• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis for the residual prestress of composite barrel for railgun with tension winding

    2020-07-02 03:17:28DongmeiYinBaomingLiHongchengXiao
    Defence Technology 2020年4期

    Dong-mei Yin, Bao-ming Li, Hong-cheng Xiao

    National Key Laboratory of Transient Physics, Nanjing University of Science & Technology, Nanjing, 210094, China

    Keywords:Railgun Barrel Composite materials Filament winding Winding tension Residual prestress

    ABSTRACT Based on the elastic theory of cylindrical shells and the theory of composite laminates, a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model. A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out, by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing. Therefore, the sealing performance in bore is improved, but the strength of the filament wound composite housing drops. In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.

    1. Introduction

    In order to meet the needs of lightweight and motility of railgun in the actual combat, filament wound composite barrel is a good choice in the design of railgun barrel, which has high specific stiffness and strength and design flexibility.However,cure reaction and winding tension in the manufacturing process,especially with the high tension winding technology, may cause initial residual stress in the winding products [1-4]. It will affect the mechanical properties of the winding products. Therefore many researchers have developed a series of methods, such as theoretical analysis methods [5-7], numerical simulation methods [8-11] and experimental technology[12-15],to investigate on the winding tension and the residual prestress caused by it for different winding products. And the pretension winding technology adopted in the manufacturing process of the filament wound composite barrel for railgun can increase the fiber volume fraction and arrange the fiber in orderly for the barrel.Also it can produce prestress in barrel[16],which can improve the stiffness and seal performance for the barrel bore.But the research for it is less reported.Therefore,the residual prestress caused only by winding tension in the filament wound composite barrel for railgun will be investigated in this paper.

    In addition, if the interior structures of winding layers can be considered as the liner,rails and insulators in bore form the liner of filament wound composite barrel for railgun. It is different from most winding products’ liners with one kind of homogeneous material,which are often winded in circumferential direction with one kind fiber. And the composite barrels of railguns are winded with a variety of fiber types based on consideration of insulation and mechanical properties. These factors may make the residual prestress in the barrel more complex.Referring to the design theory of filament winding pressure vessel, a theoretical model for the residual prestress in the round composite barrel for railgun will be established in this work, which is based on the elastic theory of cylindrical shells and the theory of composite laminates. Through joining the temperature differential method and the element birth and death technology,a finite element numerical simulation will be done to analyze the residual prestress in the railgun barrel,which is leaded only by winding tension. Furthermore, the residual prestress in the composite barrels for railgun which are under different control modes of winding tension will be analyzed by the 3D numerical simulation.

    2. Theoretical model of the residual prestress in composite barrel for railgun

    The filament wound composite barrel of railgun is assumed to behave as a hybrid filament wound cylinder with an isotropic liner.The structural coordinate system(cylindrical coordinate system:θz-r) for the barrel is defined by rotating the material coordinate system (1-2-3) for the filament wound composite housing with winding angle α around 3-axis. And the 3-axis is paralleling to raxis.Here r,θ and z are denoted as radial,circumferential and axial coordinates.And 1-axis is along the fiber direction.The cylinder is composed of n layers,and the innermost layer is its liner.According to the composite laminate theory, the constitutive equation in the structural coordinate system for the kth filament wound layer is given as follows [17-19]:

    where Qij(i,j = 1,2,3) are elastic constants, and k = 1,2, …,n-1.

    If the radial, circumferential and axial displacements can be considered as [18,19]:

    Based on the axisymmetric assumptions,it can be deduced from Eqs. (1) and (2):

    Then the equilibrium equations for the kth layer are simplified as:

    And the strains in the kth can be expressed as:

    Thus,from Eqs.(1)-(5),the radial displacement of kth layer can be written as:

    For the winding layers:

    For the liner:

    The interfaces for the adjacent layers in barrel should satisfy the continuity conditions:

    The normal stresses in the inner surface of barrel and the outer surface of the kth layer are:

    In addition, the conditions of equilibrium of axial forces and torque are shown in Eqs. (10) and (11) respectively:

    After that, the stress and strain in every layer which are inside the newly winding layer can be obtained by Eqs.(1)and(5)-(7).At last, after all winding have been completed, the residual prestress and prestrain in each layer of barrel can be got by linear superposition.

    3. Numerical simulation model of the residual prestress in composite barrel for railgun

    Fig.1. The structure of railgun barrel.

    A round railgun barrel is adopted in this work [20], and its geometric structure is shown in Fig. 1(a). It includes two copper rails, ceramic insulators and filament wound composite housing(glass fiber layers and carbon fiber layers). The radius of bore is 25 mm, the length of barrel L is 4 m, and the thickness of carbon fiber layers is 25 mm. Both thicknesses of glass fiber layers 1 and glass fiber layers 2 are 5 mm.And the winding angles in fiber layers are±45°.The copper rails and Ceramic insulators are considered as isotropic materials. Material properties for copper rails are:density = 8900.00 kg/m3, Poisson’s ratio = 0.31, yield stress= 320.00 MPa,Young’s modulus = 117.00 GPa.And the material parameters for ceramic insulator are: density = 3896.00 kg/m3, Poisson’s ratio = 0.218, Young’s modulus = 293.15 GPa. The filament wound composite housing are composed by carbon fiber layers and glass fiber layers, and their orthotropic material parameters are provided in Table 1.

    The bonds among rails, insulators in bore and each winding layer are assumed to be perfect. A 3D finite element model of the filament wound composite barrel for railgun is built in the software ANSYS,as exhibited in Fig.1(b).The rails and insulators in bore are modeled with isotropic solid elements. While the filament wound composite housing is meshed with laminated elements,12 layers elements along its radial direction. And each laminated element has four layers.The liner of barrel is comprised of rails and ceramic insulators.All degrees of freedom on the two end faces of liner are restrained.

    3.1. Loading of the winding tension

    The effects of thermal loads in winding process, such as curing process, are supposed to be not considered. After the equivalent thermal expansion coefficient is defined for each layer, winding pretension in fiber can be modeled by loading certain temperature.Here, we assume that the stress of 1 MPa generated in the fiber direction with the change of temperature of 1°C. And the loading temperature(ΔT)can be gained according to the initial prestress in the fiber bundles.

    Table 1 Material parameters of filament wound layers.

    Thus the equivalent thermal expansion coefficients in all directions for each winding layer can be calculated:

    where σiand Eiare initial fiber prestresses and elastic moduli in all directions for each winding layer, respectively.

    3.2. Simulation for the winding process

    Owing to the great number of layers,the finite element model is set up in one time to simulate the winding process by using the element birth and death technology. The birth and death of element will be achieved by modifying the element stiffness.If the element stiffness is multiplied with a small coefficient, the parameters of loading,mass and damping of this element are all set to zero.It means that this element is killed.Once the death element is activated, the above parameters for this element return to the original ones. When the jth is winding, the layers (≤j) are all activated,and the layers(>j)are all killed.This method can be used to simulate the jth layer winding undisturbed by the subsequent winding layers. And when the (j+1)th layer is activated to be calculated,it can start with the outer diameter of the wrapped layer j rather than the one modeled at the beginning for the jth layer.

    4. Calculation and discussion

    In order to verify the results’ reliability, the liner in the above barrel model is assumed to be simplified as a copper liner,and the constant tension winding method is adopted in this model. The results gained from the theoretical model and numerical simulation model are compared with each other. The distributions of all direction components of residual prestress through the wall thickness for this simplified barrel model are shown in Fig. 2. It reveals that the distribution trends of residual prestress obtained by two methods are consistent,and the stresses in all directions of liner are mainly compressive stresses. Stresses in the interfaces among different materials appear various degrees of fluctuation,especially in the interfaces of liner and filament wound layers, inner glass fiber layers and carbon fiber layers.The differences of the stresses’ values in the liners for two kinds of models are relatively bigger,especially for the axial stress component.It is influenced by several factors,such as the constraints on the end faces of liner for the numerical simulation model, and theory of thin walled cylindrical shell for the theoretical model. But the distributions of residual prestress in the filament winding layers is close, so the numerical model is reliable to some extent, especially for the analysis of the residual prestress of the filament wound composite housing.

    Fig.2. Distributions of Residual prestress through the wall thickness for the simplified barrel model. (Method 1-Finite element method, Method 2- theoretical model).

    Then this numerical simulation method is applied to the simulation of residual prestress in the non-simplified filament wound composite barrel for railgun in Fig. 1(a). Three common winding tension control models,constant tension,constant torque and taper tension,are employed in the railgun’s barrels.In addition,with the taper tension winding, the initial fiber prestress along the fiber direction for the kth layer,which is also equal to the initial prestress in the fiber bundle listed in Eqs. (12) and (13), can be found as follows [6,21]:

    According to Eq.(16),if β=0,the winding tension control mode is simplified to the constant tension mode. While β = 1, the one turns into the constant torque mode. Furthermore, other taper tension winding modes(β=0.25,0.75)are also used in this work.The distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers with different β are given in Fig. 3.

    The distributions of residual stress caused by different winding tension control modes in the filament wound composite barrel for railgun are gained by the numerical simulation. Since the barrel liner consists of two different materials, two paths are defined on the section of barrel, which is located on the half length of barrel.Path oS1 is along the oy-axis and through the middle of the rail,while path oS2 is along the ox-axis and through the middle of the ceramic insulator, as shown in Fig.1(a). The variations of residual prestress components in all directions through the wall thickness of barrel for these two paths are displayed in Fig.4 and Fig.5.It can be also observed that the stresses in all directions of liner are mainly compressive stresses. And the stresses in the interfaces among different materials also present various degrees of fluctuation,especially in the interfaces of liner and filament wound composite housing, inner glass fiber layers and carbon fiber layers. With the taper coefficient increasing, the level of residual stress in barrel drops. It is because that the decreasing amplitude of winding tension enlarges gradually, which can be seen in Fig. 3. While β = 0(constant tension mode), the circumferential and axial residual prestresses become greater from the inner layer to the outer layer of the filament wound layers,obviously in the carbon fiber layers.It presents a feature of “internal looseness and external tightness”.And when β = 1 (constant torque mode), the circumferential and axial residual prestresses in the filament wound layers are relatively more uniform,especially in the carbon fiber layers.It is closer to the requirement of iso-stress design for filament winding.

    Fig. 3. Distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers.

    Fig. 4. Variations of residual prestress in all directions through the wall thickness of barrel for path oS1.

    Fig. 5. Variations of residual prestress in all directions through the wall thickness of barrel for path oS2.

    The residual prestress contours for all directions in railgun barrel, which is under the constant torque mode, are exhibited in Fig. 6. Clearly, residual stress in liner is variable along the circumference. It is due to the fact that the liner is made up of different materials which distributing along the circumference.It is also can be observed in Figs. 4 and 5. Therefore, there are differences for residual prestresses on the path oS1 and oS2.In which the axial and circumferential residual prestresses in rail liner are bigger than the ones in ceramic liner.But the differences for residual prestresses in filament wound layers on the two paths are relatively smaller.

    Moreover, the electromagnetic load in the railgun barrel is incomplete axial symmetry. When the electromagnetic load is greater, the contact interfaces between the rails and ceramic insulators will appear separation because of larger normal stress and shear stress on the interfaces [20]. And it will cause the failure of bore seal. Here, a constant electromagnetic pressure (200Mpa) is assumed to be loaded on the inner sides of rails.Then the path AB is defined on the contact plane(in circumference 60°)along the radial direction, as depicted in Fig. 1(a). And it is also on the section of barrel, which is located on the half length of barrel.

    The normal stress and shear stress on the path AB for the barrel only under the electromagnetic load, and the residual prestress in normal and shear direction on the path AB for the barrel after filament winding, are compared in Fig. 7. It presents that the normal stress on the contact interface for the liner only with the electromagnetic pressure is mainly tensile tress.And after filament winding with fiber prestress,the normal residual prestress on this contact interface is compressive stress.So the normal tensile stress leaded by the electromagnetic load can be weakened in a fiber prestress winding barrel during its launching. Similarly, the directions of the shear stresses on the contact interface under these two loading conditions are opposite to each other. Hence, it can enhance the bond strength for the interfaces and slow the separation of contact interfaces.Then the seal performance of bore will be improved. And with the decreasing of β, the normal residual prestress on the contact interface is larger, while the change of shear residual prestress is smaller.It means that reducing the value of β is better for improving the seal performance of bore. But the same kinds of stresses in the filament wound layers with two loading conditions respectively are in the same direction, so they are superimposed with each other.And the intensified stresses are bigger with the decline of β,which will lead to a higher stress level in the winding layers. This will reduce the strength of the composite housing for barrel.

    5. Conclusions

    In this work, a theoretical analysis model for the residual prestress only caused by the fibre pretension in the round composite barrel of railgun is developed. Based on the elastic theory and the theory of composite laminates,the barrel is simplified as a hybrid filament wound cylinder with an isotropic liner in this model. Then the residual prestress in this railgun barrel model is also simulated in a 3D finite element model through combining the temperature differential method with the element birth and death technology.

    Fig. 6. Residual prestress contours for all directions in railgun barrel with β = 1(unit:Pa).

    Fig. 7. Normal stress and Shear stress on the path AB.

    Comparing the results of two methods, it indicates that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. Furthermore, the residual prestresses in the non-simplified composite barrels for railgun,which are wound with different winding tension modes, are analyzed by using the same numerical simulation method. The results reveal some rules of the distributions of residual prestresses of the barrel with different control modes of winding tension, and their effects on some mechanical performances of barrel. It can provide a reference to the optimal design of filament winding for railgun barrel.

    Declaration of competing interest

    No conflict of interest exits in the submission of this manuscript,and manuscript is approved by all authors for publication.I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere.All the authors:Dong-mei Yin, Bao-ming Li and Hong-cheng Xiao.

    We deeply appreciate your consideration of our manuscript,and we look forward to receiving comments from the reviewers.If you have any queries,please don’t hesitate to contact me at the address below.

    大片免费播放器 马上看| 人妻夜夜爽99麻豆av| 亚洲图色成人| 久久青草综合色| 日本色播在线视频| 免费大片黄手机在线观看| 99久久人妻综合| 欧美精品亚洲一区二区| av一本久久久久| 亚洲精品视频女| 午夜福利,免费看| 日本91视频免费播放| 99久久精品国产国产毛片| 草草在线视频免费看| 夜夜看夜夜爽夜夜摸| 美女中出高潮动态图| 99热全是精品| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美在线一区| 久久久久久久久久久久大奶| 内地一区二区视频在线| 六月丁香七月| 国产欧美另类精品又又久久亚洲欧美| 欧美三级亚洲精品| 观看免费一级毛片| 欧美日韩国产mv在线观看视频| 国产午夜精品久久久久久一区二区三区| 一个人看视频在线观看www免费| 97精品久久久久久久久久精品| 免费av中文字幕在线| 91aial.com中文字幕在线观看| 久久久久国产网址| 欧美3d第一页| 美女xxoo啪啪120秒动态图| 街头女战士在线观看网站| 成人亚洲精品一区在线观看| 在线观看人妻少妇| 久久久久精品性色| 国产综合精华液| 免费久久久久久久精品成人欧美视频 | 亚洲欧美清纯卡通| 精品一区在线观看国产| 草草在线视频免费看| 制服丝袜香蕉在线| 内射极品少妇av片p| 国产av一区二区精品久久| 国产精品蜜桃在线观看| 99久久综合免费| 寂寞人妻少妇视频99o| 自线自在国产av| 一级黄片播放器| 在现免费观看毛片| 免费观看无遮挡的男女| av又黄又爽大尺度在线免费看| 少妇被粗大猛烈的视频| 国产极品天堂在线| 久久热精品热| 蜜桃在线观看..| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 国产在视频线精品| 日韩熟女老妇一区二区性免费视频| 欧美精品高潮呻吟av久久| 内地一区二区视频在线| 亚洲不卡免费看| 免费在线观看成人毛片| 亚洲av免费高清在线观看| 日本av手机在线免费观看| 色哟哟·www| 五月玫瑰六月丁香| 亚洲伊人久久精品综合| 日韩一本色道免费dvd| 日本黄大片高清| 中文资源天堂在线| 国产日韩欧美在线精品| 久久久久久久久久久丰满| 国产视频内射| 狂野欧美激情性bbbbbb| 性色avwww在线观看| 一级二级三级毛片免费看| 日韩av免费高清视频| 国产精品人妻久久久影院| 草草在线视频免费看| 婷婷色麻豆天堂久久| 熟女电影av网| 三级经典国产精品| 在线精品无人区一区二区三| 国产日韩欧美在线精品| 国产乱人偷精品视频| 热re99久久精品国产66热6| 人妻少妇偷人精品九色| 亚洲高清免费不卡视频| 91久久精品国产一区二区成人| 噜噜噜噜噜久久久久久91| a级毛片免费高清观看在线播放| 亚洲美女视频黄频| 久久免费观看电影| 亚洲电影在线观看av| 一个人看视频在线观看www免费| 日韩电影二区| 美女视频免费永久观看网站| 一本一本综合久久| 久久97久久精品| 免费观看性生交大片5| 五月开心婷婷网| 一级二级三级毛片免费看| 各种免费的搞黄视频| 少妇人妻久久综合中文| 欧美日韩视频精品一区| 91久久精品电影网| 国产黄色免费在线视频| 男女啪啪激烈高潮av片| 插逼视频在线观看| 久久人妻熟女aⅴ| 色94色欧美一区二区| 三级经典国产精品| 免费av不卡在线播放| 精品少妇黑人巨大在线播放| 国产淫语在线视频| 精品视频人人做人人爽| 亚洲丝袜综合中文字幕| 久久久a久久爽久久v久久| 纯流量卡能插随身wifi吗| 少妇熟女欧美另类| videossex国产| 大香蕉97超碰在线| 99久久精品国产国产毛片| 王馨瑶露胸无遮挡在线观看| 18禁在线播放成人免费| 亚洲精品色激情综合| 久久久久久久久大av| 久久精品久久久久久噜噜老黄| av免费观看日本| 欧美亚洲 丝袜 人妻 在线| 日本免费在线观看一区| 精品酒店卫生间| 亚洲欧美日韩东京热| 看免费成人av毛片| 国产在线免费精品| 亚洲av二区三区四区| 十八禁网站网址无遮挡 | 交换朋友夫妻互换小说| 国产精品一区二区在线观看99| 亚洲国产日韩一区二区| 人人妻人人爽人人添夜夜欢视频 | 这个男人来自地球电影免费观看 | 国产欧美另类精品又又久久亚洲欧美| 日韩中字成人| 日本与韩国留学比较| 欧美精品一区二区大全| 亚洲欧美精品自产自拍| 日韩在线高清观看一区二区三区| 日本91视频免费播放| 久久久久久久久久久丰满| 国产精品久久久久久精品古装| 成年人午夜在线观看视频| av卡一久久| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| av天堂中文字幕网| 亚洲电影在线观看av| 亚洲国产精品一区二区三区在线| 国产黄片美女视频| 久久国产精品大桥未久av | 国产男女内射视频| 一级毛片电影观看| 久久97久久精品| 国产免费视频播放在线视频| 婷婷色综合www| 精品一区二区三区视频在线| 丰满饥渴人妻一区二区三| 久久久久久久国产电影| 熟妇人妻不卡中文字幕| 日本欧美视频一区| 国产在线男女| 免费看光身美女| av.在线天堂| 在线观看av片永久免费下载| 亚洲真实伦在线观看| 亚洲精品,欧美精品| 99热国产这里只有精品6| 国产伦精品一区二区三区视频9| 99久久中文字幕三级久久日本| 大码成人一级视频| a级毛片免费高清观看在线播放| 9色porny在线观看| 啦啦啦中文免费视频观看日本| 99九九在线精品视频 | 黄色一级大片看看| 亚洲欧美日韩东京热| 国产伦理片在线播放av一区| 精品一区二区三卡| 成年女人在线观看亚洲视频| 欧美变态另类bdsm刘玥| 亚洲人成网站在线观看播放| 久久精品国产亚洲av涩爱| www.av在线官网国产| 女性生殖器流出的白浆| 成人毛片a级毛片在线播放| 中文天堂在线官网| av网站免费在线观看视频| 亚洲精品久久久久久婷婷小说| 国产精品福利在线免费观看| 又大又黄又爽视频免费| 99久久中文字幕三级久久日本| 亚洲精品国产成人久久av| 欧美性感艳星| 国产免费一区二区三区四区乱码| 丰满少妇做爰视频| 亚洲人与动物交配视频| 一级av片app| 久久久久久久久久久丰满| 97超碰精品成人国产| 99热这里只有是精品在线观看| 中文字幕制服av| 国产av一区二区精品久久| 精品酒店卫生间| 在线观看av片永久免费下载| 欧美日韩精品成人综合77777| 日韩大片免费观看网站| 国产69精品久久久久777片| 国产极品粉嫩免费观看在线 | 97在线人人人人妻| 亚洲精品国产av蜜桃| 少妇精品久久久久久久| 亚洲精品一二三| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| av播播在线观看一区| www.色视频.com| 午夜激情久久久久久久| 啦啦啦中文免费视频观看日本| 老司机亚洲免费影院| 特大巨黑吊av在线直播| 亚洲丝袜综合中文字幕| 亚洲无线观看免费| 国产有黄有色有爽视频| 午夜福利在线观看免费完整高清在| 岛国毛片在线播放| 高清午夜精品一区二区三区| 在线观看av片永久免费下载| 国产 一区精品| 日本vs欧美在线观看视频 | 如何舔出高潮| 老熟女久久久| 免费黄频网站在线观看国产| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 女人久久www免费人成看片| 国产精品一区二区在线观看99| 国产成人精品无人区| 久久99蜜桃精品久久| 中国三级夫妇交换| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 建设人人有责人人尽责人人享有的| 老熟女久久久| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 午夜av观看不卡| 国产国拍精品亚洲av在线观看| 在线观看免费高清a一片| 国产成人aa在线观看| 国产色爽女视频免费观看| 99国产精品免费福利视频| 国产永久视频网站| 日韩制服骚丝袜av| a级毛片免费高清观看在线播放| 91精品伊人久久大香线蕉| 国产乱来视频区| av黄色大香蕉| 国产一区二区三区综合在线观看 | 一级片'在线观看视频| 精品一区在线观看国产| 久久韩国三级中文字幕| 国产成人aa在线观看| 中文字幕免费在线视频6| av视频免费观看在线观看| 免费观看在线日韩| 亚洲电影在线观看av| 在线观看免费日韩欧美大片 | 欧美最新免费一区二区三区| 尾随美女入室| 国产精品久久久久久久电影| 国产真实伦视频高清在线观看| 亚洲av福利一区| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 成人二区视频| 亚洲三级黄色毛片| 国产白丝娇喘喷水9色精品| 日韩av不卡免费在线播放| 国内揄拍国产精品人妻在线| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 日韩免费高清中文字幕av| 韩国av在线不卡| 久久精品国产鲁丝片午夜精品| 麻豆成人av视频| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 国产乱来视频区| 午夜影院在线不卡| 日韩熟女老妇一区二区性免费视频| 亚洲真实伦在线观看| 777米奇影视久久| 最近中文字幕高清免费大全6| 曰老女人黄片| 老女人水多毛片| 伊人久久精品亚洲午夜| 男女边摸边吃奶| xxx大片免费视频| 男男h啪啪无遮挡| 乱系列少妇在线播放| 亚洲国产毛片av蜜桃av| 黄色一级大片看看| 免费人妻精品一区二区三区视频| 国产成人91sexporn| 啦啦啦视频在线资源免费观看| 女的被弄到高潮叫床怎么办| 国产精品不卡视频一区二区| av.在线天堂| 一本—道久久a久久精品蜜桃钙片| 免费大片18禁| 日韩强制内射视频| 成人国产麻豆网| 久久女婷五月综合色啪小说| 99精国产麻豆久久婷婷| 哪个播放器可以免费观看大片| av在线播放精品| 晚上一个人看的免费电影| 人妻系列 视频| 青青草视频在线视频观看| 国产一区二区在线观看日韩| 免费人妻精品一区二区三区视频| 国产一区二区在线观看av| 五月玫瑰六月丁香| 午夜福利视频精品| 成人二区视频| 久久久精品免费免费高清| 大话2 男鬼变身卡| 日韩大片免费观看网站| 插阴视频在线观看视频| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 免费观看a级毛片全部| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 亚洲国产毛片av蜜桃av| 亚洲av二区三区四区| 日韩三级伦理在线观看| 一本大道久久a久久精品| av在线app专区| 国产av精品麻豆| www.色视频.com| 99九九在线精品视频 | 男人狂女人下面高潮的视频| 久久久欧美国产精品| 一区二区三区精品91| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 国产成人freesex在线| 欧美日韩精品成人综合77777| 久久97久久精品| 香蕉精品网在线| 中文资源天堂在线| 亚洲精品乱码久久久久久按摩| 欧美国产精品一级二级三级 | 人人妻人人澡人人爽人人夜夜| 亚洲av.av天堂| 插阴视频在线观看视频| 亚洲av不卡在线观看| 亚洲在久久综合| 国产黄色免费在线视频| 噜噜噜噜噜久久久久久91| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站 | 久久99精品国语久久久| 久久影院123| 国产精品久久久久久久久免| 成人午夜精彩视频在线观看| 亚洲av日韩在线播放| 亚洲欧美成人综合另类久久久| 91在线精品国自产拍蜜月| 香蕉精品网在线| 少妇高潮的动态图| 高清午夜精品一区二区三区| 又大又黄又爽视频免费| 观看美女的网站| 香蕉精品网在线| 国产在线免费精品| 精品国产乱码久久久久久小说| 一区二区三区四区激情视频| 天堂俺去俺来也www色官网| 91精品一卡2卡3卡4卡| 欧美精品一区二区免费开放| 日韩强制内射视频| 成年人午夜在线观看视频| 日韩视频在线欧美| 精品人妻偷拍中文字幕| 日本猛色少妇xxxxx猛交久久| 女性被躁到高潮视频| 久久婷婷青草| 在线看a的网站| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 国产又色又爽无遮挡免| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 性色av一级| 看免费成人av毛片| 国产欧美日韩综合在线一区二区 | 在现免费观看毛片| 久久久a久久爽久久v久久| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频 | 观看av在线不卡| 大香蕉97超碰在线| 免费看不卡的av| 久久久久精品久久久久真实原创| 免费观看的影片在线观看| 男人添女人高潮全过程视频| 久久99精品国语久久久| 91精品国产国语对白视频| 免费黄频网站在线观看国产| 日韩欧美 国产精品| 国产精品女同一区二区软件| 亚洲av不卡在线观看| 内射极品少妇av片p| 日本午夜av视频| 一区二区三区四区激情视频| 十八禁高潮呻吟视频 | 一级二级三级毛片免费看| 久久精品国产亚洲网站| 黄色一级大片看看| 一本色道久久久久久精品综合| 亚洲四区av| 成人午夜精彩视频在线观看| 国产精品偷伦视频观看了| 久久97久久精品| 伊人久久国产一区二区| 免费观看在线日韩| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 免费观看性生交大片5| 中文在线观看免费www的网站| 全区人妻精品视频| 大片电影免费在线观看免费| 青春草国产在线视频| 少妇高潮的动态图| www.色视频.com| 国产淫片久久久久久久久| 久久av网站| 视频区图区小说| 99久久精品国产国产毛片| 久热这里只有精品99| 欧美日韩在线观看h| 国产成人免费无遮挡视频| 人人妻人人添人人爽欧美一区卜| 嫩草影院入口| 两个人免费观看高清视频 | 2021少妇久久久久久久久久久| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 免费黄色在线免费观看| 在线精品无人区一区二区三| 久久久久视频综合| 男人狂女人下面高潮的视频| 制服丝袜香蕉在线| 天堂8中文在线网| 日本欧美视频一区| 国产一区二区在线观看av| 国产美女午夜福利| .国产精品久久| 久久人人爽av亚洲精品天堂| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 日本欧美国产在线视频| 国产成人freesex在线| 国产亚洲欧美精品永久| 熟妇人妻不卡中文字幕| 一级,二级,三级黄色视频| 一二三四中文在线观看免费高清| 午夜影院在线不卡| 少妇丰满av| 少妇 在线观看| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 天美传媒精品一区二区| 中文字幕久久专区| 免费播放大片免费观看视频在线观看| 国产片特级美女逼逼视频| 色94色欧美一区二区| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 蜜臀久久99精品久久宅男| 黄色毛片三级朝国网站 | 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 色哟哟·www| videos熟女内射| 成人特级av手机在线观看| 免费看av在线观看网站| 永久免费av网站大全| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 日韩强制内射视频| videos熟女内射| 人人妻人人澡人人看| 日本黄色片子视频| 精品国产露脸久久av麻豆| 日韩强制内射视频| 新久久久久国产一级毛片| 91aial.com中文字幕在线观看| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| videossex国产| 十八禁网站网址无遮挡 | 精品人妻一区二区三区麻豆| 如日韩欧美国产精品一区二区三区 | 国产乱人偷精品视频| 一区二区三区精品91| 精品一区二区三区视频在线| 国产欧美亚洲国产| 久久人人爽av亚洲精品天堂| 日韩视频在线欧美| 精品一区二区免费观看| 熟妇人妻不卡中文字幕| 在线观看免费日韩欧美大片 | 国产成人a∨麻豆精品| 色5月婷婷丁香| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 少妇丰满av| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 人妻人人澡人人爽人人| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 国产午夜精品一二区理论片| 五月玫瑰六月丁香| 纯流量卡能插随身wifi吗| 国产一区二区三区av在线| 国产69精品久久久久777片| 2022亚洲国产成人精品| 亚洲精品国产av成人精品| 91精品一卡2卡3卡4卡| xxx大片免费视频| 亚洲成色77777| 久久久国产一区二区| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| 国产精品偷伦视频观看了| 人妻少妇偷人精品九色| av网站免费在线观看视频| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 美女内射精品一级片tv| 蜜桃在线观看..| 精品久久国产蜜桃| 久久狼人影院| 欧美精品国产亚洲| 美女中出高潮动态图| 午夜激情久久久久久久| 国产日韩欧美在线精品| xxx大片免费视频| 精品一品国产午夜福利视频| 亚洲av福利一区| 美女中出高潮动态图| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲av成人精品一二三区| 欧美成人午夜免费资源| 看非洲黑人一级黄片| 亚洲国产欧美日韩在线播放 | 少妇裸体淫交视频免费看高清| 激情五月婷婷亚洲| 精品一品国产午夜福利视频| 国产精品三级大全| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| 精品国产一区二区久久| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 亚洲国产精品一区二区三区在线| 春色校园在线视频观看| 久久久久久久久久久免费av| 啦啦啦中文免费视频观看日本| 欧美老熟妇乱子伦牲交| 亚洲精品456在线播放app| 在线观看免费日韩欧美大片 | 久久久久久久精品精品| 中文资源天堂在线| 成人漫画全彩无遮挡| av视频免费观看在线观看|