看亚洲视频| 如何舔出高潮| 久久久久精品久久久久真实原创| 日韩不卡一区二区三区视频在线| 最近最新中文字幕免费大全7| 免费播放大片免费观看视频在线观看| 国产熟女欧美一区二区| 在线播放无遮挡| 国产高清三级在线| 久热这里只有精品99| 日韩成人伦理影院| 久久精品国产亚洲av涩爱| 女性生殖器流出的白浆| 免费观看av网站的网址| 久久精品人妻少妇| 午夜日本视频在线| 色吧在线观看| 男女啪啪激烈高潮av片| 深夜a级毛片| 国产综合精华液| 99热这里只有是精品在线观看| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 观看av在线不卡| 久久久久久久精品精品| 极品少妇高潮喷水抽搐| av福利片在线观看| 精品久久国产蜜桃| 成人二区视频| 日本免费在线观看一区| 成人特级av手机在线观看| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 久久 成人 亚洲| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 中文精品一卡2卡3卡4更新| 在线 av 中文字幕| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 国产69精品久久久久777片| 亚洲,欧美,日韩| 精品久久久久久久久亚洲| 国精品久久久久久国模美| 中文字幕免费在线视频6| 看十八女毛片水多多多| 久久人人爽人人爽人人片va| 在线 av 中文字幕| 新久久久久国产一级毛片| 中文字幕亚洲精品专区| 亚洲国产日韩一区二区| 少妇的逼水好多| 黄色配什么色好看| 男的添女的下面高潮视频| 亚洲av国产av综合av卡| 老司机影院成人| 国产高清有码在线观看视频| 色视频www国产| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 一个人看的www免费观看视频| 亚洲第一区二区三区不卡| 国产有黄有色有爽视频| 深夜a级毛片| 精品午夜福利在线看| 天天躁日日操中文字幕| 欧美丝袜亚洲另类| 国产91av在线免费观看| 亚洲av在线观看美女高潮| 精品一区二区三卡| 日韩在线高清观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 免费少妇av软件| 国产成人午夜福利电影在线观看| 一个人看的www免费观看视频| 亚洲精品视频女| 久久99热这里只有精品18| 国产亚洲最大av| 成人无遮挡网站| 黄色视频在线播放观看不卡| 久久久久久久大尺度免费视频| h视频一区二区三区| 一个人看的www免费观看视频| 汤姆久久久久久久影院中文字幕| 一区二区av电影网| 国产男女内射视频| 亚洲国产精品一区三区| 一二三四中文在线观看免费高清| 一区二区三区乱码不卡18| 国产老妇伦熟女老妇高清| 欧美精品亚洲一区二区| 久久精品国产a三级三级三级| 久久这里有精品视频免费| 一个人看视频在线观看www免费| 大话2 男鬼变身卡| 草草在线视频免费看| 国产亚洲最大av| 午夜老司机福利剧场| 亚洲高清免费不卡视频| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 91精品国产国语对白视频| 水蜜桃什么品种好| 欧美97在线视频| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 天堂俺去俺来也www色官网| 亚洲三级黄色毛片| 亚洲电影在线观看av| 久久久久精品久久久久真实原创| 午夜福利视频精品| 欧美极品一区二区三区四区| 国产成人精品福利久久| 搡女人真爽免费视频火全软件| 超碰av人人做人人爽久久| 欧美xxxx性猛交bbbb| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 日本色播在线视频| 国产成人a∨麻豆精品| 亚洲精品中文字幕在线视频 | 免费观看无遮挡的男女| 日韩欧美精品免费久久| 人妻夜夜爽99麻豆av| 欧美bdsm另类| 亚洲,欧美,日韩| 岛国毛片在线播放| 久久久久久伊人网av| 日本欧美国产在线视频| 亚洲精品中文字幕在线视频 | 欧美精品国产亚洲| 免费观看无遮挡的男女| 久久久久性生活片| 国产成人午夜福利电影在线观看| 欧美xxⅹ黑人| 久久久久久伊人网av| 夜夜骑夜夜射夜夜干| 免费看不卡的av| 久久久成人免费电影| 久久人人爽人人片av| 人体艺术视频欧美日本| 国产精品女同一区二区软件| 亚洲第一av免费看| 亚洲欧美成人综合另类久久久| 欧美精品亚洲一区二区| 免费观看在线日韩| 久久 成人 亚洲| av视频免费观看在线观看| 亚洲伊人久久精品综合| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 国产成人freesex在线| 2018国产大陆天天弄谢| 老女人水多毛片| 久久99精品国语久久久| a 毛片基地| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 中文字幕久久专区| 亚洲一级一片aⅴ在线观看| 嘟嘟电影网在线观看| 中文天堂在线官网| 亚洲av免费高清在线观看| 欧美激情极品国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 2021少妇久久久久久久久久久| 激情 狠狠 欧美| 色婷婷久久久亚洲欧美| 97精品久久久久久久久久精品| 亚洲欧美中文字幕日韩二区| 日韩 亚洲 欧美在线| 久久精品夜色国产| 色视频www国产| 中文字幕亚洲精品专区| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 欧美日韩视频高清一区二区三区二| 久久99热6这里只有精品| 亚洲无线观看免费| 26uuu在线亚洲综合色| 亚洲精品久久午夜乱码| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 欧美性感艳星| 老熟女久久久| 成年美女黄网站色视频大全免费 | 纯流量卡能插随身wifi吗| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 欧美亚洲 丝袜 人妻 在线| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 欧美激情极品国产一区二区三区 | 一区二区三区四区激情视频| 中文字幕久久专区| 日韩三级伦理在线观看| 乱码一卡2卡4卡精品| 亚洲成人中文字幕在线播放| a级毛色黄片| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 极品少妇高潮喷水抽搐| 精品一区二区免费观看| 极品教师在线视频| 国产 一区精品| 51国产日韩欧美| 高清午夜精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区三区四区免费观看| 日本爱情动作片www.在线观看| 国产又色又爽无遮挡免| 男女国产视频网站| 日韩欧美一区视频在线观看 | 大香蕉97超碰在线| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| av视频免费观看在线观看| 五月玫瑰六月丁香| 免费少妇av软件| 久久久久久久久大av| 91精品国产九色| 国产亚洲5aaaaa淫片| 久久久色成人| 高清黄色对白视频在线免费看 | 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品伦人一区二区| 国产极品天堂在线| 久久精品国产亚洲网站| 日产精品乱码卡一卡2卡三| 在线免费十八禁| 熟女电影av网| 99久久综合免费| www.av在线官网国产| 天堂8中文在线网| 亚洲精品一二三| 国产国拍精品亚洲av在线观看| 高清在线视频一区二区三区| 久久久久久伊人网av| 欧美成人午夜免费资源| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| 国产真实伦视频高清在线观看| 亚洲欧美日韩另类电影网站 | 亚洲高清免费不卡视频| 免费av不卡在线播放| 91精品国产国语对白视频| 国产一区二区三区综合在线观看 | 精品酒店卫生间| 欧美一区二区亚洲| 麻豆成人av视频| 成人影院久久| 欧美日本视频| 亚洲国产精品一区三区| 欧美激情国产日韩精品一区| 黄色怎么调成土黄色| 国产精品不卡视频一区二区| 成人影院久久| 亚洲性久久影院| 在线观看国产h片| 久热这里只有精品99| 九色成人免费人妻av| 成人黄色视频免费在线看| 日本黄色片子视频| 亚洲欧美精品自产自拍| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 国精品久久久久久国模美| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 欧美性感艳星| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| .国产精品久久| 丰满迷人的少妇在线观看| 香蕉精品网在线| 久久久久国产网址| 亚洲激情五月婷婷啪啪| 亚洲精品视频女| 国产亚洲欧美精品永久| 成年av动漫网址| 国内少妇人妻偷人精品xxx网站| 校园人妻丝袜中文字幕| 99久久精品一区二区三区| 又大又黄又爽视频免费| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 欧美bdsm另类| 99热这里只有是精品在线观看| 插逼视频在线观看| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 久久久久久久久大av| 欧美3d第一页| 亚洲精品自拍成人| 亚洲四区av| 日韩电影二区| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 国产黄色免费在线视频| 成人国产av品久久久| 日韩av不卡免费在线播放| 久久午夜福利片| 人妻一区二区av| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 亚洲美女黄色视频免费看| 乱系列少妇在线播放| 国产高清不卡午夜福利| 久久久久久久精品精品| 小蜜桃在线观看免费完整版高清| 中国三级夫妇交换| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 在现免费观看毛片| 久久国产精品大桥未久av | av卡一久久| 日韩视频在线欧美| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| av.在线天堂| 久久精品久久精品一区二区三区| 久久久精品免费免费高清| 免费不卡的大黄色大毛片视频在线观看| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 亚洲av男天堂| 国产v大片淫在线免费观看| 91午夜精品亚洲一区二区三区| 最后的刺客免费高清国语| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 日本欧美视频一区| 又大又黄又爽视频免费| 色视频www国产| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 黄色配什么色好看| 婷婷色综合www| 精品国产一区二区三区久久久樱花 | 99久久中文字幕三级久久日本| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验| 26uuu在线亚洲综合色| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频| 国产片特级美女逼逼视频| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 在线观看免费日韩欧美大片 | 国产精品一区www在线观看| 高清黄色对白视频在线免费看 | 18禁在线无遮挡免费观看视频| 丰满少妇做爰视频| 中文在线观看免费www的网站| 街头女战士在线观看网站| 麻豆成人午夜福利视频| 三级经典国产精品| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 蜜桃久久精品国产亚洲av| 街头女战士在线观看网站| 一级黄片播放器| 久久精品人妻少妇| 国产精品一区www在线观看| 日本免费在线观看一区| 久久6这里有精品| 插逼视频在线观看| 国产中年淑女户外野战色| 黄片wwwwww| 国产精品麻豆人妻色哟哟久久| 欧美国产精品一级二级三级 | 午夜福利网站1000一区二区三区| 热re99久久精品国产66热6| 日韩制服骚丝袜av| 人妻 亚洲 视频| av国产精品久久久久影院| 欧美区成人在线视频| 欧美精品亚洲一区二区| 精品国产乱码久久久久久小说| 亚洲av成人精品一区久久| 中国国产av一级| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 在线观看一区二区三区| 男女无遮挡免费网站观看| 观看美女的网站| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 日韩中字成人| 联通29元200g的流量卡| 人人妻人人添人人爽欧美一区卜 | 免费观看无遮挡的男女| 1000部很黄的大片| 欧美成人精品欧美一级黄| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| 色哟哟·www| 精品少妇黑人巨大在线播放| 国产精品久久久久成人av| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久久丰满| 国国产精品蜜臀av免费| 久久久久久久久久久免费av| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 午夜免费观看性视频| 国精品久久久久久国模美| 三级国产精品欧美在线观看| 久热久热在线精品观看| 国产成人精品婷婷| 久久精品国产亚洲av涩爱| 免费观看的影片在线观看| 免费高清在线观看视频在线观看| 极品少妇高潮喷水抽搐| 中国国产av一级| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 国产av一区二区精品久久 | 一级毛片aaaaaa免费看小| 啦啦啦中文免费视频观看日本| 天堂中文最新版在线下载| 超碰97精品在线观看| 十分钟在线观看高清视频www | 黑丝袜美女国产一区| 乱系列少妇在线播放| 成人国产麻豆网| 亚洲av中文字字幕乱码综合| 欧美成人a在线观看| 久久久亚洲精品成人影院| 丝瓜视频免费看黄片| 精品久久国产蜜桃| 国产黄片美女视频| 秋霞在线观看毛片| 亚洲av.av天堂| 欧美高清成人免费视频www| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久久久久婷婷小说| av黄色大香蕉| 一级毛片久久久久久久久女| 国产免费福利视频在线观看| 国产精品伦人一区二区| 2018国产大陆天天弄谢| 看十八女毛片水多多多| 一级黄片播放器| 高清日韩中文字幕在线| 欧美人与善性xxx| 国产精品嫩草影院av在线观看| 成人黄色视频免费在线看| 中文字幕久久专区| 91精品国产国语对白视频| 久久精品人妻少妇| 新久久久久国产一级毛片| 偷拍熟女少妇极品色| 永久网站在线| 久久久久久久国产电影| 国产亚洲最大av| 国产有黄有色有爽视频| 亚洲精品456在线播放app| 少妇的逼好多水| 亚洲av二区三区四区| 人妻系列 视频| 日韩中文字幕视频在线看片 | 热99国产精品久久久久久7| 日本色播在线视频| 在线观看免费视频网站a站| av卡一久久| 亚洲精品久久久久久婷婷小说| 免费黄频网站在线观看国产| 免费观看性生交大片5| 天天躁夜夜躁狠狠久久av| 尤物成人国产欧美一区二区三区| 久久综合国产亚洲精品| 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久v下载方式| 久久久久人妻精品一区果冻| 制服丝袜香蕉在线| 蜜桃久久精品国产亚洲av| 中国国产av一级| 国产成人精品久久久久久| 久久久久久久国产电影| 噜噜噜噜噜久久久久久91| 久久人妻熟女aⅴ| 久久久久久久国产电影| 成人影院久久| 男女免费视频国产| 亚洲不卡免费看| 免费大片18禁| 国产女主播在线喷水免费视频网站| 国产深夜福利视频在线观看| 久久人人爽av亚洲精品天堂 | 如何舔出高潮| 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 免费黄网站久久成人精品| 一级二级三级毛片免费看| 成人毛片60女人毛片免费| 国产在线一区二区三区精| 深爱激情五月婷婷| 91久久精品电影网| 乱码一卡2卡4卡精品| 国产av国产精品国产| 亚洲精品久久久久久婷婷小说| 国产免费又黄又爽又色| 好男人视频免费观看在线| 欧美日韩视频精品一区| 赤兔流量卡办理|