劉 鵬,金誠謙,,劉 政,張光躍,蔡澤宇,康 艷,印 祥
大豆聯(lián)合收獲機田間清選作業(yè)參數(shù)優(yōu)化
劉 鵬1,金誠謙1,2※,劉 政2,張光躍2,蔡澤宇2,康 艷1,印 祥1
(1. 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,淄博 255000;2. 農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機械化研究所,南京 210014)
為了改變國內(nèi)大豆聯(lián)合收獲機田間作業(yè)時因清選裝置的參數(shù)調(diào)節(jié)缺乏相應(yīng)理論指導(dǎo),造成清選參數(shù)調(diào)控不及時與不精確而導(dǎo)致大豆機收清選損失率和含雜率均較高的現(xiàn)狀,該研究利用多參數(shù)可調(diào)可測式清選系統(tǒng)進(jìn)行了大豆機收清選參數(shù)優(yōu)化田間試驗,分析了大豆機收時清選參數(shù)(作業(yè)速度、魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速和振動篩曲柄轉(zhuǎn)速)對清選指標(biāo)(清選損失率和含雜率)的影響規(guī)律,求解出最佳清選參數(shù)組合,完成大豆機收最佳清選參數(shù)組合的田間驗證試驗。試驗結(jié)果表明,清選參數(shù)對清選損失率影響大小排序為振動篩曲柄轉(zhuǎn)速、風(fēng)機轉(zhuǎn)速、作業(yè)速度、風(fēng)門開度、魚鱗篩篩片開度,清選參數(shù)對含雜率影響大小排序為魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速、作業(yè)速度、振動篩曲柄轉(zhuǎn)速。求解出清選損失率偏小和含雜率偏小且喂入量偏大時最佳清選參數(shù)組合為作業(yè)速度6 km/h、魚鱗篩篩片開度32 mm、風(fēng)門開度17°、風(fēng)機轉(zhuǎn)速1 310 r/min和振動篩曲柄轉(zhuǎn)速410 r/min,此時清選損失率為0.25%,含雜率為0.61%,與模型優(yōu)化值的相對誤差分別是0.250%和0.113%,對比常用清選參數(shù)條件下大豆聯(lián)合收獲機田間試驗的清選指標(biāo),清選損失率下降了0.05%,含雜率下降了2.09%。研究結(jié)果可為大豆聯(lián)合收獲機田間作業(yè)時清選參數(shù)的設(shè)定與調(diào)控以及自適應(yīng)清選系統(tǒng)調(diào)控策略的研發(fā)提供理論依據(jù)。
收獲機;田間試驗;優(yōu)化;大豆機收;多參數(shù)可調(diào)可測式清選系統(tǒng);清選參數(shù);清選指標(biāo);影響規(guī)律
清選工序是聯(lián)合收獲機田間作業(yè)的核心步驟,清選裝置是聯(lián)合收獲機進(jìn)行作物田間收獲時完成脫?;旌衔镏凶蚜Ec雜余分離清選的主要設(shè)備。清選參數(shù)直接影響聯(lián)合收獲機清選裝置作業(yè)性能。清選指標(biāo)則用于衡量和評價聯(lián)合收獲機田間作業(yè)時清選裝置直接造成的籽粒損失與收獲籽粒中的含雜情況,主要用清選損失率與含雜率來表示[1-6]。
國內(nèi)專家學(xué)者在聯(lián)合收獲機清選參數(shù)優(yōu)化以及清選參數(shù)對清選指標(biāo)的影響規(guī)律方面進(jìn)行了大量的研究。在水稻機收清選參數(shù)研究方面,梁振偉等通過仿真和田間試驗,研究了多個清選參數(shù)對清選室內(nèi)氣流場變化和清選指標(biāo)的影響規(guī)律,選出清選性能較佳的參數(shù)組合[7-8];司增永等以多風(fēng)道清選裝置為研究對象,選取風(fēng)機轉(zhuǎn)速、魚鱗篩篩片開度和分風(fēng)板角度為清選參數(shù),完成水稻機收清選參數(shù)優(yōu)化田間試驗與分析,降低了水稻機收清選損失率和含雜率[9-10]。在小麥機收清選參數(shù)研究方面,鐘挺等利用4LZ-1.0Q型稻麥聯(lián)合收獲機完成小麥機收脫粒清選參數(shù)優(yōu)化田間試驗,應(yīng)用模糊綜合評價法分析數(shù)據(jù),得到脫粒清選裝置作業(yè)參數(shù)對小麥機收作業(yè)指標(biāo)的影響主次順序和最佳脫粒清選參數(shù)組合[11-12];師清翔等利用微型谷物聯(lián)合收獲機雙揚谷器旋風(fēng)分離清選系統(tǒng)試驗臺完成小麥機收清選參數(shù)優(yōu)化臺架試驗,分析出最佳清選參數(shù)組合[13-14]。在玉米機收清選參數(shù)研究方面,王立軍等利用仿真和臺架試驗分析了清選篩參數(shù)、清選機構(gòu)運動參數(shù)及清選作業(yè)參數(shù)對清選指標(biāo)的影響規(guī)律并得出最佳作業(yè)參數(shù)組合[15-17];程超等利用清選篩堵塞性能試驗臺和改裝玉米聯(lián)合收獲機完成臺架試驗和田間試驗,分析數(shù)據(jù)得出了清選篩運動參數(shù)對芯軸堵塞質(zhì)量的影響規(guī)律和清選參數(shù)對損失率和含雜率的影響規(guī)律,分別求出清選篩運動參數(shù)最佳組合和清選作業(yè)參數(shù)最佳組合[18-19];樊晨龍等利用雙層異向清選裝置試驗臺完成玉米機收清選運動參數(shù)優(yōu)化臺架試驗,得出清選運動參數(shù)對清選指標(biāo)的影響規(guī)律和較優(yōu)清選運動參數(shù)組合[20]。在油菜機收清選參數(shù)研究方面,張敏等利用雙滾筒聯(lián)合收獲試驗平臺進(jìn)行了油菜機收清選機構(gòu)參數(shù)優(yōu)化試驗,得出清選機構(gòu)參數(shù)對清選指標(biāo)的影響規(guī)律和最優(yōu)清選參數(shù)組合[21]。在大豆機收清選參數(shù)研究方面,金誠謙等針對現(xiàn)有聯(lián)合收獲機收獲大豆時脫粒清選系統(tǒng)工作部件的作業(yè)參數(shù)調(diào)節(jié)不當(dāng)而造成大豆機收損失率、破碎率和含雜率較高的問題,選取作業(yè)速度、脫粒段脫粒間隙、分離段脫粒間隙、滾筒轉(zhuǎn)速、導(dǎo)流板角度、分風(fēng)板角度、風(fēng)機轉(zhuǎn)速、上篩前部開度和上篩后部開度為研究參數(shù),利用4YZL-5S型大豆聯(lián)合收獲機完成大豆機收作業(yè)質(zhì)量主要影響參數(shù)的田間試驗,分析了各參數(shù)對大豆機收作業(yè)指標(biāo)的影響規(guī)律,得出大豆機收作業(yè)質(zhì)量主要影響參數(shù)的最佳組合,此時損失率、破碎率和含雜率分別為0.24%、0.90%和0.14%[22-23]。
綜合研究現(xiàn)狀可知,現(xiàn)階段國內(nèi)在聯(lián)合收獲機田間作業(yè)時清選參數(shù)對清選指標(biāo)的影響規(guī)律方面的研究工作主要集中于水稻、小麥、玉米和油菜等作物,文獻(xiàn)[22]研究了前進(jìn)速度和風(fēng)機轉(zhuǎn)速2個清選參數(shù)對大豆機收總損失率的影響效應(yīng),而專門進(jìn)行大豆機收多個清選參數(shù)優(yōu)化以及對清選指標(biāo)影響規(guī)律的精細(xì)化研究工作還較少。大豆機收清選工序區(qū)別于其他谷物,大豆聯(lián)合收獲機田間作業(yè)時的清選損失率與含雜率易受喂入量和清選裝置作業(yè)參數(shù)的影響。通過分析大豆聯(lián)合收獲機清選裝置工作原理,確定影響清選指標(biāo)的主要清選參數(shù),利用田間試驗方法研究大豆機收清選參數(shù)對清選指標(biāo)的影響規(guī)律,可有效優(yōu)化大豆聯(lián)合收獲機田間作業(yè)的清選參數(shù)組合及其調(diào)控精度和調(diào)節(jié)時間[24-29]。
本文針對大豆聯(lián)合收獲機田間作業(yè)時清選裝置作業(yè)參數(shù)的調(diào)控缺乏相應(yīng)理論指導(dǎo),造成清選參數(shù)調(diào)控不及時與不精確而導(dǎo)致大豆機收清選損失率和含雜率均較高的問題,選取作業(yè)速度、魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速和振動篩曲柄轉(zhuǎn)速為清選參數(shù),以清選損失率與含雜率為清選指標(biāo),采用Design Expert 10.0軟件完成響應(yīng)面試驗設(shè)計,利用自制多參數(shù)可調(diào)可測式清選系統(tǒng)完成大豆機收清選參數(shù)優(yōu)化田間試驗,通過貢獻(xiàn)率方法和響應(yīng)曲面圖分析法計算和分析了5個清選參數(shù)對2個清選指標(biāo)的貢獻(xiàn)率和響應(yīng)效應(yīng),探尋大豆機收時清選參數(shù)對清選指標(biāo)的影響規(guī)律,求解出大豆機收最佳清選參數(shù)組合,以期為大豆聯(lián)合收獲機田間作業(yè)清選參數(shù)的調(diào)控與自適應(yīng)清選系統(tǒng)調(diào)控策略的研發(fā)提供理論依據(jù)。
多參數(shù)可調(diào)可測式清選系統(tǒng)包括機架、風(fēng)門開度調(diào)控裝置、魚鱗篩篩片開度調(diào)控裝置、風(fēng)機轉(zhuǎn)速調(diào)控裝置、振動篩、振動篩曲柄轉(zhuǎn)速調(diào)控裝置、GPS模塊和控制顯示終端。結(jié)構(gòu)示意圖如圖1所示。
多參數(shù)可調(diào)可測式清選系統(tǒng)進(jìn)行大豆機收時的清選作業(yè)原理:由振動篩承接脫粒裝置脫出的大豆脫粒混合物,在振動篩向后的往復(fù)運動和風(fēng)機經(jīng)風(fēng)道在清選室內(nèi)形成風(fēng)場的共同作用下,完成大豆脫?;旌衔镏写蠖棺蚜Ec雜質(zhì)的風(fēng)選篩分作業(yè)。大部分大豆籽粒與少量輕雜余透過振動篩上篩與下篩落入集糧攪龍進(jìn)行下一步大豆籽粒收集工序,未脫凈作物豆莢與較大雜余繼續(xù)在振動篩往復(fù)運動和風(fēng)機風(fēng)場的共同作用下,向振動篩后方運動,此過程中未脫凈豆莢從尾篩處落入復(fù)脫攪龍經(jīng)過復(fù)脫裝置重新進(jìn)入脫粒清選裝置進(jìn)行二次脫粒清選作業(yè),較大雜余則繼續(xù)在振動篩往復(fù)運動和風(fēng)機風(fēng)場的共同作用下被排除清選室外,以此完成大豆機收清選作業(yè)。
1.機架 2.風(fēng)門調(diào)節(jié)板Ⅰ 3.風(fēng)機伺服電機 4.風(fēng)機主動輪 5.風(fēng)機皮帶 6.風(fēng)機 7.風(fēng)機從動輪 8.風(fēng)門開度舵機Ⅰ 9.振動篩 10.篩片開度舵機 11.電池Ⅰ 12.電池Ⅱ 13.振動篩曲柄伺服電機 14.振動篩曲柄主動輪 15.振動篩曲柄皮帶 16.振動篩曲柄 17.振動篩曲柄從動輪 18.復(fù)脫攪龍 19.集糧攪龍 20.風(fēng)門調(diào)節(jié)板Ⅱ 21.風(fēng)門開度舵機Ⅱ
由大豆機收清選作業(yè)原理和清選系統(tǒng)結(jié)構(gòu)可知,大豆聯(lián)合收獲機清選裝置屬于風(fēng)篩式清選裝置,在清選裝置各部件結(jié)構(gòu)不變的前提下,魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速與振動篩曲柄轉(zhuǎn)速可調(diào)節(jié),這4個清選參數(shù)均對清選指標(biāo)造成直接影響,又因清選指標(biāo)還受到喂入量的影響,而作業(yè)速度決定喂入量[30-36]。因此大豆聯(lián)合收獲機清選裝置作業(yè)性能主要受到作業(yè)速度、魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速與振動篩曲柄轉(zhuǎn)速的影響。本文針對上述5個清選作業(yè)參數(shù)進(jìn)行大豆機收清選作業(yè)參數(shù)優(yōu)化田間試驗研究,為確保5個清選參數(shù)水平的調(diào)控精度和提升試驗數(shù)據(jù)精準(zhǔn)度,需要對5個清選參數(shù)的調(diào)控與監(jiān)測方法進(jìn)行分析[28-29]。
1)作業(yè)速度調(diào)控與監(jiān)測方法。作業(yè)速度通過收獲機駕駛員手動設(shè)定并由多參數(shù)可調(diào)可測式清選系統(tǒng)的GPS模塊進(jìn)行實時監(jiān)測并在控制顯示終端實時顯示,由收獲機駕駛員根據(jù)控制顯示終端實時顯示的作業(yè)速度進(jìn)行手動調(diào)控。
2)魚鱗篩篩片開度調(diào)控與監(jiān)測方法。魚鱗篩篩片開度通過控制顯示終端設(shè)定篩片開度參數(shù),由魚鱗篩篩片開度調(diào)控裝置進(jìn)行參數(shù)調(diào)控與實時監(jiān)測并在控制顯示終端實時顯示。魚鱗篩篩片開度調(diào)控裝置包括魚鱗篩、篩片開度舵機和篩片開度調(diào)節(jié)片,以魚鱗篩相鄰篩片的平行間距作為魚鱗篩篩片開度,結(jié)構(gòu)如圖2a所示。
3)風(fēng)門開度調(diào)控與監(jiān)測方法。風(fēng)門開度通過控制顯示終端設(shè)定參數(shù),由風(fēng)門開度調(diào)控裝置進(jìn)行參數(shù)調(diào)控與實時監(jiān)測并在控制顯示終端實時顯示。風(fēng)門開度調(diào)控裝置包括2個風(fēng)門調(diào)節(jié)板和2個風(fēng)門開度舵機,以風(fēng)門調(diào)節(jié)板的調(diào)節(jié)角度作為風(fēng)門開度,結(jié)構(gòu)如圖2b所示。
4)風(fēng)機轉(zhuǎn)速調(diào)控與監(jiān)測方法。風(fēng)機轉(zhuǎn)速通過控制顯示終端設(shè)定參數(shù),由風(fēng)機轉(zhuǎn)速調(diào)控裝置進(jìn)行參數(shù)調(diào)控與實時監(jiān)測并在控制顯示終端實時顯示。風(fēng)機轉(zhuǎn)速調(diào)控裝置由風(fēng)機、風(fēng)機伺服電機、風(fēng)機主動輪、風(fēng)機皮帶與風(fēng)機從動輪組成,結(jié)構(gòu)如圖2c所示。
5)振動篩曲柄轉(zhuǎn)速調(diào)控與監(jiān)測方法。振動篩曲柄轉(zhuǎn)速通過控制顯示終端設(shè)定參數(shù),由振動篩曲柄轉(zhuǎn)速調(diào)控裝置進(jìn)行參數(shù)調(diào)控與實時監(jiān)測并在控制顯示終端實時顯示。振動篩曲柄轉(zhuǎn)速調(diào)控裝置包括振動篩曲柄伺服電機、振動篩曲柄主動輪、振動篩曲柄皮帶、振動篩曲柄從動輪和振動篩曲柄,結(jié)構(gòu)如圖2d所示。
1.魚鱗篩篩片 2.篩片開度調(diào)節(jié)片 3.篩片開度舵機 4.風(fēng)門調(diào)節(jié)板 5.風(fēng)門開度舵機 6.風(fēng)機伺服電機 7.風(fēng)機主動輪 8.風(fēng)機皮帶 9.風(fēng)機從動輪 10.風(fēng)機 11.振動篩曲柄伺服電機 12.振動篩曲柄主動輪 13.振動篩曲柄皮帶 14.振動篩曲柄從動輪 15.振動篩曲柄
1.Chaffer screen plate 2.Screen plate opening adjusting plate 3.Screen plate opening actuator 4.Damper adjusting plate 5.Damper opening actuator 6.Fan servo motor 7.Fan driving wheel 8.Fan belt 9.Fan driven wheel 10.Fan 11.Shale shaker crank servo motor 12.Shale shaker crank driving wheel 13.Shale shaker crank belt 14.Shale shaker crank driven wheel 15.Shale shaker crank
注:為魚鱗篩篩片開度,mm;為風(fēng)門調(diào)節(jié)板調(diào)節(jié)角度,(°)。
Note:is the opening of chaffer screen, (mm);is the adjusting angle of the damper adjusting plate, (°).
圖2 清選參數(shù)調(diào)控裝置結(jié)構(gòu)示意圖
Fig.2 Structure diagram of cleaning parameter control device
田間試驗之前,參照國家標(biāo)準(zhǔn)《GB/T5262-2008農(nóng)業(yè)機械試驗條件測定方法的一般規(guī)定》,用1 m2正方框在大豆機收田間試驗區(qū)域選取1 m2大豆,按割茬高度收集1 m2的大豆植株和自然落粒樣本,大豆品種為笨大豆,測量、計算與統(tǒng)計試驗用大豆的特性參數(shù),如表1所示。
表1 大豆特性參數(shù)表
通過實際測量多參數(shù)可調(diào)可測式清選系統(tǒng)機具和前期大豆機收田間試驗研究,確定大豆機收清選作業(yè)參數(shù)優(yōu)化田間試驗的收獲機部分裝置作業(yè)參數(shù)[28-29],如表2所示。
表2 試驗機具參數(shù)表
試驗時間為2019年10月19日-2019年10月22日,試驗地點為山東省臨沂市河?xùn)|區(qū)大豆試驗基地。試驗前,在清選雜余排出口捆綁清選損失接料袋用于收集每組試驗的清選損失樣本,用采集袋在糧箱入糧口處采集每組試驗的含雜樣本。參照國家標(biāo)準(zhǔn)《GB/T8097-2008收獲機械聯(lián)合收割機試驗方法》和行業(yè)標(biāo)準(zhǔn)《JB/T11912-2014大豆收割機》設(shè)定每組試驗的作業(yè)長度為25 m,每組試驗重復(fù)3次且清選損失樣本和含雜樣本各取樣3次,按試驗數(shù)據(jù)計算方法處理樣本,求平均值后得出每組試驗的清選損失率與含雜率。按照試驗序號依次完成大豆機收清選參數(shù)優(yōu)化田間試驗,試驗過程如圖3所示。
圖3 試驗過程圖
1)參照行業(yè)標(biāo)準(zhǔn)《JB/T11912-2014大豆收割機》,用式(1)計算喂入量。
式中為喂入量,kg/s;為每組試驗喂入大豆植株量,g;為每組試驗作業(yè)時間,s;為1 m2大豆植株量,g/m2;為割幅,m;為作業(yè)距離,m;為作業(yè)速度,km/h。
2)先計算1 m2清選損失量與1 m2剩余損失量的和,再減去1 m2自然落粒量,可得1 m2大豆損失量,參考國家標(biāo)準(zhǔn)《JB/T11912-2014大豆收割機》確定清選損失率和含雜率的測量與計算方法。
用式(2)計算每組試驗的清選損失率。
式中P為清選損失率,%;W為1 m2清選損失量,g;W為1 m2大豆損失量,g;W為1 m2大豆收獲量,g。
用式(3)計算含雜率。
式中P為含雜率,%;W為含雜樣本質(zhì)量,g;W為雜質(zhì)清除后的樣本質(zhì)量,g。
按試驗指標(biāo)計算方法完成大豆機收清選作業(yè)參數(shù)優(yōu)化田間試驗的喂入量、清選損失率和含雜率的計算統(tǒng)計。根據(jù)表1中大豆特性參數(shù)、大豆機收脫?;旌衔锴暹x特性以及各成分漂浮系數(shù)和該大豆品種籽粒三軸尺寸(0.28 mm×0.25 mm×0.30 mm),為確保清選裝置作業(yè)時大豆籽粒落入集糧攪龍且雜質(zhì)被吹出機外以及大喂入量條件下作業(yè),選取魚鱗篩篩片開度中間值為28 mm、風(fēng)門開度中間值為9°、風(fēng)機轉(zhuǎn)速中間值為1 400 r/min、振動篩曲柄轉(zhuǎn)速中間值為400 r/min和作業(yè)速度中間值為4 km/h。因為魚鱗篩篩片開度的調(diào)節(jié)范圍是23~33 mm、風(fēng)門開度調(diào)節(jié)范圍是9°~18°和作業(yè)速度的調(diào)節(jié)范圍是2~6 km/h,結(jié)合文獻(xiàn)[28]和文獻(xiàn)[29]中的清選參數(shù)水平,根據(jù)5個清選作業(yè)參數(shù)的調(diào)控精度與調(diào)節(jié)范圍[36-38]確定本次試驗5個清選參數(shù)的水平,如表3所示。響應(yīng)面試驗設(shè)計表以及清選損失率與含雜率的數(shù)據(jù)統(tǒng)計如表4所示。將表4中5個清選參數(shù)處于0水平時的清選指標(biāo)單獨列表,計算此時清選損失率和含雜率的平均值分別為0.30%和2.70%,兩者的極差分別為0.31%和4.09%,即兩者的數(shù)值變動范圍均較大,是因為大豆機收田間試驗時會受到試驗區(qū)域自然落粒不均勻、大豆植株夾帶雜草、豆粒含水率不均勻、機外風(fēng)速不穩(wěn)定、地面情況、作業(yè)環(huán)境和天氣狀況等外界因素的影響,但不影響響應(yīng)面試驗的整體數(shù)據(jù)分析,且對后面的研究工作有很大參考價值,數(shù)據(jù)統(tǒng)計如表5所示。
表3 清選參數(shù)水平表
表4 響應(yīng)面試驗數(shù)據(jù)統(tǒng)計表
表5 清選損失率方差分析表
3.1.1 清選損失率回歸模型建立與顯著性檢驗
根據(jù)表4試驗數(shù)據(jù),對清選損失率進(jìn)行方差分析,結(jié)果如表5所示。值用于分析對象顯著性,≤0.01表示響應(yīng)模型極顯著,0.01<≤0.05表示響應(yīng)模型較為顯著,>0.05表示響應(yīng)模型不顯著[39-41]。得到清選損失率的回歸方程為
P=0.32?0.041?0.056+0.043+0.051+
0.133+0.005?0.015+0.013?0.04?
0.018+0.013?0.07+0.058+
0.105+0.113?0.0512?0.0362+
0.0142?0.0572+0.0322(4)
式中為作業(yè)速度;為魚鱗篩篩片開度;為風(fēng)門開度;為風(fēng)機轉(zhuǎn)速;為振動篩曲柄轉(zhuǎn)速。
由表5可知,清選損失率模型的值為0.009 6小于0.01,表明建立的清選損失率回歸模型極其顯著,模型的決定系數(shù)R=0.684 8,表明該回歸模型能反映出68.48%的響應(yīng)值變化,說明得到的線性回歸方程擬合效果較好。在該回歸模型中,項的值小于0.01,表示在置信區(qū)間99%范圍內(nèi),對清選損失率回歸模型的影響極其顯著。其余各項的值均大于0.05,表示對清選損失率回歸模型的影響均不顯著。
3.1.2 各參數(shù)對清選損失率的貢獻(xiàn)率
貢獻(xiàn)率?能反映出單個參數(shù)對所建立回歸模型的影響程度,?越大,影響程度就越大[39-41],?計算公式如下:
式中為方差分析的值;為考核值;Δ為貢獻(xiàn)率;δ第個參數(shù)一次項的貢獻(xiàn)率;δ為第個參數(shù)二次項的貢獻(xiàn)率;δ為第個參數(shù)與其他參數(shù)交互作用的貢獻(xiàn)率。
根據(jù)公式(5)和公式(6)計算各參數(shù)對清選損失率的貢獻(xiàn)率,如表6所示。根據(jù)表6的數(shù)據(jù)可知,清選參數(shù)對清選損失率貢獻(xiàn)率的大小排序為:振動篩曲柄轉(zhuǎn)速、風(fēng)機轉(zhuǎn)速、作業(yè)速度、風(fēng)門開度、魚鱗篩篩片開度。
表6 各參數(shù)對清選損失率的貢獻(xiàn)率表
3.1.3 各參數(shù)對清選損失率的響應(yīng)效應(yīng)分析
由表5數(shù)據(jù)得出,振動篩曲柄轉(zhuǎn)速對清選損失率影響顯著。作業(yè)速度、魚鱗篩篩片開度、風(fēng)門開度和風(fēng)機轉(zhuǎn)速對清選損失率影響不顯著,故列為非顯著項排除分析,只進(jìn)行顯著項與清選損失率的響應(yīng)效應(yīng)分析?,F(xiàn)對振動篩曲柄轉(zhuǎn)速與清選損失率的響應(yīng)效應(yīng)進(jìn)行分析,由圖4看出,振動篩曲柄轉(zhuǎn)速對清選損失率的影響趨勢是增加,隨著振動篩曲柄轉(zhuǎn)速增大,清選損失率隨之變大且變化明顯,是因為振動篩曲柄轉(zhuǎn)速決定振動篩振動頻率,振動篩曲柄轉(zhuǎn)速增大會使大豆脫?;旌衔锸艿秸駝雍Y向后往復(fù)運動的推動作用頻率加快,單位時間內(nèi)大豆脫?;旌衔锱懦銮暹x室的籽粒量增大,清選損失率隨之變大。
3.2.1 含雜率回歸模型建立與顯著性檢驗
根據(jù)表4試驗數(shù)據(jù),對含雜率進(jìn)行方差分析,結(jié)果如表7所示。得到含雜率的回歸方程為
P=2.697+0.334+1.467?1.269+0.218+
0.009375?0.598+1.173+1.725?
0.648?3.405+2.315+0.853?
0.448+0.3+0.373?0.402+1.9092+
0.5752+1.222?0.912(7)
圖4 振動篩曲柄轉(zhuǎn)速對清選損失率的響應(yīng)曲面分析圖
表7 含雜率方差分析表
由表7可知,含雜率模型的值為0.010 1小于0.05,表明建立的含雜率回歸模型較顯著,模型的決定系數(shù)2=0.683 2,表明該回歸模型能反映出68.32%的響應(yīng)值變化,說明得到的線性回歸方程擬合效果較好。在該回歸模型中,和項的值小于0.01,表示在置信區(qū)間99%范圍內(nèi)對含雜率回歸模型的影響極其顯著,、和2項的值大于0.01且小于0.05,表示在置信區(qū)間95%范圍內(nèi)對含雜率回歸模型的影響較顯著。其余各項的值均大于0.05,表示對建立的含雜率回歸模型影響均不顯著。
3.2.2 各參數(shù)對含雜率的貢獻(xiàn)率
利用公式(5)和公式(6)計算各參數(shù)對含雜率的貢獻(xiàn)率,如表8所示。根據(jù)表8的數(shù)據(jù)可知,清選參數(shù)對含雜率貢獻(xiàn)率的大小排序為:魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速、作業(yè)速度、振動篩曲柄轉(zhuǎn)速。
表9 各參數(shù)對含雜率的貢獻(xiàn)率表
3.2.3 各參數(shù)對含雜率的響應(yīng)效應(yīng)分析
由表7數(shù)據(jù)得出,魚鱗篩篩片開度與風(fēng)門開度對含雜率的影響顯著,作業(yè)速度、風(fēng)機轉(zhuǎn)速和振動篩曲柄轉(zhuǎn)速對含雜率的影響不顯著,故列為非顯著項排除,只進(jìn)行顯著項與含雜率的響應(yīng)效應(yīng)分析。先對魚鱗篩篩片開度與含雜率的響應(yīng)效應(yīng)進(jìn)行分析:圖5a、5d和5e顯示魚鱗篩篩片開度對含雜率影響趨勢是先減少后增加,圖5c顯示魚鱗篩篩片開度對含雜率影響趨勢是增加,綜合4個響應(yīng)曲面變化趨勢,魚鱗篩篩片開度對含雜率的影響極其顯著且存在較顯著的二次作用,魚鱗篩篩片開度與風(fēng)門開度存在極其顯著的交互作用,魚鱗篩篩片開度與風(fēng)機轉(zhuǎn)速存在較顯著的交互作用,是因為魚鱗篩篩片開度變化會改變魚鱗篩相鄰平行篩片間距,對單位時間內(nèi)大豆脫粒混合物透篩量以及大豆籽粒與雜質(zhì)的分離量影響極大,對清選損失率影響極大。對風(fēng)門開度與含雜率的響應(yīng)效應(yīng)進(jìn)行分析,圖5b顯示風(fēng)門開度對含雜率影響趨勢是減少,圖5c顯示風(fēng)門開度對含雜率影響趨勢是增加,圖5f和5g顯示風(fēng)門開度對含雜率無顯著變化,綜合4個響應(yīng)曲面變化趨勢,風(fēng)門開度對含雜率的影響較為顯著且風(fēng)門開度與魚鱗篩篩片開度極其顯著的交互作用,是因為風(fēng)門開度決定風(fēng)機進(jìn)風(fēng)口面積進(jìn)而決定清選室內(nèi)風(fēng)場風(fēng)量分布情況,風(fēng)門開度的變化會使清選室內(nèi)大豆脫?;旌衔锸艿降娘L(fēng)場作用力隨之變化,單位時間內(nèi)大豆脫粒混合物中大豆籽粒與雜質(zhì)的分離量變化且雜質(zhì)吹出量也隨之變化,對含雜率影響較大。
圖5 魚鱗篩篩片開度與風(fēng)門開度對含雜率的響應(yīng)曲面分析圖
3.3.1 清選參數(shù)優(yōu)化
因大豆機收時清選作業(yè)要求是清選損失率和含雜率越小越好,所以,清選損失率和含雜率是偏小型指標(biāo)。為提高大豆機收清選作業(yè)效率,在清選指標(biāo)最小的前提下要求喂入量越大越好,在大豆種植條件、割臺割幅以及其余收獲機部件作業(yè)參數(shù)不變的條件下,作業(yè)速度決定喂入量,因此提高大豆機收清選效率要求作業(yè)速度越大越好。5個清選參數(shù)均在水平范圍內(nèi)取值,由此可確定約束條件為作業(yè)速度最大、清選損失率最小和含雜率最小。根據(jù)約束條件建立大豆機收清選參數(shù)組合優(yōu)化模型為
因為Design Expert 10.0軟件本身具備約束條件優(yōu)化求解功能,運用該軟件在清選參數(shù)水平范圍內(nèi)求解出滿足約束條件最大喂入量、最小清選損失率和最小含雜率時的大豆機收最佳清選參數(shù)組合為作業(yè)速度6.000 km/h、魚鱗篩篩片開度31.662 mm、風(fēng)門開度16.611°、風(fēng)機轉(zhuǎn)速1 309.834 r/min和振動篩曲柄轉(zhuǎn)速411.128 r/min,此時清選損失率為0.050%,含雜率為0.497%。
3.3.2 大豆機收最佳清選參數(shù)組合試驗驗證
為驗證大豆機收清選參數(shù)組合優(yōu)化模型的可靠性,根據(jù)求解出的大豆機收最佳清選參數(shù)組合,在同一個大豆試驗區(qū)域進(jìn)行了大豆機收最佳清選參數(shù)組合田間驗證試驗。因多參數(shù)可調(diào)可測式清選系統(tǒng)的5個清選參數(shù)在水平范圍內(nèi)均可實現(xiàn)無級調(diào)控,但清選參數(shù)設(shè)定精確到小數(shù)點后1位數(shù)難以實現(xiàn),故將最接近的1組清選參數(shù)組合調(diào)整為大豆機收最佳清選參數(shù)組合:作業(yè)速度6 km/h、魚鱗篩篩片開度32 mm、風(fēng)門開度17°、風(fēng)機轉(zhuǎn)速1 310 r/min和振動篩曲柄轉(zhuǎn)速410 r/min。按表2中的試驗機具參數(shù)和最佳清選參數(shù)組合共完成3次大豆機收田間驗證試驗,計算3組田間驗證試驗的清選損失率和含雜率,平均值分別為0.25%和0.61%,如表9所示。用表9中的清選指標(biāo)與3.3.1節(jié)中的優(yōu)化結(jié)果進(jìn)行差的絕對值計算,得出清選損失率與含雜率的相對誤差分別為0.250%和0.113%,清選指標(biāo)相對誤差較小。
表9 大豆機收最佳清選參數(shù)組合驗證試驗數(shù)據(jù)表
5個清選參數(shù)的0水平值是多參數(shù)可調(diào)可測式清選系統(tǒng)對應(yīng)型號的聯(lián)合收獲機進(jìn)行大豆田間收獲時的常用清選作業(yè)參數(shù)。用表9中清選指標(biāo)的平均值減去0水平清選指標(biāo)的平均值,以差的正負(fù)代表清選指標(biāo)升高或下降,得出大豆機收最佳清選參數(shù)組合田間驗證試驗的清選損失率下降了0.05%,含雜率下降了2.09%。由文獻(xiàn)[10]可知,大豆機收損失主要是割臺損失,其次是夾帶損失和未脫凈損失,最后是清選損失,故清選損失占比較小,清選損失率數(shù)值及極差較??;由文獻(xiàn)[17]可知,含雜率、總損失率和破碎率是衡量收獲機工作性能的3大指標(biāo),含雜率數(shù)值及極差較大。5個清選參數(shù)均處于0水平時清選損失率極差小于含雜率極差,符合上述分析情況,故優(yōu)化后清選損失率的下降幅度小于優(yōu)化后含雜率的下降幅度。本研究結(jié)果為大豆聯(lián)合收獲機田間作業(yè)時清選參數(shù)的設(shè)定與調(diào)控提供參考。
1)應(yīng)用田間試驗法,完成大豆機收清選參數(shù)優(yōu)化田間試驗,用Design Expert軟件分析試驗數(shù)據(jù)得出大豆聯(lián)合收獲機田間作業(yè)時作業(yè)速度、魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速和振動篩曲柄轉(zhuǎn)速對大豆機收清選指標(biāo)的影響順序:清選參數(shù)對清選損失率影響排序為振動篩曲柄轉(zhuǎn)速、風(fēng)機轉(zhuǎn)速、作業(yè)速度、風(fēng)門開度、魚鱗篩篩片開度,清選參數(shù)對含雜率影響排序為魚鱗篩篩片開度、風(fēng)門開度、風(fēng)機轉(zhuǎn)速、作業(yè)速度、振動篩曲柄轉(zhuǎn)速。通過分析各參數(shù)與清選指標(biāo)的響應(yīng)曲面圖,得出顯著項清選參數(shù)對清選指標(biāo)的響應(yīng)效應(yīng)。本文得出的5個清選參數(shù)對大豆機收清選指標(biāo)的影響規(guī)律可為大豆聯(lián)合收獲機田間作業(yè)清選參數(shù)的適時與精確調(diào)控和自適應(yīng)清選系統(tǒng)調(diào)控策略的研發(fā)提供理論指導(dǎo)。
2)建立了大豆機收清選參數(shù)組合優(yōu)化模型,應(yīng)用Design Expert 10.0軟件自帶的約束條件優(yōu)化求解功能,得出作業(yè)速度偏大、清選損失率偏小和含雜率偏小時大豆機收最佳清選參數(shù)組合為作業(yè)速度6 km/h、魚鱗篩篩片開度32 mm、風(fēng)門開度17°、風(fēng)機轉(zhuǎn)速1 310 r/min和振動篩曲柄轉(zhuǎn)速410 r/min。利用多參數(shù)可調(diào)可測式清選系統(tǒng)進(jìn)行了大豆機收最佳清選參數(shù)組合的田間驗證試驗,此時清選指標(biāo)為清選損失率0.25%和含雜率0.61%,與常用清選參數(shù)條件下大豆聯(lián)合收獲機田間試驗的清選指標(biāo)進(jìn)行對比分析,清選損失率下降了0.05%,含雜率下降了2.09%。本文預(yù)測出的大豆機收最佳清選參數(shù)組合可為大豆機收時清選參數(shù)設(shè)定與田間作業(yè)參數(shù)優(yōu)化提供實際參考。
[1]徐立章,李洋,李耀明,等. 谷物聯(lián)合收獲機清選技術(shù)與裝置研究進(jìn)展[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(10):1-16.
Xu Lizhang, Li Yang, Li Yaoming, et al. Research progress on cleaning technology and equipment of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 1-16. (in Chinese with English abstract)
[2]寧新杰,金誠謙,印祥,等. 谷物聯(lián)合收割機風(fēng)篩式清選裝置研究現(xiàn)狀與發(fā)展趨勢[J]. 中國農(nóng)機化學(xué)報,2018,39(9):5-10.
Ning Xinjie, Jin Chengqian, Yin Xiang, et al. Research status and development trend of air screen cleaning device for grain combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 5-10. (in Chinese with English abstract)
[3]蘇天生,韓增德,崔俊偉,等. 谷物聯(lián)合收割機清選裝置研究現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)機化研究,2016,38(2):6-11.
Su Tiansheng, Han zengde, Cui Junwei, et al. Research status and development trend of grain combine cleaning device [J]. Journal of Agricultural Mechanization Research, 2016, 38(2): 6-11. (in Chinese with English abstract)
[4]湯慶,吳崇友,王素珍,等. 谷物清選裝置研究現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)機化研究,2013,35(12):225-228.
Tang Qing, Wu Chongyou, Wang Suzhen, et al. Research status and development trend of grain cleaning device[J]. Journal of Agricultural Mechanization Research, 2013, 35(12): 225-228. (in Chinese with English abstract)
[5]朱鵬飛. 谷物風(fēng)篩清選仿真研究及關(guān)鍵參數(shù)優(yōu)化設(shè)計[D].杭州:浙江大學(xué),2019.
Zhu Pengfei. Simulation Study and Optimization Design of Key Parameters of Grain Air Screen Cleaning[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[6]陳慶文,韓增德,崔俊偉,等. 自走式谷物聯(lián)合收割機發(fā)展現(xiàn)狀及趨勢分析[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2015,17(1):109-114.
Chen Qingwen, Han Zengde, Cui Junwei, et al. Analysis of development status and trend of self-propelled grain combine[J]. Journal of Agricultural Science and Technology, 2015, 17(1): 109-114. (in Chinese with English abstract)
[7]梁振偉. 多風(fēng)道清選裝置設(shè)計方法及清選損失監(jiān)測與控制技術(shù)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2018.
Liang Zhenwei. Research on Design Method and Cleaning Loss Monitoring and Control Technology of Multi Air Cleaning Device[D]. Zhenjiang: Jiangsu University, 2018. (in Chinese with English abstract)
[8]梁振偉,李耀明,馬培培,等. 縱軸流聯(lián)合收獲機清選裝置結(jié)構(gòu)優(yōu)化與試驗[J]. 農(nóng)機化研究,2018,40(5):170-174.
Liang Zhenwei, Li Yaoming, Ma Peipei, et al. Structural optimization and test of cleaning device of vertical axial flow combine harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 170-174. (in Chinese with English abstract)
[9]司增永,李耀明,唐忠,等. 橫置多滾筒聯(lián)合收獲機清選裝置參數(shù)優(yōu)化與試驗[J]. 農(nóng)機化研究,2018,40(7):185-189,205.
Si Zengyong, Li Yaoming, Tang Zhong, et al. Parameter optimization and test of cleaning device of transverse multi drum combine harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(7): 185-189, 205. (in Chinese with English abstract)
[10]司增永. 多滾筒聯(lián)合收獲機清選裝置設(shè)計與試驗[D]. 鎮(zhèn)江:江蘇大學(xué),2017.
Si Zengyong. Design and Test of Cleaning Device for Multi Drum Combine Harvester [D]. Zhenjiang: Jiangsu University, 2017. (in Chinese with English abstract)
[11]鐘挺,胡志超,顧峰瑋,等. 4LZ-1.0Q型稻麥聯(lián)合收獲機脫粒清選部件試驗與優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(10):76-81.
Zhong Ting, Hu Zhichao, Gu Fengwei, et al. Test and optimization of threshing and cleaning components of 4lz-1.0q rice wheat combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 76-81. (in Chinese with English abstract)
[12]鐘挺,胡志超,顧峰瑋,等. 輕簡型全喂入稻麥聯(lián)合收獲清選裝置分析及設(shè)計要點探析[J]. 中國農(nóng)機化,2012(6):67-70,77.
Zhong Ting, Hu Zhichao, Gu Fengwei, et al. Analysis and design of light and simple all feed rice wheat combined harvest cleaning device[J]. Journal of Chinese Agricultural Mechanization, 2012(6): 67-70, 77. (in Chinese with English abstract)
[13]師清翔,馬萌,閆衛(wèi)紅,等. 雙揚谷器旋風(fēng)分離清選系統(tǒng)試驗與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(11):124-128.
Shi Qingxiang, Ma Meng, Yan Weihong, et al. Test and parameter optimization of cyclone separation and cleaning system with double lift trough[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 124-128. (in Chinese with English abstract)
[14]師清翔,張曉博,耿令新,等. 微型谷物聯(lián)合收割機清選系統(tǒng)試驗[J]. 河南科技大學(xué)學(xué)報:自然科學(xué)版,2015,36(5):82-86,89.
Shi Qingxiang, Zhang Xiaobo, Geng Lingxin, et al. Experiment on cleaning system of minigrain combine harvester[J]. Journal of Henan University of Science and Technology: Natural Science, 2015, 36(5): 82-86, 89. (in Chinese with English abstract)
[15]王立軍,段良坤,鄭招輝,等. 三移動兩轉(zhuǎn)動振動篩驅(qū)動機構(gòu)優(yōu)化與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(6):138-145.
Wang Lijun, Duan Liangkun, Zheng Zhaohui, et al. Optimization and test of driving mechanism of three moving and two rotating vibrating screen[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 138-145. (in Chinese with English abstract)
[16]王立軍,馮鑫,武振超,等. 玉米聯(lián)合收獲機貫流風(fēng)階梯式振動篩設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(10):115-123.
Wang Lijun, Feng Xin, Wu Zhenchao, et al. Design and test of cross flow stepped vibrating screen for corn combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 115-123. (in Chinese with English abstract)
[17]王立軍,李瑞,于泳濤,等. 玉米籽粒收獲機雙層不平行振動篩設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(7):130-139.
Wang Lijun, Li Rui, Yu Yongtao, et al. Design and test of double layer non parallel vibrating screen for corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 130-139. (in Chinese with English abstract)
[18]程超,付君,郝付平,等. 清選篩運動參數(shù)對玉米芯軸堵篩規(guī)律的影響[J]. 吉林大學(xué)學(xué)報:工學(xué)版,2020,50(1):351-360.
Cheng Chao, Fu Jun, Hao Fuping, et al. The influence of the motion parameters of the cleaning screen on the plugging rule of corn cob[J]. Journal of Jilin University: Engineering and Technology Edition, 2020, 50(1): 351-360. (in Chinese with English abstract)
[19]程超,付君,陳志,等. 玉米籽粒收獲機清選裝置參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(7):151-158.
Cheng Chao, Fu Jun, Chen Zhi, et al. Parameter optimization test of cleaning device of corn harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 151-158. (in Chinese with English abstract)
[20]樊晨龍,崔濤,張東興,等. 縱軸流聯(lián)合收獲機雙層異向清選裝置設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(S1):239-248.
Fan Chenlong, Cui Tao, Zhang Dongxing, et al. Design and test of double-layer and different direction cleaning device of longitudinal axial flow combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 239-248. (in Chinese with English abstract)
[21]張敏,金誠謙,梁蘇寧,等. 風(fēng)篩選式油菜聯(lián)合收割機清選機構(gòu)參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(24):8-15.
Zhang Min, Jin Chengqian, Liang Suning, et al. Parameter optimization and test of cleaning mechanism of wind screened rape combine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 8-15. (in Chinese with English abstract)
[22]金誠謙,郭飛揚,徐金山,等. 大豆聯(lián)合收獲機作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(13):10-22.
Jin Chengqian, Guo Feiyang, Xu Jinshan, et al. Optimization of operation parameters of soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 10-22. (in Chinese with English abstract)
[23]金誠謙. 大豆收獲機脫粒分離裝置參數(shù)優(yōu)化與試驗[C]// 中國作物學(xué)會大豆專業(yè)委員會.第十屆全國大豆學(xué)術(shù)討論會論文摘要集,2017:174.
[24]劉鵬,金誠謙,印祥,等. 大豆聯(lián)合收獲機清選裝置與關(guān)鍵技術(shù)研究進(jìn)展[J]. 浙江農(nóng)業(yè)學(xué)報,2019,31(10):1758-1766.
Liu Peng, Jin Chengqian, Yin Xiang, et al. Research progress on cleaning device and key technology of soybean combine harvester[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1758-1766. (in Chinese with English abstract)
[25]耿令新,張利娟,師清翔,等. 便攜式谷物聯(lián)合收獲機錐頂蝸殼式旋風(fēng)分離清選系統(tǒng)參數(shù)優(yōu)化[J]. 中國農(nóng)機化學(xué)報,2013,34(4):146-149,133.
Geng Lingxin, Zhang Lijuan, Shi Qingxiang, et al. Optimization of parameters of conical top volute type cyclone separation and cleaning system of portable grain combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 146-149, 133. (in Chinese with English abstract)
[26]宮云濤. 大豆收獲機發(fā)展研究[J]. 農(nóng)業(yè)科技與裝備,2013(2):61-62.
Gong Yuntao. Research on the development of soybean harvester[J]. Agricultural Science & Technology and Equipment, 2013(2): 61-62. (in Chinese with English abstract)
[27]劉基,金誠謙,梁蘇寧,等. 大豆機械收獲損失的研究現(xiàn)狀[J]. 農(nóng)機化研究,2017,39(7):1-9,15.
Liu Ji, Jin Chengqian, Liang Suning, et al. Research status of soybean mechanical harvest loss[J]. Journal of Agricultural Mechanization Research, 2017, 39(7): 1-9, 15. (in Chinese with English abstract)
[28]趙學(xué)觀,徐麗明,高連興,等. 基于Fluent的大豆脫粒機旋風(fēng)分離器模擬與優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(S1):80-87.
Zhao Xueguan, Xu liming, Gao Lianxing, et al. Simulation and optimization of cyclone separator of soybean thresher based on fluent[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(S1): 80-87. (in Chinese with English abstract)
[29]高劍. 大豆機械收獲技術(shù)[J]. 農(nóng)業(yè)開發(fā)與裝備,2019(3):155.
Gao Jian. Soybean mechanical harvesting technology[J]. Agricultural Development & Equipments, 2019(3): 155. (in Chinese with English abstract)
[30]于昭洋,胡志超,曹明珠,等. 切流式花生全喂入聯(lián)合收獲機清選機構(gòu)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):29-37.
Yu Zhaoyang, Hu Zhichao, Cao Mingzhu, et al. Design of cleaning mechanism of cutting flow type peanut full feed combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 29-37. (in Chinese with English abstract)
[31]王建楠,劉敏基,胡志超,等. 花生種子帶式清選設(shè)備關(guān)鍵作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):33-41.
Wang Jiannan, Liu Minji, Hu Zhichao, et al. Optimization of key operation parameters of peanut seed belt cleaning equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 33-41. (in Chinese with English abstract)
[32]李洋,徐立章,周鎣,等. 脫出物喂入量對多風(fēng)道清選裝置內(nèi)部氣流場的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(12):48-55.
Li Yang, Xu Lizhang, Zhou Ying, et al. The influence of the feed amount of the effluent on the internal airflow field of the multi-channel cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 48-55. (in Chinese with English abstract)
[33]廖慶喜,萬星宇,李海同,等. 油菜聯(lián)合收獲機旋風(fēng)分離清選系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(14):24-31.
Liao Qingxi, Wan Xingyu, Li Haitong, et al. Design and test of cyclone separation and cleaning system for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 24-31. (in Chinese with English abstract)
[34]任述光,謝方平,王修善,等. 4LZ-0.8型水稻聯(lián)合收割機清選裝置氣固兩相分離作業(yè)機理[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(12):16-22.
Ren Shuguang, Xie Fangping, Wang Xiushan, et al. Operation mechanism of gas-solid two-phase separation in cleaning device of 4lz-0.8 rice combine harvester [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 16-22. (in Chinese with English abstract)
[35]杜小強,肖夢華,胡小欽,等. 貫流式谷物清選裝置氣固兩相流數(shù)值模擬與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(3):27-34.
Du Xiaoqiang, Xiao Menghua, Hu Xiaoqin, et al. Numerical simulation and experiment of gas-solid two-phase flow in tubular grain cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 27-34. (in Chinese with English abstract)
[36]高連興,趙學(xué)觀,楊德旭,等. 大豆脫粒機氣力清選循環(huán)裝置研制與性能試驗[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(24):22-27.
Gao Lianxing, Zhao Xueguan, Yang Dexu, et al. Development and performance test of pneumatic cleaning circulation device of soybean thresher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 22-27. (in Chinese with English abstract)
[37]王揚,呂鳳妍,徐天月,等. 大豆籽粒形狀和尺寸分析及其建模[J]. 吉林大學(xué)學(xué)報:工學(xué)版,2018,48(2):507-517.
Wang Yang, Lü Fengyan, Xu Tianyue, et al. Analysis and modeling of soybean seed shape and size[J]. Journal of Jilin University: Engineering and Technology Edition, 2018, 48(2): 507-517. (in Chinese with English abstract)
[38]張繼成,陳海濤,紀(jì)文藝,等. 大豆脫出物懸浮速度試驗研究[J]. 農(nóng)機化研究,2013,35(4):127-131.
Zhang Jicheng, Chen Haitao, Ji Wenyi, et al. Experimental study on suspension velocity of soybean effluents[J]. Journal of Agricultural Mechanization Research, 2013, 35(4): 127-131. (in Chinese with English abstract)
[39]邱軼兵. 試驗設(shè)計與數(shù)據(jù)處理[M]. 北京:中國科學(xué)技術(shù)大學(xué)出版社,2008.
[40]耿端陽. 新編農(nóng)業(yè)機械學(xué)[M]. 北京:國防工業(yè)出版社,2011.
[41]馬寨璞. 高級生物統(tǒng)計[M]. 北京:科學(xué)出版社,2016.
Optimization of field cleaning parameters of soybean combine harvester
Liu Peng1, Jin Chengqian1,2※, Liu Zheng2, Zhang Guangyue2, Cai Zeyu2, Kang Yan1, Yin Xiang1
(1.,255000,; 2.,210014,)
At present, there are few studies on the influence of the cleaning parameters of soybean harvester on the cleaning indexes in China. In order to change the current situation of soybean combine harvester, due to the lack of theoretical guidance for the parameter adjustment of the corresponding cleaning device, the cleaning parameter adjustment is not timely and accurate, resulting in high loss rate and high impurity content of soybean harvester. In this study, the multi parameter adjustable and measurable cleaning system was used to optimize the cleaning parameters of soybean harvester in field test. The influence rules of the five cleaning parameters on the two cleaning indexes were analyzed, and the best cleaning parameter combination was found. The field verification test of the best cleaning parameter combination of soybean harvester was completed. Based on the analysis of the structure of cleaning system and the principle of cleaning operation of soybean harvester, the importance of the operating parameters and operating speed of cleaning device to the cleaning indexes of soybean combine harvester was obtained. The operation speed, opening of chaffer screen, damper opening, fan speed and crank speed of shale shaker were used to optimize the five cleaning parameters in field experiments. Cleaning loss rate and impurity rate were used to optimize the two cleaning indexes of field experiments. Through the analysis of the influence of cleaning device on the indexes of soybean combine harvester, the cleaning loss rate and impurity rate were determined as cleaning indexes, and in the field experiment, the cleaning loss of samples were collected in the form of binding cleaning loss receiving bag at the back of cleaning room to optimize the parameters of cleaning loss in the field experiment. Response surface test design and data analysis are completed by using design expert software. The contribution rate and response effect of each parameter on the two cleaning indexes were analyzed by the contribution rate method and response surface diagram. The results showed that the order of influence of cleaning parameters on cleaning loss rate was crank speed of shale shaker, fan speed, operation speed, damper opening, opening of chaffer screen. The order of influence of cleaning parameters on the impurity rate was opening of chaffer screen, damper opening, fan speed, operation speed, crank speed of shale shaker; The results showed that when the cleaning loss rate was small and the impurity rate was small and the feeding amount was large, the optimal cleaning parameters were operation speed was 6 km/h, opening of chaffer screen was 32 mm, damper opening was 17°, fan speed was 1 310 r/min and crank speed of shale shaker was 410 r/min. At this time, the cleaning loss rate was 0.25%, the impurity rate was 0.61%, and the relative error with the optimized value of the model was 0.250% and 0.113%, respectively. Compared with the cleaning indexes of the field experiment of soybean combine harvester under the common cleaning parameters, the cleaning loss rate was reduced by 0.05%, and the impurity rate was reduced by 2.09%. The results provide a theoretical basis for the setting and adjustment of cleaning parameters and the research and development of self-adaptive cleaning system.
harvester; field test; optimization; soybean harvest; multi parameter adjustable and measurable cleaning system; cleaning parameters; cleaning index; influence rule
劉鵬,金誠謙,劉政,等. 大豆聯(lián)合收獲機田間清選作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(10):35-45.doi:10.11975/j.issn.1002-6819.2020.10.005 http://www.tcsae.org
Liu Peng, Jin Chengqian, Liu Zheng, et al. Optimization of field cleaning parameters of soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 35-45. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.005 http://www.tcsae.org
2020-02-13
2020-04-24
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金項目(CARS-04-PS26);山東省農(nóng)機裝備研發(fā)創(chuàng)新計劃項目(2018YF006);山東省高等學(xué)校優(yōu)勢學(xué)科人才團隊培育計劃項目(2016-2020);中央引導(dǎo)地方科技發(fā)展專項基金項目;山東省科技創(chuàng)新基地專項(SDKL2019014)
劉鵬,博士生,主要從事機械化旱作農(nóng)業(yè)技術(shù)體系及裝備研究。Email:820016001@qq.com
金誠謙,研究員,主要從事大田作物收獲機械化與智能化技術(shù)研究。Email:412114402@qq.com
10.11975/j.issn.1002-6819.2020.10.005
S225.6
A
1002-6819(2020)-10-0035-11