李艷大,孫濱峰,曹中盛,葉 春,舒時(shí)富,黃俊寶,何 勇
·農(nóng)業(yè)信息與電氣技術(shù)·
基于作物生長(zhǎng)監(jiān)測(cè)診斷儀的雙季稻葉面積指數(shù)監(jiān)測(cè)模型
李艷大1,孫濱峰1,曹中盛1,葉 春1,舒時(shí)富1,黃俊寶1,何 勇2
(1. 江西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)工程研究所/江西省智能農(nóng)機(jī)裝備工程研究中心/江西省農(nóng)業(yè)信息化工程技術(shù)研究中心,南昌 330200;2. 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310029)
為探索作物生長(zhǎng)監(jiān)測(cè)診斷儀(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型雙季稻長(zhǎng)勢(shì)指標(biāo)監(jiān)測(cè)應(yīng)用的準(zhǔn)確性和適用性,該研究開展了不同株型品種和施氮量的田間試驗(yàn),采用CGMD獲取冠層差值植被指數(shù)(Differential Vegetation Index,DVI)、歸一化植被指數(shù)(Normalized Difference Vegetation Index,NDVI)和比值植被指數(shù)(Ratio Vegetation Index,RVI),并同步采用高光譜儀(Analytical Spectral Devices,ASD)獲取冠層光譜反射率,構(gòu)建DVI、NDVI和RVI;通過比較2種光譜儀獲取的植被指數(shù)變化特征及相互定量關(guān)系,評(píng)價(jià)CGMD的監(jiān)測(cè)精度,建立基于CGMD的不同株型雙季稻葉面積指數(shù)(Leaf Area Index,LAI)監(jiān)測(cè)模型,并用獨(dú)立數(shù)據(jù)對(duì)模型進(jìn)行檢驗(yàn)。結(jié)果表明:不同株型品種的LAI、DVI、NDVI和RVI隨施氮量增加而增大,隨生育進(jìn)程推進(jìn)呈“低—高—低”的變化趨勢(shì);基于CGMD與ASD的DVI、NDVI和RVI間的決定系數(shù)(Determination Coefficient,2)分別為0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有較高監(jiān)測(cè)精度,可替代價(jià)格昂貴的ASD獲取DVI、NDVI和RVI?;贑GMD植被指數(shù)的單生育期LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于全生育期,基于CGMD植被指數(shù)的松散型品種LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于緊湊型品種;基于DVICGMD的線性方程可較好地預(yù)測(cè)LAI,模型2為0.857~0.903,模型檢驗(yàn)的相關(guān)系數(shù)(Correlation Coefficient,)、均方根誤差(Root Mean Square Error,RMSE)和相對(duì)均方根誤差(Relative Root Mean Square Error,RRMSE)分別為0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指數(shù)方程可較好地預(yù)測(cè)LAI,模型2為0.831~0.884,模型檢驗(yàn)的、RMSE和RRMSE分別為0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的冪函數(shù)方程可較好地預(yù)測(cè)LAI,模型2為0.830~0.881,模型檢驗(yàn)的、RMSE和RRMSE分別為0.905~0.954、0.25~0.56和7.37%~9.99%。與傳統(tǒng)人工取樣測(cè)定LAI法相比,利用CGMD可實(shí)時(shí)無(wú)損監(jiān)測(cè)雙季稻LAI動(dòng)態(tài)變化,可替代SunScan植物冠層分析儀獲取雙季稻LAI,在雙季稻生產(chǎn)中具有推廣應(yīng)用價(jià)值。
作物;模型;氮;雙季稻;作物生長(zhǎng)監(jiān)測(cè)診斷儀;植被指數(shù);葉面積指數(shù)
葉面積指數(shù)(Leaf Area Index,LAI)是表征作物冠層光截獲能力和建立高光效群體的重要調(diào)控指標(biāo),直接影響作物冠層光合作用與物質(zhì)生產(chǎn)[1]。因此,實(shí)時(shí)定量監(jiān)測(cè)LAI的動(dòng)態(tài)變化對(duì)于作物光合生產(chǎn)的精確模擬和豐產(chǎn)高效栽培顯得尤為重要[2]。傳統(tǒng)的作物L(fēng)AI監(jiān)測(cè)需人工破壞取樣,結(jié)果雖然準(zhǔn)確可靠,但費(fèi)時(shí)耗工、時(shí)效性差,不能快速監(jiān)測(cè)大范圍作物L(fēng)AI。近年來,基于多光譜和高光譜的遙感技術(shù)發(fā)展迅速,使得快速、無(wú)損、實(shí)時(shí)和準(zhǔn)確地監(jiān)測(cè)作物L(fēng)AI或成現(xiàn)實(shí)[3-4]。許多學(xué)者利用便攜式多光譜儀和高光譜儀提取作物L(fēng)AI的敏感光譜波段,建立了基于比值植被指數(shù)(Ratio Vegetation Index,RVI)[5-6]、差值植被指數(shù)(Differential Vegetation Index,DVI)[7-8]、歸一化植被指數(shù)(Normalized Difference Vegetation Index,NDVI)[9-10]、調(diào)節(jié)歸一化植被指數(shù)(Adjusted Normalized Difference Vegetation Index,ANDVI)[11]、優(yōu)化土壤調(diào)整植被指數(shù)(Optimized Soil Adjusted Vegetation Index,OSAVI)[12]、紅邊抗水植被指數(shù)(Red-edge Resistance Water Vegetable Index,RRWVI)[13]和增強(qiáng)型植被指數(shù)(Enhanced Vegetation Index,EVI)[14]等不同形式植被指數(shù)的LAI監(jiān)測(cè)模型。也有許多學(xué)者采用各種算法建立作物L(fēng)AI監(jiān)測(cè)模型,如支持向量機(jī)[15]、主成分分析[16]、神經(jīng)網(wǎng)絡(luò)[17]、小波變換[18]和隨機(jī)森林算法[19]等,有效提高了LAI的預(yù)測(cè)精度。隨著無(wú)人機(jī)遙感技術(shù)在農(nóng)業(yè)領(lǐng)域的廣泛應(yīng)用,許多學(xué)者建立了基于無(wú)人機(jī)光譜影像的LAI監(jiān)測(cè)模型[20-23],可顯著提高作物L(fēng)AI的獲取效率和監(jiān)測(cè)范圍。上述研究大多采用具有光譜信息量大、測(cè)量精度高的便攜式高光譜儀和無(wú)人機(jī)高光譜影像儀獲取作物L(fēng)AI,為作物長(zhǎng)勢(shì)的實(shí)時(shí)無(wú)損監(jiān)測(cè)及田間精確管理提供了有效的技術(shù)手段。但便攜式高光譜儀和無(wú)人機(jī)高光譜影像儀價(jià)格昂貴、操作復(fù)雜、大田生產(chǎn)應(yīng)用實(shí)用性不強(qiáng),具有一定的局限性。因此,許多學(xué)者研發(fā)了可實(shí)時(shí)獲取作物L(fēng)AI、分蘗數(shù)等長(zhǎng)勢(shì)指標(biāo)的便攜式作物生長(zhǎng)監(jiān)測(cè)診斷儀[24-27],具有較高的監(jiān)測(cè)精度和良好的應(yīng)用價(jià)值。前人在基于便攜式多光譜儀和高光譜儀及基于無(wú)人機(jī)高光譜影像儀的作物L(fēng)AI監(jiān)測(cè)方面開展了大量研究,建立了許多準(zhǔn)確實(shí)用的LAI監(jiān)測(cè)模型,但作物L(fēng)AI和冠層光譜信息因受生態(tài)區(qū)域、株型、生育階段和栽培管理措施等因素的影響而存在一定差異,不同株型和生育期的作物冠層結(jié)構(gòu)和背景信息在不斷變化,導(dǎo)致不同生育期的光譜植被指數(shù)對(duì)LAI的敏感程度存在差異,需要建立不同生育期的LAI監(jiān)測(cè)模型,進(jìn)而提高監(jiān)測(cè)模型的預(yù)測(cè)精度和可靠性,且目前有關(guān)不同株型雙季稻不同生育期的LAI監(jiān)測(cè)研究鮮有報(bào)道。為此,本研究以不同株型雙季稻為研究對(duì)象,采用作物生長(zhǎng)監(jiān)測(cè)診斷儀(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)和高光譜儀(Analytical Spectral Devices,ASD)同步獲取冠層植被指數(shù),比較分析2種光譜儀獲取的冠層植被指數(shù)變化特征與相互定量關(guān)系,構(gòu)建基于CGMD的不同株型和生育期的LAI監(jiān)測(cè)模型,并對(duì)模型進(jìn)行檢驗(yàn),以期為雙季稻長(zhǎng)勢(shì)精確監(jiān)測(cè)和豐產(chǎn)高效栽培提供理論基礎(chǔ)與技術(shù)支持。
試驗(yàn)I:于2016年和2017年3—11月在江西省南昌市南昌縣開展不同株型雙季稻品種和施氮量的小區(qū)試驗(yàn)。試驗(yàn)田2017年耕作層土壤含全氮1.98 g/kg、堿解氮145.60 mg/kg、速效鉀100.85 mg/kg、速效磷18.50 mg/kg、有機(jī)質(zhì)26.50 g/kg。采用裂區(qū)設(shè)計(jì),主區(qū)為品種,副區(qū)為氮肥。早、晚稻設(shè)2個(gè)供試品種和4個(gè)施氮量,株行距14 cm×24 cm,每穴移栽3株苗,南北行向,小區(qū)間以埂相隔,獨(dú)立排灌,小區(qū)面積35 m2,3次重復(fù)。早稻4個(gè)施氮量(純氮)依次為0、75、150和225 kg/hm2,供試早稻品種為‘中嘉早17’(ZJZ17,緊湊型)和‘潭兩優(yōu)83’(TLY83,松散型),3月23日播種,4月22日移栽,7月21日收獲。晚稻4個(gè)施氮量(純氮)依次為0、90、180和270 kg/hm2,供試晚稻品種為‘天優(yōu)華占’(TYHZ,緊湊型)和‘岳優(yōu)9113’(YY9113,松散型),6月25日播種,7月24日移栽,10月28日收獲。早、晚稻各小區(qū)的鉀肥和磷肥施用量一致,分別采用氯化鉀和鈣鎂磷肥,用量分別為150 kg/hm2(以K2O計(jì))和75 kg/hm2(以P2O5計(jì));氮肥采用尿素。氮肥和鉀肥均按基肥40%、分蘗肥30%和穗肥30%施用,磷肥作基肥一次施用。采用深水返青、淺水分蘗、有水壯苞、干濕壯籽的原則進(jìn)行灌溉,其他栽培措施與當(dāng)?shù)馗弋a(chǎn)栽培一致。
試驗(yàn)II:于2017年3-11月在江西省吉安市新干縣開展不同株型雙季稻品種和施氮量的小區(qū)試驗(yàn)。試驗(yàn)田耕作層土壤含全氮1.78 g/kg、堿解氮135.50 mg/kg、速效鉀95.55 mg/kg、速效磷15.40 mg/kg、有機(jī)質(zhì)25.50 g/kg。采用裂區(qū)設(shè)計(jì),主區(qū)為品種,副區(qū)為氮肥。早、晚稻設(shè)2個(gè)供試品種和4個(gè)施氮量,設(shè)計(jì)施氮量與試驗(yàn)I相同。供試早稻品種為‘株兩優(yōu)1號(hào)’(ZLY1,緊湊型)和‘淦鑫203’(GX203,松散型),3月25日播種,4月24日移栽,每穴移栽3株苗,7月17日收獲。供試晚稻品種為‘五豐優(yōu)T025’(WFYT025,緊湊型)和‘泰優(yōu)398’(TY398,松散型),7月1日播種,7月30日移栽,10月28日收獲。早、晚稻4個(gè)施氮量、株行距、行向、小區(qū)面積、重復(fù)數(shù)、氮磷鉀肥類型和用量均與試驗(yàn)I相同。采用深水返青、淺水分蘗、有水壯苞、干濕壯籽的原則進(jìn)行灌溉,其他栽培措施與當(dāng)?shù)馗弋a(chǎn)栽培一致。
1.2.1 冠層植被指數(shù)測(cè)定
1)CGMD法
采用南京農(nóng)業(yè)大學(xué)國(guó)家信息農(nóng)業(yè)工程技術(shù)中心研制的作物生長(zhǎng)監(jiān)測(cè)診斷儀[26](CGMD,被動(dòng)多光譜儀,包括810和720 nm 2個(gè)波段,視場(chǎng)角27°),于分蘗期、拔節(jié)期、孕穗期、抽穗期和灌漿期,選擇晴朗、微風(fēng)或無(wú)風(fēng)天氣測(cè)定冠層DVI、NDVI和RVI。采用CGMD獲得的DVI、NDVI和RVI分別記為DVICGMD、NDVICGMD和RVICGMD。測(cè)定時(shí)間為10:00—14:00,觀測(cè)時(shí)探頭垂直向下,距離冠層1 m,各小區(qū)觀測(cè)3個(gè)點(diǎn),每個(gè)點(diǎn)重復(fù)測(cè)量5次,取均值作為該小區(qū)測(cè)量值。
2)ASD法
與CGMD冠層植被指數(shù)測(cè)定同步,采用美國(guó) Analytical Spectral Device公司的 FieldSpec HandHeld 2高光譜儀(ASD,被動(dòng)高光譜儀,波長(zhǎng)范圍325~1 075 nm,采樣間隔1.4 nm,分辨率3 nm,視場(chǎng)角25°)測(cè)定每個(gè)小區(qū)的冠層光譜反射率。測(cè)量時(shí)探頭垂直向下,距離冠層1 m,每個(gè)小區(qū)測(cè)定前使用標(biāo)準(zhǔn)白板進(jìn)行校正,每個(gè)小區(qū)測(cè)量3個(gè)點(diǎn),每點(diǎn)記錄5個(gè)采樣光譜,取均值作為該小區(qū)測(cè)量值。提取810和720 nm處光譜反射率值,構(gòu)建DVI、NDVI和RVI(分別記為DVIASD、NDVIASD和RVIASD),具體算法如下:
DVIASD=810–720(1)
NDVIASD=(810–720)/(810+720)(2)
RVIASD=810/720(3)
式中DVIASD、NDVIASD和RVIASD分別為基于ASD高光譜儀測(cè)量計(jì)算的DVI、NDVI和RVI;810和720分別為810和720 nm處光譜反射率。
1.2.2葉面積指數(shù)測(cè)定
與CGMD冠層植被指數(shù)測(cè)定同步,各小區(qū)通過測(cè)定植株高度和莖蘗數(shù)等方式選擇生長(zhǎng)一致的代表性稻株4株帶回實(shí)驗(yàn)室,根據(jù)植株器官發(fā)育情況,將樣品植株分離為葉、莖鞘和穗,在105 ℃殺青30 min,80 ℃烘干48 h至恒質(zhì)量后稱量,采用比葉重法計(jì)算葉面積,進(jìn)而得到LAI。
在Microsoft Excel 2010中進(jìn)行數(shù)據(jù)整理,利用SAS 8.0軟件中的PROC ANOVA進(jìn)行方差分析,用LSD法進(jìn)行多重比較;利用ViewSpec軟件對(duì)冠層ASD光譜反射率進(jìn)行預(yù)處理。試驗(yàn)I 2016年的觀測(cè)數(shù)據(jù)用于模型建立,試驗(yàn)I 2017年和試驗(yàn)II的觀測(cè)數(shù)據(jù)用于模型檢驗(yàn)。以冠層植被指數(shù)為自變量、LAI為因變量,利用Microsoft Excel 2010軟件對(duì)冠層植被指數(shù)與LAI之間的關(guān)系進(jìn)行擬合分析,建立相關(guān)性最佳的方程。模型檢驗(yàn)采用相關(guān)系數(shù)(Correlation Coefficient,)、均方根誤差(Root Mean Square Error,RMSE)和相對(duì)均方根誤差(Relative Root Mean Square Error,RRMSE)3個(gè)指標(biāo)來評(píng)價(jià)模型的監(jiān)測(cè)精度。
試驗(yàn)I和試驗(yàn)II雙季稻LAI變化規(guī)律類似,以試驗(yàn)I 2017年結(jié)果為例(表1),施氮量對(duì)雙季稻LAI有顯著影響。不同生育期雙季稻品種的LAI均隨施氮量的增加而增大,同一品種不同施氮量間差異顯著。如緊湊型品種‘中嘉早17’拔節(jié)期0~225 kg/hm24個(gè)施氮量處理的LAI分別為3.00、3.78、4.28和4.73。未施氮肥處理(施氮量為0)由于不施氮肥,LAI值較低,不利于光合產(chǎn)物的積累;而施氮量為225 kg/hm2的處理LAI值均顯著高于其他處理(<0.05),因施氮量偏高,容易造成該處理營(yíng)養(yǎng)生長(zhǎng)期延長(zhǎng)和貪青晚熟。在同一施氮量下,隨生育進(jìn)程的推進(jìn),不同株型品種LAI均呈“低-高-低”的變化趨勢(shì),即在生長(zhǎng)前期(分蘗期至拔節(jié)期)較低,中期(孕穗期)達(dá)到最大值,后期(抽穗期至灌漿期)逐漸降低。如松散型品種‘潭兩優(yōu)83’150 kg/hm2處理分蘗期、拔節(jié)期、孕穗期、抽穗期和灌漿期的LAI分別為2.61、4.32、6.59、6.48和4.95。
注:相同品種的不同施氮量間,標(biāo)以不同字母的值在0.05水平上差異顯著。
Note: Values followed by different letters within the same cultivar are significantly different at 0.05 probability level among different nitrogen application rates.
圖1是由CGMD和ASD 2種光譜儀獲取的不同施氮量下不同生育期緊湊型品種‘中嘉早17’和松散型品種‘潭兩優(yōu)83’的冠層DVICGMD、NDVICGMD、RVICGMD、DVIASD、NDVIASD和RVIASD。由圖1(為試驗(yàn)I 2017年早稻的數(shù)據(jù))可以看出,不同生育期2種光譜儀獲取的不同株型品種的冠層植被指數(shù)均隨施氮量的增加而增大。如孕穗期緊湊型品種‘中嘉早17’0~225 kg/hm24個(gè)施氮量處理的DVICGMD分別為0.06、0.15、0.22和0.26,DVIASD分別為0.07、0.14、0.20和0.26。這主要是由于隨施氮量的增加,促進(jìn)了雙季稻營(yíng)養(yǎng)生長(zhǎng)加快,LAI和冠層覆蓋度逐漸增大。在同一施氮量下,隨生育進(jìn)程的推進(jìn),2種光譜儀獲取的不同株型品種的冠層植被指數(shù)均呈“低—高—低”的變化趨勢(shì),即在分蘗期較低,拔節(jié)期較高,孕穗期達(dá)到最大值,抽穗期至灌漿期逐漸降低。此外,2種光譜儀獲取的松散型品種不同生育期的冠層植被指數(shù)均大于緊湊型品種。如緊湊型品種‘中嘉早17’225 kg/hm2處理分蘗期至灌漿期的NDVICGMD分別為0.10、0.27、0.35、0.31和0.27,而松散型品種‘潭兩優(yōu)83’225 kg/hm2處理分蘗期至灌漿期的NDVICGMD分別為0.13、0.29、0.38、0.33和0.28。
注:DVI、NDVI和RVI分別為差值植被指數(shù)、歸一化植被指數(shù)和比值植被指數(shù);下標(biāo)CGMD和ASD分別為作物生長(zhǎng)監(jiān)測(cè)診斷儀和高光譜儀。下同。
由圖2(試驗(yàn)I 2017年的數(shù)據(jù))可以看出,利用ASD測(cè)定的緊湊型和松散型品種的冠層DVIASD、NDVIASD和RVIASD值分別為0.01~0.30和0.02~0.32、0.05~0.36和0.06~0.40、1.10~2.31和1.13~2.35,利用CGMD測(cè)定的緊湊型和松散型品種的冠層DVICGMD、NDVICGMD和RVICGMD值分別為0.01~0.32和0.02~0.34、0.04~0.38和0.05~0.41、1.04~2.34和1.09~2.36。將2種光譜儀獲取的不同株型品種冠層DVI、NDVI和RVI進(jìn)行差異顯著性檢驗(yàn),所得統(tǒng)計(jì)概率P值均大于0.05(圖2),說明2種光譜儀獲取的冠層植被指數(shù)間差異不顯著。進(jìn)一步將2種光譜儀獲取的不同株型品種和不同生育期的DVI、NDVI和RVI進(jìn)行擬合分析,比較2種光譜儀獲取冠層植被指數(shù)的一致性。結(jié)果顯示,基于CGMD的緊湊型品種DVICGMD、NDVICGMD、RVICGMD與基于ASD的緊湊型品種DVIASD、NDVIASD、RVIASD間的決定系數(shù)(2)分別為0.959、0.961、0.957;基于CGMD的松散型品種DVICGMD、NDVICGMD、RVICGMD與基于ASD的松散型品種DVIASD、NDVIASD、RVIASD間的2分別為0.968、0.966、0.959。說明2種光譜儀獲取的冠層植被指數(shù)具有高度的一致性,CGMD具有較高的監(jiān)測(cè)精度,可替代價(jià)格昂貴的ASD高光譜儀獲取DVI、NDVI和RVI。
注:Pt為t檢驗(yàn)P值。
將CGMD測(cè)定的試驗(yàn)I 2016年緊湊型和松散型品種不同生育期的DVICGMD、NDVICGMD和RVICGMD分別與LAI進(jìn)行線性、指數(shù)、冪函數(shù)、多項(xiàng)式和對(duì)數(shù)擬合分析。結(jié)果顯示,緊湊型和松散型品種不同生育期的DVICGMD與LAI相關(guān)性最佳的方程為線性方程,2為0.857~0.903;緊湊型和松散型品種不同生育期的NDVICGMD與LAI相關(guān)性最佳的方程為指數(shù)方程,2為0.831~0.884;緊湊型和松散型品種不同生育期的RVICGMD與LAI相關(guān)性最佳的方程為冪函數(shù)方程,2為0.830~0.881(表2)。進(jìn)一步將緊湊型和松散型品種全生育期的數(shù)據(jù)進(jìn)行擬合分析顯示,全生育期的DVICGMD、NDVICGMD、RVICGMD與LAI的相關(guān)性較單生育期差,2分別為0.853~0.870、0.800~0.838、0.798~0.802(表2)。
表2 基于CGMD植被指數(shù)的不同株型和生育期的雙季稻葉面積指數(shù)監(jiān)測(cè)模型構(gòu)建及驗(yàn)證
為驗(yàn)證本研究建立的不同株型雙季稻LAI監(jiān)測(cè)模型的準(zhǔn)確性,利用獨(dú)立觀測(cè)數(shù)據(jù)(試驗(yàn)I和試驗(yàn)II 2017年數(shù)據(jù))對(duì)LAI監(jiān)測(cè)模型進(jìn)行檢驗(yàn)和評(píng)價(jià)。采用、RMSE和RRMSE 3個(gè)指標(biāo)來比較分析緊湊型和松散型品種LAI觀測(cè)值和模擬值之間的一致性,進(jìn)而評(píng)價(jià)模型的監(jiān)測(cè)精度。結(jié)果顯示(表2),緊湊型和松散型品種不同生育期的監(jiān)測(cè)模型對(duì)LAI的預(yù)測(cè)效果均較佳。其中,基于DVICGMD的模型驗(yàn)證的、RMSE和RRMSE分別為0.950~0.984、0.18~0.43、3.95%~9.40%,基于NDVICGMD的模型驗(yàn)證的、RMSE和RRMSE分別為0.906~0.967、0.24~0.38、5.73%~9.16%,基于RVICGMD的模型驗(yàn)證的、RMSE和RRMSE分別為0.905~0.954、0.25~0.56、7.37%~9.99%(表2)。由表2還可以看出,單生育期LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于全生育期,松散型品種LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于緊湊型品種。
發(fā)展雙季稻生產(chǎn)有利于保障中國(guó)糧食安全和社會(huì)穩(wěn)定[28]。豐產(chǎn)、提質(zhì)和增效是目前雙季稻生產(chǎn)的重要目標(biāo),對(duì)雙季稻長(zhǎng)勢(shì)狀況進(jìn)行實(shí)時(shí)監(jiān)測(cè)診斷是實(shí)現(xiàn)這一目標(biāo)的關(guān)鍵,而LAI是反映雙季稻長(zhǎng)勢(shì)狀況和群體質(zhì)量?jī)?yōu)劣的重要量化指標(biāo)[2]。因此,實(shí)時(shí)無(wú)損獲取LAI的動(dòng)態(tài)變化信息,對(duì)雙季稻長(zhǎng)勢(shì)精確監(jiān)測(cè)和豐產(chǎn)高效栽培具有十分重要的現(xiàn)實(shí)意義。
本研究基于不同株型品種和施氮量的田間小區(qū)試驗(yàn),采用CGMD和ASD 2種光譜儀獲取不同生育期的冠層植被指數(shù)及LAI數(shù)據(jù),比較分析了2種光譜儀獲取的植被指數(shù)變化特征及相互關(guān)系。結(jié)果表明,不同株型品種LAI和冠層植被指數(shù)(DVI、NDVI和RVI)均隨施氮量增加而增大,隨生育進(jìn)程推進(jìn)呈“低—高—低”的變化趨勢(shì),這與前人在小麥上的研究結(jié)論一致[8]。說明雙季稻冠層植被指數(shù)的變化特征與其LAI等株型指標(biāo)的變化特征是對(duì)應(yīng)的,且在雙季稻精確管理中,氮肥的科學(xué)合理施用對(duì)定向調(diào)控LAI動(dòng)態(tài)和建立高光效群體至關(guān)重要。本研究表明,不同供試株型品種相比,松散型品種因葉片較平展、株型松散、LAI和冠層覆蓋度較大,不同生育期的冠層植被指數(shù)都大于緊湊型品種。近年來,具有實(shí)時(shí)、快速、無(wú)損、準(zhǔn)確和信息量大的高光譜技術(shù)廣泛應(yīng)用于作物L(fēng)AI等長(zhǎng)勢(shì)指標(biāo)監(jiān)測(cè)[29-30]。高光譜儀具有波長(zhǎng)范圍大、波段帶寬小、測(cè)量精度高等優(yōu)點(diǎn),可精確的研究作物長(zhǎng)勢(shì)指標(biāo)與高光譜植被指數(shù)間的定量關(guān)系,但其價(jià)格貴、數(shù)據(jù)處理繁瑣,大田生產(chǎn)應(yīng)用可行性不強(qiáng)。本研究在比較分析國(guó)產(chǎn)CGMD多光譜儀和進(jìn)口ASD高光譜儀獲取不同株型雙季稻冠層植被指數(shù)時(shí)表明,2種光譜儀獲取的DVI、NDVI和RVI間差異不顯著;進(jìn)一步擬合分析2種光譜儀獲取的DVI、NDVI和RVI間的相互定量關(guān)系時(shí)表明,基于CGMD與ASD的DVI、NDVI和RVI間的2分別為0.959~0.968、0.961~0.966和0.957~0.959,說明2種光譜儀獲取的植被指數(shù)具有高度的一致性,CGMD具有較高的監(jiān)測(cè)精度,可替代價(jià)格昂貴的ASD在田間快捷準(zhǔn)確的獲取雙季稻冠層DVI、NDVI和RVI信息,這與前人在玉米上的研究結(jié)論相似[31]。
本研究基于不同株型品種和施氮量的試驗(yàn)數(shù)據(jù),建立了基于DVICGMD、NDVICGMD和RVICGMD的LAI監(jiān)測(cè)模型,并利用獨(dú)立數(shù)據(jù)對(duì)模型進(jìn)行了檢驗(yàn)。結(jié)果表明,DVICGMD與LAI的定量關(guān)系可用線性方程表達(dá),NDVICGMD與LAI的定量關(guān)系可用指數(shù)方程表達(dá),RVICGMD與LAI的定量關(guān)系可用冪函數(shù)方程表達(dá)。3個(gè)植被指數(shù)相比,DVICGMD與LAI的相關(guān)性更好,這與前人在小麥上的研究結(jié)論一致[8];基于DVICGMD的LAI監(jiān)測(cè)模型的2為0.857~0.903,比前人采用DVI(854, 760)對(duì)單季稻LAI的監(jiān)測(cè)精度更高[7]。本研究表明,基于CGMD植被指數(shù)的單生育期LAI監(jiān)測(cè)模型監(jiān)測(cè)和預(yù)測(cè)效果優(yōu)于全生育期監(jiān)測(cè)模型。如拔節(jié)期,基于RVICGMD的模型預(yù)測(cè)松散型品種LAI的、RMSE和RRMSE分別為0.921、0.30和7.62%,與前人采用RVI(810, 560)對(duì)單季稻LAI的預(yù)測(cè)效果相當(dāng)[5]。本研究還表明,基于CGMD植被指數(shù)的松散型品種LAI監(jiān)測(cè)模型的監(jiān)測(cè)和預(yù)測(cè)效果優(yōu)于緊湊型品種,在生長(zhǎng)前期表現(xiàn)更明顯。這主要是由于在生長(zhǎng)前期松散型品種的葉傾角較小、葉片較平展、葉寬和冠層覆蓋度較大,可有效減少土壤背景等對(duì)冠層光譜的影響。說明株型結(jié)構(gòu)對(duì)冠層光譜影響較大,基于CGMD植被指數(shù)能準(zhǔn)確的反演不同株型雙季稻LAI信息,所建監(jiān)測(cè)模型具有較高的準(zhǔn)確性和穩(wěn)定性,是對(duì)前人研究[26]的進(jìn)一步本地化應(yīng)用,拓展了CGMD的監(jiān)測(cè)對(duì)象和應(yīng)用區(qū)域,可替代價(jià)格昂貴的SunScan植物冠層分析儀來獲取雙季稻LAI,在南方雙季稻區(qū)具有推廣應(yīng)用價(jià)值。此外,與傳統(tǒng)人工破壞取樣直接測(cè)定LAI法[32]相比,本研究采用CGMD獲取冠層植被指數(shù)數(shù)據(jù)建立LAI監(jiān)測(cè)模型,進(jìn)而反演得到雙季稻LAI信息,具有數(shù)據(jù)獲取快捷、無(wú)損、準(zhǔn)確等優(yōu)點(diǎn),可有效克服傳統(tǒng)測(cè)定方法取樣誤差大、費(fèi)時(shí)耗工等不足。
當(dāng)然,本研究建立的不同株型雙季稻LAI監(jiān)測(cè)模型屬于統(tǒng)計(jì)模型,形式簡(jiǎn)單、計(jì)算方便、結(jié)果較準(zhǔn)確,僅適用于江西、湖南等相似生態(tài)條件、株型結(jié)構(gòu)和栽培管理措施的雙季稻區(qū)。外界條件的改變可能導(dǎo)致本研究建立的LAI監(jiān)測(cè)模型的準(zhǔn)確性和適用性不廣泛。因此,今后需要通過獲取雙季稻區(qū)不同年份、試驗(yàn)點(diǎn)和株型品種的試驗(yàn)數(shù)據(jù)對(duì)模型進(jìn)行校正完善,以提高模型的準(zhǔn)確性和適用性,從而推動(dòng)基于光譜的作物精確管理技術(shù)在雙季稻生產(chǎn)中的高效應(yīng)用。
不同株型雙季稻葉面積指數(shù)(Leaf Area Index, LAI)和冠層植被指數(shù)隨施氮量增加而增大,隨生育進(jìn)程推進(jìn)呈“低—高—低”的變化趨勢(shì)。作物生長(zhǎng)監(jiān)測(cè)診斷儀(Crop Growth Monitoring and Diagnosis Apparatus, CGMD)和高光譜儀(Analytical Spectral Devices, ASD)獲取的冠層植被指數(shù)差異不顯著,且具有高度的一致性?;贑GMD的不同株型和生育期的差值植被指數(shù)、歸一化植被指數(shù)、比值植被指數(shù)與LAI間的相關(guān)關(guān)系可分別用線性、指數(shù)和冪函數(shù)方程來定量表達(dá)。單生育期LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于全生育期,相對(duì)均方根誤差均小于10%,松散型品種LAI監(jiān)測(cè)模型的預(yù)測(cè)效果優(yōu)于緊湊型品種。與傳統(tǒng)人工取樣法相比,利用CGMD可實(shí)時(shí)、無(wú)損、快捷和準(zhǔn)確的獲取不同株型雙季稻LAI信息,在雙季稻生產(chǎn)中具有推廣應(yīng)用價(jià)值。
[1]賈彪,錢瑾,馬富裕. 氮素對(duì)膜下滴灌棉花葉面積指數(shù)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):79-87.
Jia Biao, Qian Jin, Ma Fuyu. Simulating effects of nitrogen on leaf area index of cotton under mulched drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 79-87. (in Chinese with English abstract)
[2]李艷大,舒時(shí)富,陳立才,等. 基于歸一化法的雙季稻葉面積指數(shù)動(dòng)態(tài)預(yù)測(cè)模型[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(29):77-84.
Li Yanda, Shu Shifu, Chen Licai, et al. A predict model of dynamic leaf area index of double cropping rice based on normalized method[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 77-84. (in Chinese with English abstract)
[3]劉軻,周清波,吳文斌,等. 基于多光譜與高光譜遙感數(shù)據(jù)的冬小麥葉面積指數(shù)反演比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):155-162.
Liu Ke, Zhou Qingbo, Wu Wenbin, et al. Comparison between multispectral and hyperspectral remote sensing for LAI estimation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 155-162. (in Chinese with English abstract)
[4]Zhao Dehua, Yang Tangwu, An Shuqing. Effects of crop residue cover resulting from tillage practices on LAI estimation of wheat canopies using remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14: 169-177.
[5]薛利紅,曹衛(wèi)星,羅衛(wèi)紅,等. 光譜植被指數(shù)與水稻葉面積指數(shù)相關(guān)性的研究[J]. 植物生態(tài)學(xué)報(bào),2004,28(1):47-52.
Xue Lihong, Cao Weixing, Luo Weihong, et al. Relationship between spectral vegetation indices and LAI in rice[J]. Acta Phytoecologica Sinica, 2004, 28(1): 47-52. (in Chinese with English abstract)
[6]馮偉,朱艷,姚霞,等. 基于高光譜遙感的小麥葉干重和葉面積指數(shù)監(jiān)測(cè)[J]. 植物生態(tài)學(xué)報(bào),2009,33(1):34-44.
Fei Wei, Zhu Yan, Yao Xia, et al. Monitoring leaf dry weight and leaf area index in wheat with hyperspectral remote sensing[J]. Chinese Journal of Plant Ecology, 2009, 33(1): 34-44. (in Chinese with English abstract)
[7]田永超,楊杰,姚霞,等. 高光譜植被指數(shù)與水稻葉面積指數(shù)的定量關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào),2009,20(7):1685-1690.
Tian Yongchao, Yang Jie, Yao Xia, et al. Quantitative relationship between hyper-spectra vegetation indices and leaf area index of rice[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1685-1690. (in Chinese with English abstract)
[8]周曉楠,黃正來,張文靜,等. 基于雙波段光譜儀CGMD-302 的小麥葉面積指數(shù)和葉干重監(jiān)測(cè)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(1):102-111.
Zhou Xiaonan, Huang Zhenglai, Zhang Wenjing, et al. Monitoring leaf area index and leaf dry weight of winter wheat with dual-wavebands spectrometer CGMD-302[J]. Journal of China Agricultural University, 2017, 22(1): 102-111. (in Chinese with English abstract)
[9]王福民,黃敬峰,唐延林,等. 采用不同光譜波段寬度的歸一化植被指數(shù)估算水稻葉面積指數(shù)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2007,18(11):2444-2450.
Wang Fumin, Huang Jingfeng, Tang Yanlin, et al. Estimation of rice LAI by using NDVI at different spectral band widths[J]. Chinese of Journal of Applied Ecology, 2007, 18(11): 2444-2450. (in Chinese with English abstract)
[10]Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment 2004, 90: 337-352.
[11]劉占宇,黃敬峰,王福民,等. 估算水稻葉面積指數(shù)的調(diào)節(jié)型歸一化植被指數(shù)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(10):3350-3356.
Liu Zhanyu, Huang Jingfeng, Wang Fumin, et al. Adjusted normalized difference vegetation index for estimating leaf area index of rice[J]. Scientia Agricultura Sinica, 2008, 41(10): 3350-3356. (in Chinese with English abstract)
[12]林卉,梁亮,張連蓬,等. 基于支持向量機(jī)回歸算法的小麥葉面積指數(shù)高光譜遙感反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(11):139-146.
Lin Hui, Liang Liang, Zhang Lianpeng, et al. Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(11): 139-146. (in Chinese with English abstract)
[13]束美艷,顧曉鶴,孫林,等. 基于新型植被指數(shù)的冬小麥LAI高光譜反演[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(18):3486-3496.
Shu Meiyan, Gu Xiaohe, Sun Lin, et al. High spectral inversion of winter wheat LAI based on new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. (in Chinese with English abstract)
[14]Liu J, Elizabeth P, Guillaume J. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment, 2012, 123: 347-358.
[15]謝巧云,黃文江,蔡淑紅,等. 冬小麥葉面積指數(shù)遙感反演方法比較研究[J]. 光譜學(xué)與光譜分析,2014,34(5):1352-1356.
Xie Qiaoyun, Huang Wenjiang, Cai Shuhong, et al. Comparative study on remote sensing invertion methods for estimating winter wheat leaf area index[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1352-1356. (in Chinese with English abstract)
[16]蔡慶空,蔣金豹,陶亮亮,等. 聯(lián)合主成分分析與最小二乘支持向量機(jī)估測(cè)冬小麥葉面積指數(shù)[J]. 麥類作物學(xué)報(bào),2014,34(9):1292-1296.
Cai Qingkong, Jiang Jinbao, Tao Liangliang, et al. Estimation of winter wheat leaf area index with joint principal component analysis and least squares support vector model[J]. Journal of Triticeae Crops, 2014, 34(9): 1292-1296. (in Chinese with English abstract)
[17]夏天,吳文斌,周清波,等. 冬小麥葉面積指數(shù)高光譜遙感反演方法對(duì)比[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):139-147.
Xia Tian, Wu Wenbin, Zhou Qingbo, et al. Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 139-147. (in Chinese with English abstract)
[18]Huang Yan, Tian Qingjiu, Wang Lei, et al. Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform[J]. Journal of Applied Remote Sensing, 2014, 8: 1-13.
[19]王麗愛,周旭東,朱新開,等. 基于HJ-CCD 數(shù)據(jù)和隨機(jī)森林算法的小麥葉面積指數(shù)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):149-154.
Wang Liai, Zhou Xudong, Zhu Xinkai, et al. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 149-154. (in Chinese with English abstract)
[20]Li Songyang, Yuan Fei, Syed T A, et al. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation[J]. Remote Sensing, 2019, 11: 1763.
[21]陶惠林,馮海寬,楊貴軍,等. 基于無(wú)人機(jī)成像高光譜影像的冬小麥LAI估測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(1):176-187.
Tao Huilin, Feng Haikuan, Yang Guijun, et al. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 176-187. (in Chinese with English abstract)
[22]高林,楊貴軍,于海洋,等. 基于無(wú)人機(jī)高光譜遙感的冬小麥葉面積指數(shù)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):113-120.
Gao Lin, Yang Guijun, Yu Haiyang, et al. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remoter sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 113-120. (in Chinese with English abstract)
[23]田明璐,班松濤,常慶瑞,等. 基于低空無(wú)人機(jī)成像光譜儀影像估算棉花葉面積指數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21):102-108.
Tian Minglu, Ban Songtao, Chang Qingrui, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 102-108. (in Chinese with English abstract)
[24]Kipp S, Mistele B, Schmidhalter U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity[J]. Computers and Electronics in Agriculture, 2014, 100(1): 24-33.
[25]張猛,孫紅,李民贊,等. 基于4波段作物光譜測(cè)量?jī)x的小麥分蘗數(shù)預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):341-347.
Zhang Meng, Sun Hong, Li Minzan, et al. Prediction of winter wheat tiller number based on 4-waveband crop monitor with spectral reflectance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 341-347. (in Chinese with English abstract)
[26]倪軍,姚霞,田永超,等. 便攜式作物生長(zhǎng)監(jiān)測(cè)診斷儀的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(6):150-156.
Ni Jun, Yao Xia, Tian Yongchao, et al. Design and experiments of portable apparatus for plant growth monitoring and diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 150-156. (in Chinese with English abstract)
[27]楊鈞森,楊貴軍,徐波,等. 田間作物NDVI 測(cè)量?jī)x可靠性分析及標(biāo)定環(huán)境研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):230-236.
Yang Junsen, Yang Guijun, Xu Bo, et al. Reliability analysis and calibration environment of field crop NDVI measuring instruments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 230-236. (in Chinese with English abstract)
[28]鄒應(yīng)斌. 長(zhǎng)江流域雙季稻栽培技術(shù)發(fā)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(2):254-262.
Zou Yingbin. Development of cultivation technology for double cropping rice along the changjiang river valley[J]. Scientia Agricultura Sinica, 2011, 44(2): 254-262. (in Chinese with English abstract)
[29]郭建彪,馬新明,時(shí)雷. 冬小麥葉面積指數(shù)的品種差異性與高光譜估算研究[J]. 麥類作物學(xué)報(bào),2018,38(3):340-347.
Guo Jianbiao, Ma Xinming, Shi Lei, et al. Variety variation and hyperspectral estimate model of leaf area index of winter wheat[J]. Journal of Triticeae Crops, 2018, 38(3): 340-347. (in Chinese with English abstract)
[30]Guo Binbin, Zhu Yunji, Feng Wei, et al. Remotely estimating aerial N uptake in winter wheat using red-edge area index from multi-angular hyperspectral data[J]. Frontiers in Plant Science, 2018, 9: 1-14.
[31]賀佳,郭燕,王利軍,等. 基于作物生長(zhǎng)監(jiān)測(cè)診斷儀的玉米LAI監(jiān)測(cè)模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(12):187-194.
He Jia, Guo Yan, Wang Lijun, et al. Monitor model of corn leaf area index based on CGMD-402[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 187-194. (in Chinese with English abstract)
[32]劉镕源,王紀(jì)華,楊貴軍,等. 冬小麥葉面積指數(shù)地面測(cè)量方法的比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(3):220-224.
Liu Rongyuan, Wang Jihua, Yang Guijun, et al. Comparison of ground-based LAI measuring methods on winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 220-224. (in Chinese with English abstract)
Model for monitoring leaf area index of double cropping rice based on crop growth monitoring and diagnosis apparatus
Li Yanda1, Sun Binfeng1, Cao Zhongsheng1, Ye Chun1, Shu Shifu1, Huang Junbao1, He Yong2
(1.,//,330200,;2.,,310029,)
The real-time, fast, non-destructive and quantitative monitoring of leaf area index (LAI) is critical for precise regulation population quality of double cropping rice production. The objective of this study was to test the accuracy and adaptability of crop growth monitoring and diagnosis apparatus (CGMD) in double cropping rice of different plant types growth index monitoring and application, and to establish the leaf area index (LAI) monitoring model of double cropping rice based on CGMD. Field experiments were conducted in Jiangxi China in 2016 and 2017, including different plant type cultivars and nitrogen application rates. The differential vegetation index (DVI), normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) were measured at tillering stage, jointing stage, booting stage, heading stage and filling stage with two spectrometers,.., CGMD (a passive multispectral spectrometer containing 810 and 720 nm wavelengths) and analytical spectral devices (ASD, a passive hyper-spectral spectrometer containing 325 to 1 075 nm wavelengths). Vegetation indexes change characteristics were compared between CGMD and ASD, and their quantitative relationships were analyzed. The LAI monitoring models for compact and loose plant type cultivars of double cropping rice were established based on CGMD from field experimental dataset in 2016 and then validated using field experimental dataset in 2017. The results showed that the LAI, DVI, NDVI and RVI of different plant type cultivars were increased with increasing nitrogen application rate at different growth stages. All of them showed a “l(fā)ow-high-low” trend with double cropping rice development progress. The determination coefficient (2) of DVI, NDVI and RVI based on CGMD and ASD were 0.959-0.968, 0.961-0.966 and 0.957-0.959, respectively. This indicated that vegetation indexes based on CGMD and ASD was highly consistent, and the CGMD could be used to replace expensive ASD to measure NDVI, DVI and RVI. The prediction effect of LAI monitoring model at single growth stage based on CGMD vegetation indexes was better than that in the whole stage, and the prediction effect of LAI monitoring model in the loose plant type cultivar based on CGMD vegetation indexes was better than that in the compact plant type cultivar. The linear equation based on DVICGMDcould be used to estimate LAI with the2in the range of 0.857-0.903, and the correlation coefficient (), root mean square error (RMSE) and relation root mean square error (RRMSE) of model validation in the range of 0.950-0.984, 0.18-0.43 and 3.95%-9.40%, respectively. The exponential equation based on NDVICGMDcould be used to estimate LAI with the2in the range of 0.831-0.884, and the, RMSE and RRMSE of model validation in the range of 0.906-0.967, 0.24-0.38 and 5.73%-9.16%, respectively. The power function equation based on RVICGMDcould be used to estimate LAI with the2in the range of 0.830-0.881, and the, RMSE and RRMSE of model validation in the range of 0.905-0.954, 0.25-0.56 and 7.37%-9.99%, respectively. Compared with the normal manual sampling method, using the CGMD can real-time and non-destructive monitoring the LAI dynamic change of double cropping rice. The CGMD could be used to replace SunScan (an expensive plant canopy analyzer used to measure LAI) to measure LAI of double cropping rice, which has a potential to be widely applied for precise regulation of LAI and high yield cultivation in double cropping rice production.
crops; models; nitrogen; double cropping rice; crop growth monitoring and diagnosis apparatus; vegetation index; leaf area index
李艷大,孫濱峰,曹中盛,等. 基于作物生長(zhǎng)監(jiān)測(cè)診斷儀的雙季稻葉面積指數(shù)監(jiān)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):141-149.doi:10.11975/j.issn.1002-6819.2020.10.017 http://www.tcsae.org
Li Yanda, Sun Binfeng, Cao Zhongsheng, et al. Model for monitoring leaf area index of double cropping rice based on crop growth monitoring and diagnosis apparatus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 141-149. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.017 http://www.tcsae.org
2020-02-20
2020-05-01
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300608);江西省科技計(jì)劃項(xiàng)目(20182BCB22015、20181BCD40011、20192BBF60052);國(guó)家青年拔尖人才支持計(jì)劃項(xiàng)目;國(guó)家自然科學(xué)基金項(xiàng)目(31260293);江西省“雙千計(jì)劃”項(xiàng)目和江西省“遠(yuǎn)航工程”項(xiàng)目資助。
李艷大,博士,研究員,主要從事信息農(nóng)學(xué)與農(nóng)機(jī)化技術(shù)方面的研究。Email:liyanda2008@126.com
10.11975/j.issn.1002-6819.2020.10.017
S318
A
1002-6819(2020)-10-0141-09