• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel approach for active vibration control of a flexible missile

    2020-07-02 03:18:00ChenglongPnJiliRongTinfuXulinXing
    Defence Technology 2020年4期

    Cheng-long Pn , Ji-li Rong ,*, Tin-fu Xu , D-lin Xing

    a School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

    b Norinco Group Aviation Ammunition Research Institute, Harbin 150030, China

    c Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

    Keywords:Flexible missile PID controller Active dynamic vibration absorber Genetic algorithms

    ABSTRACT This paper investigates the feasibility of using an active dynamic vibration absorber (ADVA) for active vibration control of a flexible missile system through simulation. Based on the principles of a dynamic vibration absorber (DVA), a ring-type ADVA is first designed to attenuate the elastic vibration of the flexible missile, and the design of the active controller adopts the proportional-integral-derivative (PID)control algorithm. The motion equations of a flexible missile with an ADVA, which is subjected to follower thrust at its aft end, are derived using the Lagrangian approach. Taking the minimum of the root mean square(RMS)of the lateral displacement response of the center of mass as the objective function,a genetic algorithm (GA) is used to optimize the parameter of the DVA and PID controller. The numerical calculations show that the ADVA and DVA are effective in suppressing the vibration and provide approximately 41.2%and 17.6%improvement,respectively,compared with the case of no DVA.The ADVA has better performance than the DVA. When the missile is subjected to follower thrust, the effect of vibration reduction is more effective than the case without follower thrust. It is feasible to reduce vibration and improve the stability of flexible missiles by means of the ADVA.

    1. Introduction

    To achieve the tactical and technical requirements of long range,high precision and high maneuverability, missiles are slender and long.The use of a light composite material and a thin wall structure impart these missiles obvious with prominent elasticity. The rigid body model does not satisfy the needs of technology development.Beal [1] investigated the stability of a flexible missile under constant and pulsating aft thrusts and then analyzed the influence of the control system on the critical thrust. Platus [2] idealized an elastic missile as a simple beam model and derived the equations of motion and the aeroelastic stability equation of a flexible spinning missile. Xie et al. [3,4] derived the aeroelastic equation of a nonspinning and nonuniform beam under follower thrust. The transverse vibration, dynamic stability and flutter characteristics of a flexible missile with constant thrust are discussed. Li et al. [5]calculated the trajectory and vibration characteristics of a spinning flexible launch vehicle. Xu and Rong et al. [6,7] considered the effects of spin, thrust, and aeroelasticity to idealize an elastic spinning missile as an unconstrained flexible rotor model and analyzed the stability and dynamic response of the flexible spinning missile under thrust. Shi et al. [8,9] investigated whether aeroelasticity affects the dynamic stability of the coning motion of a spinning missile. Hua et al. [10] investigated the effect of elastic deformation on flight dynamics.These studies mainly analyzed the stability of flexible missiles without vibration control.

    A flexible missile undergoes elastic vibration disturbed by aerodynamic force, inertia force, elastic force and follower thrust.Elastic vibration brings additional deformation of the structure,which is the feedback signal to the closed loop, resulting in an aeroservoelastic problem.The aeroservoelastic problem has a great influence on the stability of the flexible missile. The effective suppression of structural vibration becomes vital for the stability of flexible missiles.Vibration reduction control of flexible missiles has attracted the attention of many scholars.Passive control and active control are the most popular control strategies to suppress the vibration of flexible missiles. Passive control mainly uses a notch filter [11-15], and the zero point of the filter is used to cancel the high-frequency pole of the control object. The notch filter reduces the influence of elastic vibration on the control system by filtering noise rather than attenuating elastic vibration. Compared with passive control, active control has good adaptability in complex environments. Active control applies a control force, which is generated by a steering gear, vectored nozzle and piezoelectric actuators, to quickly suppress the vibration. Moreover, some advanced control theories, such as robust control [16-18] and variable structure control[19],have been investigated for the active control of elastic missiles.Liu et al.[20]put forward three attitude control schemes based on passive control, active control and compound control.

    The dynamic vibration absorber (DVA) is a well-established vibration control device that is extensively utilized for its excellent performance in terms of reliability and low cost to attenuate vibrations in rotor systems[21-25],propulsion shaft systems[26,27],and railway vehicles [28-30] and for suppressing aircraft flutter[31-33]. Ring-type absorbers are widely used for vibration suppression of rotor systems [21-23]. To optimize the parameters of the DVA, the simulated annealing algorithm combined with the particle swarm optimization algorithm [34], H∞and H2optimization[35],and fixed-points theory[36,37]have been proposed.The passive absorber works over a very narrow frequency and becomes inefficient as the frequency shifts; thus, the active dynamic vibration absorber (ADVA)was developed and introduced. The ADVA is achieved using external actuator forces to suppress vibration.Although the ADVA has been researched and applied in many industrial fields,there are no contributions in the literature focusing on the ADVA-based vibration suppression technique for flexible missiles.

    This paper focuses on the active vibration control of a flexible missile using ADVA methodology. Considering the effects of spin and thrust, the equations of motion of a missile with an ADVA are derived based on the Lagrangian approach.A ring-type ADVA based on proportional-integral-derivative (PID) control is designed to suppress the inevitable vibration of the missile.With the minimum root mean square(RMS)of the lateral displacement response of the center of mass taken as an objective function, a GA is used to optimize the parameters of the DVA and PID controller. The vibration response of the flexible missile with an ADVA is analyzed through numerical calculations.

    2. Coordinate systems

    In this study,the general motion of a flexible missile is described with three kinds of coordinate system: an earth-fixed coordinate system Axyz, a body-fixed coordinate system Ox1y1z1, and a thin disk coordinate system O′ξηζ, as shown in Fig.1.

    The earth-fixed coordinate system Axyz is the inertia coordinate system.The body-fixed coordinate system Ox1y1z1is defined under mean axis conditions, where point O is instantaneous center of mass of missile; as shown in Fig. 2, ? and ψ are the pitching angle and yaw angle, respectively. The transformation matrix L?ψ from earth-fixed coordinate system to body-fixed coordinate system is

    The coordinate system O′ξηζ is fixed to the thin disk, and the origin of coordinate O′is located in the center section of the thin disk. System rotation around the third axis and second axis is measured as θzand θη′, respectively, as shown in Fig. 3. The transformation matrix Lθη′θzfrom the body-fixed coordinate system to a thin disk coordinate system is

    3. Equations of motion

    As shown in Fig.1,the relationship between the position vectors is TVector is italic

    Fig.1. Coordinate systems of flexible missile.

    Fig. 3. Transformation from body-fixed coordinate system to disk coordinate system.

    where r and r0are the position vector of the thin disk and the missile center of mass in the earth-fixed coordinate system,respectively, and rxand u are the longitudinal position vector and transverse elastic displacement vector of a thin disk in the bodyfixed coordinate system, respectively. In addition, ω0is the rotation angular velocity of the body-fixed coordinate system relative to the earth-fixed coordinate system. The dot above the vector denotes the relative derivative of the vector with respect to time in the respective coordinate system. The vectors in the body-fixed coordinate system are

    3.1. Design of the ADVA

    The configuration of the proposed ring-type ADVA is shown in Fig.4.It is composed of a connection unit,mass unit,stiffness unit and damping unit. The connection unit is the outer ring, which is sheathed on the inner ring of the missile. Vibration and force are imposed on the missile body through the outer ring.There are eight identical sets of springs and dampers in the stiffness and damping units, respectively. Space in the inner ring is available for onboard devices.The finite element model of the flexible missile with ADVA is shown in Fig.5,where m0is the ring mass and k0and c0are the stiffness and damping of the ADVA, respectively. In the figure, the proposed ring-type ADVA is placed at the ith node. Here, uy0and uz0are the vibration displacements,Fz0is the control force,xmis the axial position of the ADVA from the tail of the missile,and d1and d2are the outer diameter and inner diameter,respectively,with d1=300 mm and d2= 290 mm. Finally, N =76 is the number of elements.

    Fig. 4. Schematic of the active dynamic vibration absorber.

    3.2. Kinetic energy, elastic potential energy and dissipative energy

    The kinetic energy of the missile and vibration absorber consists of translational kinetic energy and rotational kinetic energy.

    where lbis the length of the missile; ω=ω0+ωbis the absolute angular velocity, where ωbis the rotation angular velocity of the thin disk coordinate system relative to the body-fixed coordinate system.In addition,djbis the inertia tensor of the thin disk,and the matrix of djbin the thin disk coordinate system is denoted as

    where I is the moment of inertia of the cross section of the thin disk and ρ is the material density. Furthermore, ω0and ωbin the thin disk coordinate system are

    Fig. 5. Finite element model of the missile and active dynamic vibration absorber.

    According to the mean axis conditions [6], the kinetic energies of the missile and vibration absorber are written as

    where A is the cross-sectional area andis the missile mass. In addition,θzand θy(θη′≈θy) are the elastic rotations of the thin disk.

    The elastic deformations of the missile in terms of mode functions and generalized coordinates are as follows.

    where φi(x) and Φ are the ith displacement mode shape and displacement shape matrix,respectively.Assuming that the missile is symmetric, the ith displacement mode shape in the y and z directions is equal to φi(x). In addition, η1i(t) and η2i(t) are the corresponding generalized coordinates,and η1and η2are generalized coordinate vectors.

    In contrast to the Euler-Bernoulli beam model typically used in missile modeling, the Timoshenko beam takes into account the shear effect and rotary inertia.When the slenderness ratio is small,the Timoshenko model can be used[38].In the Timoshenko beam model, the rotation angle is expressed as

    where Ψ is the rotation angle shape matrix.

    Substituting Eqs.(15)and(16)into Eq.(14),the kinetic energy is written as

    where

    The elastic potential energy of a missile and vibration absorber is expressed as

    where EI and κGA are the bending stiffness and shear stiffness,respectively. In addition,, and

    The dissipative energy of the missile structure and vibration absorber is written as

    where c1and c2are damping coefficients. The damping matrix is

    Here,CDin terms of proportional damping is expressed as

    where ωiis the ith natural frequency, μirepresents the bending modal damping,and Miiis a diagonal element of the mass matrix M.

    3.3. Aerodynamic forces and moments

    Using quasisteady theory of the slender beam,the local effective angle of attack α and angle of sideslip β [39,40] are expressed as

    where α0and β0are the angle of attack and sideslip of the rigid missile, respectively, andandare the bending slopes.

    Here, fy(x,t) and fz(x,t) are the aerodynamic load distributions on the vehicle in the y and z directions, respectively.

    where lα(x)and lβ(x)are the lift and side force derivatives per unit length,respectively, and lα(x) = lβ(x).

    The aerodynamic forces are written as

    The virtual work δW due to virtual displacements δη1and δη2is written as

    where the generalized forces are

    The aerodynamic moments are expressed as

    where the coefficients Iiare defined in Appendix A.

    The work of the axial thrust [6] is

    where PNis the axial force.

    The virtual work of the thrust is

    where xPis the axial position of the thrust application point.Here,δuy(xP,t) and δuz(xP,t) are the virtual displacements at the thrust application point,

    The virtual work of the control force of the vibration absorber is

    where Fy0is the control force in the y direction. In addition, δuy0and δuz0are the virtual displacements of the vibration absorber,andandare the virtual displacements at point xm.

    In general, Lagrange’s equation for the generalized coordinates and forces is

    Substituting the kinetic energy in Eq. (17), potential energy in Eq.(20),dissipative energy in Eq.(22),the work of the axial thrust in Eq. (36), and the virtual work in Eq. (38) and Eq. (40) into Lagrange’s equation and defining η1and η2as the generalized coordinates,the elastic vibration equations of the missile are found to be

    According to Lagrange’s equations in the floating coordinate system [41,42], the angular velocity equations are obtained as

    where Mxis the aerodynamic moment of the longitudinal direction of the missile.

    The translational equations are expressed as

    where Fxis the force in the x direction.

    Assuming that vxis taken as a constant, coupling items and higher-order nonlinear terms are ignored. Eqs. (42)-(51)are simplified to obtain the longitudinal equations of motion. The coupled dynamic equations of the rigid body modes and elastic modes can be expressed as

    where x1is the axial distance of the ADVA from the center of mass.

    Eqs. (52)-(55) can be written in state space form as

    where I is the unit matrix;the coefficients of matrix A are defined in Appendix A.

    Fig. 6. PID controller for the flexible missile.

    4. Design of the PID controller

    4.1. PID controller

    The PID controller is the most widely used method in vibration control. Gani et al. [43] and Khot et al. [44] researched the active vibration control of a cantilever beam using a PID controller.Rubio et al.[45]designed a PID controller to decrease the vibration effects of a robotic arm,and Metin et al.[46]controlled vertical rail vehicle vibrations using a parameter adaptive PID controller. A schematic diagram of the PID controller for a flexible missile is shown in Fig.6.GA is used to adjust the three coefficients of PID.The PID controller focuses on the minimization of the control error e = r- y, the control output u is converted into the vibration absorber, and the vibration absorber generates a control force to suppress the vibration of the flexible missile. The control output u is

    where kpis the proportional gain,kiis the derivative gain,and kdis the integral gain.

    4.2. Objective function

    PID tuning is a difficult problem, even though there are only three parameters. GAs [47-49] have been widely used in PID tuning.The RMS of the lateral displacement response of the vehicle is taken as the objective function, whose smallest value serves as a reference for the fittest individuals in the minimization problem.The objective function can be expressed as

    where n is the number of time steps and uz(x,tj) is the lateral displacement response of the missile in the jth time step. The fitness function of the GA is the same as the objective function.

    5. Numerical examples

    To verify the validity of the ADVA,a flexible missile is analyzed.In this section,the parameter of the flexible missile with a fineness ratio of 25 is given as Table 1 and Figs.7-9,λBis the fineness ratio.The first two mode shapes are illustrated in Fig. 10. The lateral aerodynamic coefficient derivative distribution along the longitudinal axis of the missile is shown in Fig.11.

    Fig. 7. Mass distribution of the missile along the longitudinal axis.

    Fig. 8. Rotational inertia distribution of the missile along the longitudinal axis.

    Fig. 9. Stiffness distribution of the missile along the longitudinal axis.

    5.1. Simulation of the ADVA without follower thrust

    The parameters of the DVA and PID controller are obtained by the GA.The parameter settings of the GA are as follows:population size: 100, crossover rate: 0.4, mutation: 0.01, and generation number: 100. The range of the initial population is xm∈[1,76],xm∈N, m0∈[0.1, 10], c0∈[0.1, 400], and k0∈[0.1, 4 × 104]. The optimized parameters of the DVA are xm=76,m0=9.9,c0=399,and k0= 36394. The best position of the DVA is the nose.

    With these fixed DVA parameters, the PID parameters are optimized by the GA.The PID parameter range is kp,ki,kd∈[0,3000],and the optimum values of the PID parameters are kp=2818,ki=2476, and kd= 2999.

    Under three different conditions, namely, without control (no DVA), with passive control (DVA) and with active control (ADVA),the dynamic response without follower thrust is analyzed. The numerical results are shown in Figs. 12-14 and Table 2. The amplitude of the pitch and attack angle with the ADVA decreases gradually;when the settling time is 2 s,the DVA has little effect on the pitch and attack angle, as shown in Fig. 12. The lateral displacement amplitude of the center of mass with the DVA and ADVA is smaller than that of no DVA in Fig.13(a). The ADVA and DVA are effective in suppressing the vibration by approximately 41.2% and 17.6%, respectively, compared with no DVA as shown in Table 2; although the maximum amplitude of the ring position is increased, the settle time is shortened as shown in Fig. 13(b).Compared with the other two configurations, the lateral displacement with the ADVA is the smallest,as shown in Fig.14.

    5.2. Simulation of the ADVA with follower thrust

    The flexible missile in the active stage is affected by follower thrust, which causes axial compression of the body structure, reduces the stiffness of the structure, and changes the vibration characteristics of the system. Therefore, it is necessary to analyze the influence of follower thrust on the vibration characteristics of the flexible missile.

    When the follower thrust is 6×105N,the numerical results are as shown in Figs.15-17 and Table 2.The amplitude of the pitch and attack angle become larger, the settle time becomes longer as shown in Fig. 15, and the lateral displacement amplitude of the center of mass increases as shown in Fig. 16(a). The effect of follower thrust on the elastic vibration is substantial. The ADVA and DVA are effective,suppressing the vibration by approximately 47.6%and 23.8%,respectively,compared with no DVA as shown in Table 2,and the effect of vibration reduction is more effective than that without follower thrust. The amplitude of the ring position increases under thrust as shown in Fig. 16(b) and Table 2. Fig. 17 depicts the change in the control force under different follower thrusts; as the thrust increases, the control force gradually decreases.

    Fig.10. The first two mode shapes of the missile.

    Fig.11. Lateral aerodynamic coefficient derivative distribution along the longitudinal axis of the missile.

    Table 2 The RMS of lateral displacement under different working conditions.

    6. Conclusions

    This paper investigates the feasibility of using an ADVA for active vibration control of a flexible missile system through simulation. A ring-type ADVA based on PID control is first designed to suppress the otherwise inevitable vibration of the missile. The motion equations of the flexible missile with the ADVA are derived based on the Lagrangian approach. DVA and PID controller parameters are obtained by a GA.According to the comparison of the numerical simulation results of the flexible missile, the following conclusions can be drawn:

    1) The DVA is effective in suppressing the vibration,and the ADVA performs better than the DVA.

    Fig.12. Displacement response of the missile at P = 0N.

    Fig.13. Displacement response of the missile at P = 0N.

    Fig.14. Lateral displacement along the longitudinal axis of the missile at t = 4s.

    Fig.15. Displacement response of the missile at P = 6× 105N.

    Fig.16. Displacement response of the missile at P = 6× 105N.

    Fig.17. Control force under different thrusts.

    2) Following thrust exacerbates the elastic vibrations; the amplitude of the pitch and attack angle with follower thrust become larger, the settle time becomes longer, and the vibration reduction effect of the ADVA and DVA is more effective than that without follower thrust.

    3) As the follower thrust increases, the control force gradually decreases.

    Funding

    This work was supported by the National Natural Science Foundation of China (10972033).

    Declaration of competing interest

    The authors declare that there is no conflict of interests regarding the publication of this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China.

    Appendix A

    1. The aerodynamic coefficients and integral coefficients are

    2. Coefficients of matrix A

    激情在线观看视频在线高清| 精品久久久久久成人av| 精品免费久久久久久久清纯| 久久国产乱子伦精品免费另类| 色5月婷婷丁香| 成人特级黄色片久久久久久久| 免费看日本二区| 亚洲欧美日韩卡通动漫| 亚洲成人中文字幕在线播放| 亚洲色图av天堂| 久久国产精品人妻蜜桃| 亚洲国产色片| 九九热线精品视视频播放| 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 国产一区二区在线观看日韩| 亚洲专区国产一区二区| www.熟女人妻精品国产| 青草久久国产| 久久久久久大精品| 婷婷色综合大香蕉| 亚洲成人免费电影在线观看| 中文字幕久久专区| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 男人舔奶头视频| 中文资源天堂在线| 成熟少妇高潮喷水视频| 色播亚洲综合网| 国产免费av片在线观看野外av| 国产精品亚洲一级av第二区| 十八禁国产超污无遮挡网站| 99riav亚洲国产免费| 久久久久久久久久黄片| 一区二区三区高清视频在线| 午夜视频国产福利| 亚洲一区高清亚洲精品| av视频在线观看入口| 久久精品国产亚洲av香蕉五月| 成人特级黄色片久久久久久久| 老司机深夜福利视频在线观看| 精品久久久久久久久久久久久| 简卡轻食公司| 一个人免费在线观看电影| 黄色女人牲交| 大型黄色视频在线免费观看| 内射极品少妇av片p| 国产又黄又爽又无遮挡在线| 美女 人体艺术 gogo| 日韩av在线大香蕉| 一二三四社区在线视频社区8| 国产野战对白在线观看| 国产老妇女一区| 中文字幕av在线有码专区| 欧美另类亚洲清纯唯美| 欧美色视频一区免费| 一级毛片久久久久久久久女| 久久中文看片网| 国产av在哪里看| 小说图片视频综合网站| 人人妻人人看人人澡| 亚洲美女搞黄在线观看 | 动漫黄色视频在线观看| 亚洲午夜理论影院| 乱码一卡2卡4卡精品| 99久久精品国产亚洲精品| 性色avwww在线观看| 久久久精品欧美日韩精品| 久久99热这里只有精品18| 国产高潮美女av| 中文字幕av在线有码专区| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 午夜福利在线观看免费完整高清在 | 18禁黄网站禁片午夜丰满| 亚洲国产精品成人综合色| 色综合站精品国产| 久久婷婷人人爽人人干人人爱| 91字幕亚洲| 国语自产精品视频在线第100页| 免费一级毛片在线播放高清视频| 蜜桃久久精品国产亚洲av| 午夜激情欧美在线| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 一本精品99久久精品77| 无人区码免费观看不卡| 欧美xxxx黑人xx丫x性爽| 午夜福利免费观看在线| 黄色女人牲交| 久久人人精品亚洲av| 精品一区二区三区人妻视频| 黄色配什么色好看| 精品久久久久久久人妻蜜臀av| 欧美国产日韩亚洲一区| 日本黄色片子视频| 亚洲国产色片| 国模一区二区三区四区视频| 少妇裸体淫交视频免费看高清| 免费高清视频大片| 国产伦精品一区二区三区视频9| 国产av在哪里看| 精品一区二区三区人妻视频| 精品福利观看| 欧美日本视频| 亚洲在线自拍视频| 色av中文字幕| 97超级碰碰碰精品色视频在线观看| 久久性视频一级片| 日韩av在线大香蕉| 深爱激情五月婷婷| 亚洲熟妇熟女久久| 高清日韩中文字幕在线| eeuss影院久久| 日本五十路高清| 每晚都被弄得嗷嗷叫到高潮| 在线观看66精品国产| 国产精品乱码一区二三区的特点| 国产精品野战在线观看| 最近最新中文字幕大全电影3| 亚洲avbb在线观看| 夜夜夜夜夜久久久久| 能在线免费观看的黄片| 国产亚洲av嫩草精品影院| 夜夜爽天天搞| 国产伦人伦偷精品视频| 国产一区二区在线av高清观看| 亚洲av.av天堂| 精品国产三级普通话版| 国产午夜精品久久久久久一区二区三区 | 夜夜看夜夜爽夜夜摸| 成年版毛片免费区| 日本熟妇午夜| 色综合婷婷激情| av专区在线播放| 成人美女网站在线观看视频| 尤物成人国产欧美一区二区三区| 中文字幕免费在线视频6| 亚洲第一欧美日韩一区二区三区| 一级黄片播放器| 熟女人妻精品中文字幕| 青草久久国产| 日本一二三区视频观看| 欧美xxxx黑人xx丫x性爽| 免费人成视频x8x8入口观看| 欧美日韩乱码在线| 深爱激情五月婷婷| 国产精品自产拍在线观看55亚洲| 国产国拍精品亚洲av在线观看| 国产精品,欧美在线| 国产欧美日韩一区二区三| 婷婷六月久久综合丁香| 国内揄拍国产精品人妻在线| 97人妻精品一区二区三区麻豆| 午夜免费成人在线视频| 波多野结衣高清无吗| 国产乱人视频| 日韩人妻高清精品专区| 国产精品综合久久久久久久免费| 国产午夜福利久久久久久| 国产极品精品免费视频能看的| 熟女电影av网| 国产精品久久久久久久电影| 欧美日韩综合久久久久久 | 免费黄网站久久成人精品 | 欧美日本亚洲视频在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲 国产 在线| 日韩免费av在线播放| 在线观看av片永久免费下载| 久久精品国产清高在天天线| 性插视频无遮挡在线免费观看| av女优亚洲男人天堂| 丰满人妻一区二区三区视频av| 国产精品爽爽va在线观看网站| 欧美成人a在线观看| 又爽又黄无遮挡网站| 国产成+人综合+亚洲专区| 很黄的视频免费| 免费一级毛片在线播放高清视频| 国产高潮美女av| 亚洲18禁久久av| 成人无遮挡网站| 亚洲国产精品久久男人天堂| 黄色配什么色好看| 美女免费视频网站| 五月玫瑰六月丁香| 午夜精品在线福利| 国产 一区 欧美 日韩| 身体一侧抽搐| 天堂动漫精品| 99国产综合亚洲精品| 亚洲av免费高清在线观看| 久久久国产成人免费| 亚洲乱码一区二区免费版| 2021天堂中文幕一二区在线观| 亚洲欧美日韩无卡精品| 18禁黄网站禁片免费观看直播| 少妇丰满av| 久久99热这里只有精品18| 国产精品一及| 亚洲精品色激情综合| 有码 亚洲区| 欧美性猛交╳xxx乱大交人| 男女之事视频高清在线观看| 亚洲av熟女| 亚洲精华国产精华精| 欧美乱妇无乱码| 中文字幕精品亚洲无线码一区| 欧美黄色淫秽网站| 亚洲人成网站在线播| 国产大屁股一区二区在线视频| 国内精品久久久久精免费| 色综合婷婷激情| 国产精品乱码一区二三区的特点| 老熟妇乱子伦视频在线观看| 午夜两性在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品影院久久| 国产av在哪里看| 男人舔女人下体高潮全视频| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲最大成人av| 一区二区三区四区激情视频 | 国产一区二区激情短视频| 欧美性猛交╳xxx乱大交人| 岛国在线免费视频观看| 午夜老司机福利剧场| 麻豆成人午夜福利视频| 最新在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产大屁股一区二区在线视频| 国产精品电影一区二区三区| 亚洲,欧美,日韩| 黄色日韩在线| 12—13女人毛片做爰片一| 色在线成人网| 精品一区二区免费观看| 97超视频在线观看视频| 露出奶头的视频| 成人午夜高清在线视频| 久久性视频一级片| 97超级碰碰碰精品色视频在线观看| 老司机福利观看| 亚洲在线观看片| 国产午夜精品论理片| 亚洲专区国产一区二区| ponron亚洲| avwww免费| 波多野结衣高清作品| 国产精品精品国产色婷婷| av视频在线观看入口| 青草久久国产| 久久久久性生活片| 亚洲男人的天堂狠狠| 亚洲人成网站高清观看| 亚洲成av人片在线播放无| 亚洲av五月六月丁香网| 亚洲第一区二区三区不卡| 久久热精品热| www日本黄色视频网| 日韩欧美三级三区| 欧美一区二区国产精品久久精品| 欧美日韩乱码在线| 俺也久久电影网| 51国产日韩欧美| 99热这里只有精品一区| 亚洲人成网站高清观看| 91狼人影院| 欧美bdsm另类| 亚洲精品久久国产高清桃花| 丁香六月欧美| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 久久人人爽人人爽人人片va | 久久久精品大字幕| 成年版毛片免费区| 高清日韩中文字幕在线| 国产美女午夜福利| 搡老熟女国产l中国老女人| 亚洲国产精品999在线| 欧美日韩乱码在线| 亚洲不卡免费看| 亚洲成人久久性| 亚洲性夜色夜夜综合| 欧美极品一区二区三区四区| a级毛片a级免费在线| 69av精品久久久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧洲精品卡2卡3卡4卡5卡区| 欧美日本视频| 又粗又爽又猛毛片免费看| 床上黄色一级片| 热99re8久久精品国产| 成年免费大片在线观看| 性欧美人与动物交配| 免费无遮挡裸体视频| 淫秽高清视频在线观看| 校园春色视频在线观看| 变态另类成人亚洲欧美熟女| 国产伦精品一区二区三区视频9| 夜夜夜夜夜久久久久| 小说图片视频综合网站| 久久午夜福利片| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 极品教师在线免费播放| 日日摸夜夜添夜夜添av毛片 | av视频在线观看入口| 中文字幕av在线有码专区| 欧美精品国产亚洲| 国产色婷婷99| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 热99在线观看视频| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 色av中文字幕| 亚洲片人在线观看| 亚洲美女搞黄在线观看 | 国产三级中文精品| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 久久香蕉精品热| 色精品久久人妻99蜜桃| 女同久久另类99精品国产91| 十八禁人妻一区二区| av福利片在线观看| 日韩欧美精品免费久久 | 99精品久久久久人妻精品| 精品国产亚洲在线| 日韩亚洲欧美综合| 老熟妇仑乱视频hdxx| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器| 国产乱人视频| 很黄的视频免费| 国产三级中文精品| 久久99热6这里只有精品| 国产精品影院久久| 成年免费大片在线观看| 丁香欧美五月| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 国产综合懂色| 国产高清视频在线观看网站| 啦啦啦韩国在线观看视频| www.999成人在线观看| 精品一区二区三区av网在线观看| 欧美精品国产亚洲| 99久久精品一区二区三区| 有码 亚洲区| 日日夜夜操网爽| 亚洲熟妇熟女久久| 中文字幕av在线有码专区| 九九热线精品视视频播放| 成人精品一区二区免费| 欧美性猛交╳xxx乱大交人| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 欧美激情国产日韩精品一区| 99国产精品一区二区蜜桃av| av天堂中文字幕网| 久久九九热精品免费| 永久网站在线| 精品人妻熟女av久视频| av中文乱码字幕在线| 97超级碰碰碰精品色视频在线观看| 欧美又色又爽又黄视频| 久久99热6这里只有精品| 亚洲美女黄片视频| 麻豆av噜噜一区二区三区| 午夜福利18| 亚洲精品456在线播放app | 女人十人毛片免费观看3o分钟| 久久久久国产精品人妻aⅴ院| 欧美激情在线99| 成年版毛片免费区| 高清毛片免费观看视频网站| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久 | 男人的好看免费观看在线视频| 99视频精品全部免费 在线| 桃红色精品国产亚洲av| 日韩欧美 国产精品| 国产成人aa在线观看| 久久欧美精品欧美久久欧美| 男人狂女人下面高潮的视频| 精品国产三级普通话版| 九色国产91popny在线| 男女床上黄色一级片免费看| av专区在线播放| 亚洲av日韩精品久久久久久密| 欧美高清成人免费视频www| 国产精品女同一区二区软件 | 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 久久久久久久久大av| 中文在线观看免费www的网站| 久久中文看片网| 午夜精品一区二区三区免费看| 亚洲熟妇熟女久久| 韩国av一区二区三区四区| 制服丝袜大香蕉在线| 久久久久国产精品人妻aⅴ院| 夜夜爽天天搞| 999久久久精品免费观看国产| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 美女高潮的动态| 久久国产乱子免费精品| 亚洲美女搞黄在线观看 | 在现免费观看毛片| 日韩免费av在线播放| x7x7x7水蜜桃| www日本黄色视频网| 别揉我奶头 嗯啊视频| 丰满人妻一区二区三区视频av| 久久久精品大字幕| 国产一区二区三区在线臀色熟女| 少妇熟女aⅴ在线视频| 老鸭窝网址在线观看| 日本黄色视频三级网站网址| 久9热在线精品视频| 亚洲专区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 精品人妻熟女av久视频| 国产老妇女一区| 成人午夜高清在线视频| 在线观看舔阴道视频| 国产av不卡久久| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 国产av麻豆久久久久久久| 国产精品久久久久久亚洲av鲁大| 久久久久国产精品人妻aⅴ院| 国产精品国产高清国产av| 老司机福利观看| 在线a可以看的网站| 婷婷六月久久综合丁香| 久久性视频一级片| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app | 日本黄色视频三级网站网址| 亚洲国产欧美人成| 免费看日本二区| 国产黄片美女视频| 国产精品,欧美在线| 国产亚洲精品久久久com| 欧美乱色亚洲激情| 悠悠久久av| 18美女黄网站色大片免费观看| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 99久久久亚洲精品蜜臀av| 国产中年淑女户外野战色| 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 丰满的人妻完整版| 免费人成在线观看视频色| 国产一区二区三区在线臀色熟女| 成人高潮视频无遮挡免费网站| 中亚洲国语对白在线视频| 一区二区三区激情视频| 国产麻豆成人av免费视频| 亚洲自拍偷在线| 亚洲第一欧美日韩一区二区三区| 国产高清激情床上av| 真实男女啪啪啪动态图| 欧美性猛交黑人性爽| 欧美激情国产日韩精品一区| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 最新在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 九色国产91popny在线| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品成人综合色| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 一级a爱片免费观看的视频| 亚洲第一电影网av| 国产国拍精品亚洲av在线观看| 亚洲午夜理论影院| 亚洲国产精品成人综合色| 午夜福利在线观看免费完整高清在 | 精品人妻熟女av久视频| 亚洲国产精品999在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线| 少妇的逼水好多| 国产高清有码在线观看视频| 永久网站在线| 色视频www国产| 久久亚洲精品不卡| 国产精品电影一区二区三区| 一夜夜www| 亚洲成人免费电影在线观看| 狂野欧美白嫩少妇大欣赏| 搡老岳熟女国产| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 久久久久国产精品人妻aⅴ院| 毛片女人毛片| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 免费高清视频大片| 搞女人的毛片| 国产精华一区二区三区| 免费看a级黄色片| 国产久久久一区二区三区| 免费高清视频大片| 亚洲最大成人中文| 午夜精品在线福利| 精品久久久久久,| 中文在线观看免费www的网站| 丰满乱子伦码专区| 免费无遮挡裸体视频| 麻豆国产av国片精品| 亚洲自拍偷在线| 观看免费一级毛片| 深爱激情五月婷婷| 在线天堂最新版资源| 少妇人妻精品综合一区二区 | 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 亚洲在线自拍视频| 国产精品自产拍在线观看55亚洲| 免费av不卡在线播放| 国产精品美女特级片免费视频播放器| 国产一区二区在线观看日韩| 欧美潮喷喷水| 亚洲欧美日韩卡通动漫| 国产精品综合久久久久久久免费| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 熟妇人妻久久中文字幕3abv| 青草久久国产| 精品人妻视频免费看| av在线老鸭窝| 免费看美女性在线毛片视频| 国产亚洲精品久久久久久毛片| 很黄的视频免费| www.色视频.com| 18+在线观看网站| 亚洲精华国产精华精| 久久热精品热| 日本三级黄在线观看| 成年女人永久免费观看视频| 看十八女毛片水多多多| 国产成人aa在线观看| 搡女人真爽免费视频火全软件 | 久久久久性生活片| 国产精品一及| 一本综合久久免费| 欧美乱妇无乱码| 美女免费视频网站| 99精品在免费线老司机午夜| 亚洲黑人精品在线| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久精品欧美日韩精品| 亚洲国产高清在线一区二区三| 性欧美人与动物交配| 深夜精品福利| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 国产伦精品一区二区三区视频9| netflix在线观看网站| 国产成人影院久久av| 亚洲成人精品中文字幕电影| 高潮久久久久久久久久久不卡| 最近中文字幕高清免费大全6 | 无遮挡黄片免费观看| 天堂网av新在线| 欧美zozozo另类| 国产精品影院久久| 欧美一级a爱片免费观看看| 免费观看人在逋| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片 | 非洲黑人性xxxx精品又粗又长| 免费电影在线观看免费观看| 久久久久久久久久成人| 麻豆国产av国片精品| 男女做爰动态图高潮gif福利片| 91九色精品人成在线观看| 毛片女人毛片| 精品国产三级普通话版| 韩国av一区二区三区四区| 国产精品嫩草影院av在线观看 | 长腿黑丝高跟| 国产乱人伦免费视频| 夜夜夜夜夜久久久久| 十八禁网站免费在线| 亚洲色图av天堂| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久黄片| 久久久久国产精品人妻aⅴ院| 国产中年淑女户外野战色| 国产成年人精品一区二区| 少妇高潮的动态图| 很黄的视频免费| 久久人人爽人人爽人人片va | 在线观看美女被高潮喷水网站 |