蔣敏敏,陳桂香,劉超賽,劉文磊,張志靜
·農(nóng)產(chǎn)品加工工程·
含水率對(duì)小麥糧堆彈塑性力學(xué)特性的影響
蔣敏敏,陳桂香,劉超賽,劉文磊,張志靜
(1. 河南工業(yè)大學(xué)土木工程學(xué)院,鄭州 450001;2. 糧食儲(chǔ)運(yùn)國(guó)家工程實(shí)驗(yàn)室,鄭州 450001)
不同地區(qū)糧倉(cāng)中糧堆的含水率會(huì)有較大的差異,為了明確含水率對(duì)糧倉(cāng)設(shè)計(jì)參數(shù)的影響,通過(guò)三軸試驗(yàn)研究了含水率對(duì)小麥糧堆非線性強(qiáng)度、臨界狀態(tài)和模量等的影響規(guī)律。結(jié)果表明:不同含水率下小麥糧堆的峰值強(qiáng)度和殘余強(qiáng)度符合非線性強(qiáng)度指標(biāo)的Mohr-Coulomb強(qiáng)度準(zhǔn)則;參考?jí)毫Γ?00 kPa)下峰值內(nèi)摩擦角和殘余內(nèi)摩擦角隨著含水率的增大呈線性增大,含水率每增加1%,峰值內(nèi)摩擦角和殘余內(nèi)摩擦角分別增大0.22°和0.30°。小麥糧堆的臨界狀態(tài)特性符合劍橋彈塑性理論,偏應(yīng)力隨著平均法向應(yīng)力的增大呈線性增大;峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比隨著含水率的增大呈線性增大;含水率每增加1%時(shí),峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比分別增大0.012和0.014。不同含水率下初始模量、割線模量與圍壓間可采用冪函數(shù)模型表示;參考?jí)毫ο鲁跏寄A亢透罹€模量均隨著含水率的增大呈線性降低;含水率每增加1%,初始模量和割線模量分別降低0.98和0.25 MPa。
糧食;含水率;強(qiáng)度;臨界狀態(tài);彈性模量
2013年以來(lái)中國(guó)糧食年產(chǎn)量超6億t,國(guó)內(nèi)各地環(huán)境差異較大,儲(chǔ)存于糧倉(cāng)內(nèi)的大體積糧堆含水率也存在著較大的差異,如中國(guó)西北地區(qū)為干燥區(qū)域,糧食含水率較低,而東南地區(qū)為濕熱區(qū)域,相應(yīng)的糧食含水率會(huì)較高[1]。目前隨著糧食倉(cāng)儲(chǔ)技術(shù)的發(fā)展,出現(xiàn)了不少高度和直徑大于30 m、倉(cāng)容量達(dá)數(shù)萬(wàn)噸的大型糧倉(cāng)[2-3]。糧食在裝卸過(guò)程中的力學(xué)指標(biāo)是現(xiàn)代大型糧食倉(cāng)儲(chǔ)設(shè)施設(shè)計(jì)[4-5]和研究的重要指標(biāo)[6-10]。含水率變化會(huì)影響糧堆力學(xué)性質(zhì),進(jìn)而改變糧倉(cāng)結(jié)構(gòu)受力狀態(tài),研究含水率對(duì)倉(cāng)內(nèi)糧堆力學(xué)指標(biāo)的影響具有重要的科學(xué)和工程意義。
糧食儲(chǔ)藏和加工中籽粒的基本物理和力學(xué)特性受到了國(guó)內(nèi)外學(xué)者的關(guān)注。Afkari Sayyah[11]利用壓縮試驗(yàn),基于Hertz理論得出小麥籽粒的表觀彈性模量范圍,并得出最大接觸應(yīng)力和籽粒破損力等參數(shù),提出顆粒硬度與力學(xué)性質(zhì)指標(biāo)之間為線性關(guān)系。周顯青等[12]對(duì)糙米的錐刺、三點(diǎn)彎曲、剪切、擠壓等破碎力學(xué)特性進(jìn)行了研究,提出三點(diǎn)彎曲力更能反映籽粒的破碎特性。Singh等[13]提出隨著含水率增大,糧食休止角、內(nèi)摩擦角、外摩擦角越大,而體積密度、顆粒破損荷載則越小。Yang等[14]提出稻種狀態(tài)和含水率對(duì)雜交水稻的容積密度影響顯著,并給出了包衣稻谷物理參數(shù)的范圍。張克平等[15]通過(guò)壓縮試驗(yàn)研究了不同含水率下小麥籽粒的彈性模量、屈服強(qiáng)度、破碎負(fù)載等特性,表明破碎負(fù)載、彈性模量、屈服強(qiáng)度隨著含水率的增加有明顯降低,并對(duì)比分析了不同壓縮型式下的壓縮破壞指標(biāo)。
糧倉(cāng)中的糧食是以大體積糧堆的形式存在,糧堆力學(xué)性質(zhì)對(duì)于糧倉(cāng)的研究更為重要。劉志云等[16]研究了法向壓應(yīng)力和含水率對(duì)糙米糧堆力學(xué)特性的影響,表明內(nèi)摩擦角隨著法向壓應(yīng)力的增大而減小,法向壓應(yīng)力小于25 kPa時(shí),內(nèi)摩擦角隨著含水率的增加而逐漸增大,法向壓應(yīng)力大于75 kPa時(shí),內(nèi)摩擦角隨著含水率增大至一定值后逐漸降低。彭飛等[17]給出了不同含水率、粒度小麥粉堆的內(nèi)摩擦角、滑動(dòng)摩擦角、休止角等指標(biāo)的范圍。Subramanian[18]提出隨著含水率增大,糧堆的堆積密度逐漸減小,而糧堆內(nèi)摩擦角、糧堆與結(jié)構(gòu)間的靜摩擦系數(shù)均越大。
近年來(lái)由于大型、新型糧倉(cāng)結(jié)構(gòu)和偏心卸料等問(wèn)題的研究,在糧堆復(fù)雜力學(xué)特性方面取得了一些進(jìn)展。蔣敏敏等[19]通過(guò)三軸試驗(yàn)研究了密度和加載條件對(duì)小麥糧堆模量和強(qiáng)度特性的影響。陳家豪等[20-21]將小麥糧堆的三軸剪切曲線分為線彈性、應(yīng)力強(qiáng)化、剪切面滑動(dòng)和破壞4個(gè)階段,建立了小麥糧堆彈性模量與圍壓間的擬合關(guān)系曲線。曾長(zhǎng)女等[22]通過(guò)三軸試驗(yàn)研究了含水率、孔隙率對(duì)小麥糧堆強(qiáng)度參數(shù)的影響,提出隨著孔隙率的減小和含水率的增大,內(nèi)摩擦角和黏聚力呈增大趨勢(shì)。Cheng等[23]通過(guò)壓縮試驗(yàn),研究了壓力和含水率對(duì)玉米糧堆堆積密度和等效體積模量的影響,并建立了堆積密度和等效體積模量的計(jì)算公式。程緒鐸等[24]通過(guò)三軸試驗(yàn)研究了含水率、圍壓對(duì)稻谷糧堆的堆積密度、體變模量的影響,以及堆積密度和體變模量的變化范圍。陳雪等[25-26]研究了不同含水率下稻谷糧堆的修正劍橋模型參數(shù),得出了彈性模量、泊松比、臨界狀態(tài)應(yīng)力比、初始孔隙比、對(duì)數(shù)硬化模量、等向膨脹指數(shù)等的變化范圍以及隨含水率的變化規(guī)律。高夢(mèng)瑤等[27]研究了不同含水率下小麥糧堆修正劍橋模型參數(shù)的數(shù)值范圍,建立了彈性模量與廣義剪切力、平均主應(yīng)力的關(guān)系模型。
目前對(duì)于糧食力學(xué)性質(zhì)的研究集中于糧食籽粒、糧堆基本力學(xué)性質(zhì)和復(fù)雜力學(xué)特性等幾個(gè)方面,在糧堆復(fù)雜力學(xué)特性方面,現(xiàn)有的研究主要集中于線性強(qiáng)度特性和彈塑性力學(xué)指標(biāo)的數(shù)值范圍。然而糧食籽粒具有一定的可壓縮性[11-13],以往借鑒于土體材料的線性強(qiáng)度理論在反映糧堆強(qiáng)度特性上有一定不足,不能反映籽??蓧嚎s性對(duì)整體糧堆強(qiáng)度的影響,同時(shí)現(xiàn)有研究未深入分析含水率對(duì)糧堆復(fù)雜彈塑性力學(xué)特性的影響。本文通過(guò)三軸試驗(yàn),研究不同含水率下糧堆的非線性強(qiáng)度、臨界狀態(tài)和模量等特性,并建立含水率與非線性?xún)?nèi)摩擦角、應(yīng)力比和模量之間的關(guān)系模型。針對(duì)不同含水率糧堆的問(wèn)題,為糧倉(cāng)研究和設(shè)計(jì)提供糧堆的力學(xué)計(jì)算模型和參數(shù),相關(guān)模型可編制程序用于數(shù)值計(jì)算,對(duì)實(shí)際糧倉(cāng)在不同工況下的受力特性進(jìn)行計(jì)算。
糧倉(cāng)內(nèi)糧堆由于受到裝、卸料等不同工況的作用,在不同位置應(yīng)力狀態(tài)變化較大。為了得出糧堆彈塑性力學(xué)規(guī)律,本研究采用單元試驗(yàn)的方法,在糧倉(cāng)大體積糧堆內(nèi)取小單元(高度124 mm、直徑61.8 mm),對(duì)單元施加不同的豎向和側(cè)向應(yīng)力組合,還原糧倉(cāng)內(nèi)不同位置、不同工況下的應(yīng)力狀態(tài),進(jìn)而研究糧堆的彈塑性力學(xué)特性。
河南小麥產(chǎn)量占全國(guó)的四分之一,本研究采用河南鄭州產(chǎn)小麥作為試驗(yàn)材料,品種為關(guān)陵113。將小麥試樣在105 ℃的恒溫箱中烘至恒質(zhì)量,再將小麥試樣配至4.90%、8.56%、10.64%和13.45%四種不同的含水率,并將試樣密封在塑料袋內(nèi),在10 ℃下靜置7 d,保證試樣內(nèi)含水率均衡。
試驗(yàn)在多功能應(yīng)力路徑三軸儀中進(jìn)行,三軸試驗(yàn)裝置和試樣示意圖如圖1所示。在承膜筒中將配制好的小麥裝入橡皮膜中,制成高度124 mm、直徑61.8 mm、堆積密度為0.8 g/cm3的圓柱形糧堆試樣。小麥籽粒的等效平均粒徑為4.5 mm,糧堆試樣直徑與籽粒直徑的比為13.7,符合三軸試驗(yàn)尺寸比的要求[28]。通過(guò)對(duì)試樣分別施加50、100、150、200、250、300 kPa不同等級(jí)的圍壓,模擬糧倉(cāng)內(nèi)不同深度的糧堆單元受到的壓力,再對(duì)試樣施加軸向應(yīng)力,使試樣中產(chǎn)生剪切偏應(yīng)力直至試樣的軸向應(yīng)變大于25%,達(dá)到臨界狀態(tài)[28](即隨著軸向應(yīng)變的增大,偏應(yīng)力趨于穩(wěn)定值),剪切時(shí)糧堆孔隙中的氣體通過(guò)底座排氣孔自由排出。
圖1 小麥糧堆三軸試驗(yàn)示意圖
典型的小麥糧堆(含水率為8.56%)三軸剪切試驗(yàn)結(jié)果如圖2所示。從試驗(yàn)結(jié)果可見(jiàn),在短暫的彈性階段后,小麥糧堆的偏應(yīng)力=(1-3)與軸向應(yīng)變1呈現(xiàn)明顯非線性特性(曲線斜率逐漸變?。谳S向應(yīng)變大于一定值后,偏應(yīng)力增量逐漸變小,表明小麥糧堆單元接近剪切破壞。
圖2 含水率8.56%的小麥糧堆不同圍壓下的應(yīng)力應(yīng)變曲線
糧倉(cāng)內(nèi)大體積糧堆在裝卸或受力條件發(fā)生變化時(shí),當(dāng)單元最大剪應(yīng)力達(dá)到強(qiáng)度條件時(shí)會(huì)發(fā)生破壞,因此強(qiáng)度是倉(cāng)內(nèi)糧堆最重要的彈塑性指標(biāo)。峰值強(qiáng)度是對(duì)應(yīng)于三軸剪切中產(chǎn)測(cè)的最大的偏應(yīng)力的一半,殘余強(qiáng)度是對(duì)應(yīng)于三軸剪切中軸向應(yīng)變大于15%后,穩(wěn)定偏應(yīng)力值的一半[28]。
以往研究在分析糧堆強(qiáng)度時(shí)采用線性強(qiáng)度理論[22]
式中為無(wú)圍壓時(shí)材料的抗剪強(qiáng)度,kPa;是材料內(nèi)摩擦角,(°)。用線性強(qiáng)度理論擬合得出小麥糧堆的介于8.8~12.6 kPa之間,這與小麥糧堆是松散堆積體不符。
本研究對(duì)小麥糧堆的強(qiáng)度特性采用Mohr-Coulomb理論表示,峰值強(qiáng)度τ表示為[28]
式中1、3分別為軸向應(yīng)力和圍壓,kPa;(1+3)/2為峰值平均應(yīng)力,kPa。
殘余強(qiáng)度τ表示為
式中(1+3)/2為殘余平均應(yīng)力,kPa。φ是材料的殘余內(nèi)摩擦角,(°)。糧食籽粒在荷載下具有一定的可壓縮性[11,15],具有可壓縮性或破碎性的無(wú)黏性顆粒材料內(nèi)摩擦角可表示為隨著壓力變化的非線性強(qiáng)度指標(biāo)形式[29-30],內(nèi)摩擦角和殘余內(nèi)摩擦角可分別表示為
式中0和φ0是參考?jí)毫Γ▏鷫?00 kPa)下的內(nèi)摩擦角和殘余內(nèi)摩擦角,(°);Δ和Δφ是反映內(nèi)摩擦角隨著圍壓增長(zhǎng)而降低的參數(shù),(°);p為大氣壓力,本文取100 kPa。將式(4)和(5)代入式(2)和(3),峰值強(qiáng)度可進(jìn)一步表示為
殘余強(qiáng)度可進(jìn)一步表示為
不同含水率和圍壓下,小麥糧堆的峰值強(qiáng)度和殘余強(qiáng)度如圖3所示。由圖可知,不同含水率下峰值強(qiáng)度、殘余強(qiáng)度的試驗(yàn)值與擬合值的相關(guān)系數(shù)介于0.998~1.0之間,具有較好的相關(guān)性。從試驗(yàn)結(jié)果可見(jiàn),小麥糧堆的強(qiáng)度符合非線性強(qiáng)度理論,平均應(yīng)力(1+3)/2為0時(shí),最大剪應(yīng)力(1?3)/2為0,內(nèi)摩擦角(曲線傾角)隨著平均應(yīng)力的增大略有降低。含水率對(duì)參考?jí)毫ο聝?nèi)摩擦角0和殘余內(nèi)摩擦角φ0的影響如表1所示。
注:τ為峰值強(qiáng)度,τ為殘余強(qiáng)度。
Note: τis peak strength,τis residual strength.
圖3 不同含水率下小麥糧堆強(qiáng)度
Fig.3 Strength of wheat bulk under different moisture content
表1 含水率對(duì)參數(shù)φ0、φr0、Δφ和Δφr的影響
注:0和φ0是參考?jí)毫ο碌膬?nèi)摩擦角和殘余內(nèi)摩擦角,(°);Δ和Δφ是反映內(nèi)摩擦角和殘余內(nèi)摩擦角隨著圍壓變化的參數(shù),(°)。
Note:0andφ0are internal friction angle and residual internal friction angle under reference cell pressure respectively, (°); Δ和Δφare the parameters of internal fiction angle and residual internal fiction angle that changed with increase of cell pressure (°).
從結(jié)果可見(jiàn),含水率從4.90%增大為13.45%,參考?jí)毫ο聝?nèi)摩擦角0從25.4°增大為27.4°,殘余內(nèi)摩擦角φ0從24.1°增大為26.7°。0、φ0與含水率之間的線性公式擬合為
劍橋彈塑性理論[28]中,無(wú)黏性顆粒材料在-(為偏應(yīng)力,1-3;為平均法向應(yīng)力,=(1+23)/3)平面上,峰值結(jié)果和臨界狀態(tài)結(jié)果呈線性規(guī)律[28,30-31],分別表示為
q=Mp(10)
q=Mp(11)
式中q、p分別為峰值時(shí)偏應(yīng)力和平均法向應(yīng)力,kPa;q、p分別為臨界狀態(tài)時(shí)偏應(yīng)力和平均法向應(yīng)力,kPa;M、M為峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比。不同含水率下小麥糧堆的臨界狀態(tài)特性如圖4所示,圖中包含了峰值結(jié)果(偏應(yīng)力為峰值)和臨界狀態(tài)結(jié)果(軸向應(yīng)變較大且偏應(yīng)力趨于穩(wěn)定時(shí))。從試驗(yàn)結(jié)果可見(jiàn),不同含水率下小麥糧堆的臨界狀態(tài)特性均符合劍橋彈塑性理論,即偏應(yīng)力隨著平均法向應(yīng)力的增大呈線性增大。不同含水率下臨界狀態(tài)應(yīng)力比M較峰值應(yīng)力比M略低。
含水率對(duì)峰值應(yīng)力比M和臨界狀態(tài)應(yīng)力比M的影響如表2所示。從結(jié)果可見(jiàn),含水率從4.90%增大至13.45%,小麥糧堆峰值應(yīng)力比M從0.905增大至1.008,而臨界狀態(tài)應(yīng)力比M從0.863增大至0.981。M和M隨著含水率的增大呈線性增大,峰值應(yīng)力比、臨界狀態(tài)應(yīng)力比與含水率之間的線性擬合公式為
圖4 不同含水率下小麥糧堆臨界狀態(tài)特性
表2 含水率對(duì)應(yīng)力比的影響
模量是糧堆彈塑性分析計(jì)算的重要參數(shù),初始模量E是軸向應(yīng)變極小(ε=0.05%)時(shí)的模量,割線模量50是偏應(yīng)力為(1?3)/2時(shí)的模量[30]。根據(jù)三軸試驗(yàn)結(jié)果得出不同含水率下小麥糧堆的初始模量E和割線模量50隨圍壓的變化如圖5所示。從結(jié)果可見(jiàn),小麥糧堆的割線模量遠(yuǎn)小于初始模量,在雙對(duì)數(shù)坐標(biāo)中初始模量、割線模量與圍壓之間為線性關(guān)系,即模量與圍壓之間可采用冪函數(shù)模型表示[28]。初始模量可擬合為
割線模量可擬合為
參數(shù)和50分別是參考?jí)毫Γ▏鷫?00 kPa)下初始模量比值E/p和割線模量比值50/p;、50為模型指數(shù)。
初始模量比值和割線模量比值50隨含水率的變化如表3所示。從結(jié)果可見(jiàn),隨著含水率的增大,參數(shù)和50降低,表明含水率越大,參考?jí)毫ο鲁跏寄A亢透罹€模量均越小,參數(shù)和50的線性公式擬合為
注:Ei和E50分別為初始模量和割線模量。
表3 含水率對(duì)參數(shù)k、k50、n和n50的影響
注:和50分別是參考?jí)毫ο鲁跏寄A勘戎?i>E/p和割線模量比值50/p。
Note:and50is initial modulus ratioE/pand secant modulus ratio50/punder reference pressure.
本研究針對(duì)不同含水率的小麥糧堆彈塑性力學(xué)特性的問(wèn)題,通過(guò)三軸試驗(yàn)研究了含水率對(duì)非線性強(qiáng)度指標(biāo)、臨界狀態(tài)特性和模量等的影響規(guī)律,并建立了各指標(biāo)的數(shù)學(xué)模型,得到以下主要結(jié)論:
1)不同含水率下小麥糧堆的峰值強(qiáng)度和殘余強(qiáng)度可用非線性強(qiáng)度指標(biāo)的Mohr-Coulomb強(qiáng)度準(zhǔn)則表示。參考?jí)毫ο拢?00 kPa)峰值內(nèi)摩擦角和殘余內(nèi)摩擦角隨著含水率增大呈線性增大;含水率為0時(shí),參考?jí)毫ο路逯祪?nèi)摩擦角和殘余內(nèi)摩擦角分別為24.03°和22.31°;含水率每增加1%,參考?jí)毫ο路逯祪?nèi)摩擦角和殘余內(nèi)摩擦角分別增大0.22°和0.30°。
2)小麥糧堆的臨界狀態(tài)特性符合劍橋彈塑性理論,偏應(yīng)力隨著平均法向應(yīng)力的增大呈線性增大。峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比均隨著含水率的增大呈線性增大;含水率為零,峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比,分別為0.835和0.776;含水率每增加1%,峰值應(yīng)力比和臨界狀態(tài)應(yīng)力比分別增大0.012和0.014。
3)不同含水率下小麥糧堆的初始模量、割線模量與圍壓間均可用冪函數(shù)模型表示。參考?jí)毫ο鲁跏寄A亢透罹€模量均隨著含水率的增大呈線性降低;含水率為0時(shí),參考?jí)毫ο鲁跏寄A亢透罹€模量分別為28.9和6.86 MPa;含水率每增加1%,參考?jí)毫ο鲁跏寄A亢透罹€模量分別降低0.98和0.25 MPa。
[1]湯子俊,王明潔,吳曙球. 從氣候條件看中國(guó)的儲(chǔ)糧區(qū)域[J]. 糧食儲(chǔ)藏,1999(4):22-31. Tang Zijun, Wang Mingjie, Wu Shuqiu. Preliminary study on Chinese stored grain areas according to Chinese climate[J]. Grain Storage, 1999(4): 22-31. (in Chinese with English abstract)
[2]鮑國(guó)良,姚蔚. 我國(guó)糧食生產(chǎn)現(xiàn)狀及面臨的主要風(fēng)險(xiǎn)[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,18(6):111-120. Bao Guoliang, Yao Wei. Current situation and main risks of grain production in China[J]. Journal of South China Agricultural University, 2019, 18(6): 111-120. (in Chinese with English abstract)
[3]Cao Q, Zhao Y. Buckling design of large steel silos with various slendernesses[J]. Journal of Zhejiang University- SCIENCE A, 2017, 18(4): 282-305.
[4]國(guó)家糧食局. GB50322-2011糧食鋼板筒倉(cāng)設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)計(jì)劃出版社,2011.
[5]Song C Y, Teng J G. Buckling of circular steel silos subject to code-specified eccentric discharge pressures[J]. Engineering Structures, 2003, 25(11): 1397-1417.
[6]Sanad A M, Ooi J Y, Holst J M F G, et al. Computations of granular flow and pressures in a flat-bottomed silo[J]. Journal of Engineering Mechanics, ASCE, 2001, 127(10): 1033-1043.
[7]Vidal P, Couto A, Ayuga A, et al. Influence of hopper eccentricity on discharge of cylindrical mass flow silos with rigid walls[J]. Journal of Engineering Mechanics, ASCE, 2006, 132(9): 1026-1033.
[8]Abdel-Fattah M T, Moore I D, Abdel-Fattah T T. A numerical investigation into the behavior of ground- supported concrete silos filled with saturated solids[J]. International Journal of Solids and Structures, 2006, 43: 3723-3738.
[9]Vidal P, Gallego E, Guaita M, et al. Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper[J]. Journal of Constructional Steel Research, 2008, 64: 3723-3738.
[10]Goodey R J, Brown C J, Rotter J M. Rectangular steel silos: Finite element predictions of filling wall pressures[J]. Engineering Structures, 2017, 132: 61-69.
[11]Afkari Sayyah A H, Minaei S. Behavior of wheat kernels under quasi-static loading and its relation to grain hardness[J]. Journal of Agricultural Science and Technology, 2004, 6(1/2): 11-19.
[12]周顯青,張玉榮,褚洪強(qiáng),等. 糙米機(jī)械破碎力學(xué)特性試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(18):255-262. Zhou Xianqing, Zhang Yurong, Chu Hongqiang, et al. Experiment and analysis of mechanical properties of mechanical crushing brown rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 255-262. (in Chinese with English abstract)
[13]Singh K P, Mishra H N, Saha S. Moisture-dependent properties of barnyard millet grain and kernel[J]. Journal of Food Engineering, 2010, 96(4): 598-606.
[14]Yang L, Yang M , Li Q, et al. Experimental study on physical properties of coated rice seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 7-11.楊玲,楊明金,李慶東,等. 包衣稻種物理特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005, 21(9): 7-11. (in English with Chinese abstract)
[15]張克平,黃建龍,楊敏,等. 冬小麥籽粒受擠壓特性的有限元分析及試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):352-356. Zhang Keping, Huang Jianlong, Yang Min, et al. Finite element analysis and experimental verification of wheat grain under compression loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 352-356. (in Chinese with English abstract)
[16]劉志云,黃之斌,程緒鐸. 含水率對(duì)糙米內(nèi)摩擦角影響的實(shí)驗(yàn)研究[J]. 糧食儲(chǔ)藏,2012,41(3):33-36. Liu Zhiyun, Huang Zhibin, Cheng Xuduo. Influence of moisture content on internal friction angle of coarse rice [J]. Grain Storage, 2012, 41(3): 33-36. (in Chinese with English abstract)
[17]彭飛,楊潔,王紅英,等. 小麥粉摩擦特性的試驗(yàn)研究[J]. 中國(guó)糧油學(xué)報(bào),2015,30(8):7-12. Peng Fei, Yang Jie, Wang Hongying, et al. Experimental research on friction characteristics of wheat meal[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(8): 7-12. (in Chinese with English abstract)
[18]Subramanian S, Viswanathan R. Bulk density and friction coefficients of selected minor millet grains and flours[J]. Journal of Food Engineering, 2007, 81(1): 118-126.
[19]蔣敏敏,郭祝輝,陳桂香. 三軸壓縮下小麥糧堆模量和強(qiáng)度特性研究[J]. 河南工業(yè)大學(xué)學(xué)報(bào),2017,38(6):80-85. Jiang Minmin, Guo Zhuhui, Chen Guixiang. Study of modulus and strength properties of wheat heap in triaxial compression tests[J]. Journal of Henan University of Technology, 2017, 38(6): 80-85. (in Chinese with English abstract)
[20]陳家豪,韓陽(yáng),任杰,等. 小麥堆壓縮模量的三軸試驗(yàn)研究[J]. 河南工業(yè)大學(xué)學(xué)報(bào),2016,37(1):23-28. Chen Jiahao, Han Yang, Ren Jie, et al. Research on triaxial tests of compression modulus of wheat piles[J]. Journal of Henan University of Technology, 2016, 37(1): 23-28. (in Chinese with English abstract)
[21]許啟鏗,陳家豪,王錄民. 小麥力學(xué)參數(shù)的三軸壓縮試驗(yàn)研究[J]. 河南工業(yè)大學(xué)學(xué)報(bào),2015,36(5):101-105. Xu Qikeng, Chen Jiahao, Wang Lumin. Mechanical properties of wheat in triaxial compression tests[J]. Journal of Henan University of Technology, 2015, 36(5): 101-105. (in Chinese with English abstract)
[22]曾長(zhǎng)女,馮偉娜. 小麥強(qiáng)度特性的三軸試驗(yàn)研究[J]. 中國(guó)糧油學(xué)報(bào),2015,30(5):96-101. Zeng Changnü, Feng Weina. Strength properties of wheat in triaxial tests[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(5): 96-101. (in Chinese with English abstract)
[23]Cheng X, Zhang Q, Yan X, et al. Compressibility and equivalent bulk modulus of shelled corn[J]. Biosystem Engineering, 2015, 140: 91-97.
[24]程緒鐸,嚴(yán)曉婕,徐鑫,等. 稻谷堆的壓縮密度與體變模量的測(cè)定與分析[J]. 中國(guó)糧油學(xué)報(bào),2014,29(8):101-105. Cheng Xuduo, Yan Xiaojie, Xu Xin, et al. The measurement and analysis on compressive density and bulk stain modulus of paddy pile[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(8): 101-105. (in Chinese with English abstract)
[25]陳雪,程緒鐸,龍?zhí)?,? 稻谷堆修正劍橋模型參數(shù)的測(cè)定及含水率對(duì)其影響[J]. 中國(guó)糧油學(xué)報(bào),2019,34(10):68-73. Chen Xue, Cheng Xuduo, Long Tao, et al. Determination in the parameters of modified cam-clay model of paddy pile and the effect of moisture content[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(10): 68-73. (in Chinese with English abstract)
[26]Du X, Cheng X, Gao M. Determination of the parameters of Modified Cam-Clay model for paddy grain[J]. Journal of Cereal Science, 2017, 76: 1-7.
[27]高夢(mèng)瑤,程緒鐸,杜小翠,等. 小麥堆修正劍橋模型的參數(shù)研究[J]. 中國(guó)糧油學(xué)報(bào),2017,32(7):103-107. Gao Mengyao, Cheng Xuduo, Du Xiaocui, et al. Research on parameters of modified Cam Clay for wheat pile[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(7): 103-107. (in Chinese with English abstract)
[28]殷宗澤. 土工原理[M]. 北京:中國(guó)水利水電出版社,2007.
[29]陳志波,朱俊高. 寬級(jí)配礫質(zhì)土三軸試驗(yàn)研究[J]. 河海大學(xué)學(xué)報(bào),2010,38(6):704-710. Chen Zhibo, Zhu Jungao. Triaxial tests on widely graded gravelly soil[J]. Journal of Hohai University, 2010, 38(6): 704-710. (in Chinese with English abstract)
[30]朱俊高,史江偉,羅學(xué)浩,等. 密度對(duì)砂土應(yīng)力應(yīng)變強(qiáng)度特性影響試驗(yàn)研究[J]. 巖土工程學(xué)報(bào),2016,38(2):336-341. Zhu Jungao, Shi Jiangwei, Luo Xuehao, et al. Experimental study on stress-strain-strength behavior of sand with different densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 336-341. (in Chinese with English abstract)
[31]蔡正銀,李小梅,韓林,等. 考慮級(jí)配和顆粒破碎影響的堆石料臨界狀態(tài)研究[J]. 巖土工程學(xué)報(bào),2016,38(8):1357-1364. Cai Zhengyin, Li Xiaomei, Han Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese with English abstract)
Effects of moisture content on elastic-plastic properties of bulk wheat
Jiang Minmin, Chen Guixiang, Liu Chaosai, Liu Wenlei, Zhang Zhijing
(1.,,450001,; 2.,450001,)
The total annual output of grain is about 600 million tons in China. With the development of grain storage technology, grain bins with diameter larger than 30 m and capacity exceed tens of thousand tons emerged in recent years. As the climate in different regions vary greatly in China, grain moisture content varied significant in bins accordingly, for instance, grain moisture content is high in bins in southeast of China, while it is substantially low in northwest of China. The effect of moisture content on elastic-plastic properties of bulk wheat was investigated in this study. Wheat grain produced in Zhengzhou, China was utilized in this study, the equivalent diameter of kernel was 4.5 mm. The wheat was dried in oven under 105 ℃, wetted to moisture content of 4.90%, 8.56%, 10.64% and 13.45%, and sealed in plastic bag and placed in refrigerator under 10 ℃ to equilibrate for 7 days to a stable state. Then bulk wheat sample was tested in stress path triaxial apparatus. The bulk density was 0.8 g/cm3, the height of sample was 124 mm, and diameter was 61.8 mm which was about 13.7 times of equivalent kernel diameter, and diameter ratio conformed to the requirement of triaxial test. Cell pressure in the test was set to be 50, 100, 150, 200, 250 and 300 kPa, the maximum cell pressure of 300 kPa covered most situation in grain bins. The wheat samples were sheared by increase axial stress, while keep cell pressure constant, until axial strain was large than 25%, which was correspond to the critical state. Test results showed that peak shear strength and residual shear strength followed nonlinear Mohr-Coulomb criterion for granular material, in that the cohesion was zero, friction angle was a nonlinear parameter depending on cell pressure. The friction angle decreased with the increase of logarithmic value of cell pressure. Peak friction angle and residual friction angle under reference pressure (100 kPa) increased with the increase of moisture content, as moisture content increased from 4.90% to 13.45%, peak friction angle increased from 25.4° to 27.4° and residual friction angle increased from 24.1° to 26.7°. Peak friction angle and residual friction angle under reference pressure were 24.03° and 22.31° when moisture content was zero. As moisture content increased for 1%, peak friction angle and residual friction angle under reference pressure increased by 0.22° and 0.30° respectively. In deviator stress - mean normal stress plane, the peak result and critical state result followed Cambridge elastic-plastic theory, i.e. deviator stress increased linear with mean normal stress. Peak stress ratio and critical state stress ratio increased linear with moisture content. As moisture content increased from 4.90% to 13.45%, peak stress ratio increased from 0.905 to 1.008 and critical state stress ratio increased from 0.863 to 0.981. When moisture content was zero, peak stress ratio and critical state stress ratio was 0.835 and 0.776 respectively, and moisture content increased for 1%, peak stress ratio and critical state stress ratio increased by 0.012 and 0.014 respectively. Initial modulus was the modulus under axial strain of 0.05%, secant modulus was the modulus under half of peak deviator stress. The relationship between initial modulus, secant modulus and cell pressure could be expressed through power function model. Initial modulus and secant modulus under reference pressure decreased linear with moisture content. Initial modulus and secant modulus under reference pressure was 28.9 and 6.86 MPa when moisture content was zero, and moisture content increased for 1%, initial modulus and secant modulus under reference pressure decreased for 0.98 MPa and 0.25 MPa respectively. As moisture content ranged from 4.90% to 13.45%, the exponent in initial modulus model was between 0.482 and 0.866, the exponent in secant modulus model was between 0.759 and 0.881.
grain; moisture content; strength; critical state; elastic modulus
蔣敏敏,陳桂香,劉超賽,等. 含水率對(duì)小麥糧堆彈塑性力學(xué)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):245-251.doi:10.11975/j.issn.1002-6819.2020.10.030 http://www.tcsae.org
Jiang Minmin, Chen Guixiang, Liu Chaosai, et al. Effects of moisture content on elastic-plastic properties of bulk wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 245-251. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.030 http://www.tcsae.org
2019-11-28
2019-05-15
國(guó)家自然科學(xué)基金項(xiàng)目(51408197);糧食公益性行業(yè)科研專(zhuān)項(xiàng)(201513001);河南省科技攻關(guān)項(xiàng)目(162102210188)。
蔣敏敏,博士,副教授,主要從事糧食倉(cāng)儲(chǔ)結(jié)構(gòu)等方面的研究。Email:jiangmmhaut@126.com
10.11975/j.issn.1002-6819.2020.10.030
TS210
A
1002-6819(2020)-10-0245-07