• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis for the residual prestress of composite barrel for railgun with tension winding

    2020-07-02 03:17:28DongmeiYinBaomingLiHongchengXiao
    Defence Technology 2020年4期

    Dong-mei Yin, Bao-ming Li, Hong-cheng Xiao

    National Key Laboratory of Transient Physics, Nanjing University of Science & Technology, Nanjing, 210094, China

    Keywords:Railgun Barrel Composite materials Filament winding Winding tension Residual prestress

    ABSTRACT Based on the elastic theory of cylindrical shells and the theory of composite laminates, a prediction model for the residual prestress of the simplified round composite barrel for railgun is established.Only the fibre pretension is considered in this model. A three dimensional numerical simulation for the residual prestress in the railgun barrel is carried out, by combining the temperature differential method with the element birth and death technology.The results obtained by the two methods are compared.It reveals that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. The same finite element method is used to analysis the residual prestress in the non-simplified composite barrels for railgun,which are under different control modes of winding tension.The results mean that the residual prestress in barrel will increase while the taper coefficient for winding is decreasing. Therefore, the sealing performance in bore is improved, but the strength of the filament wound composite housing drops. In addition,the axial and circumferential residual prestress in the filament wound composite housing with constant torque winding are close to the ones in iso-stress design for barrel.

    1. Introduction

    In order to meet the needs of lightweight and motility of railgun in the actual combat, filament wound composite barrel is a good choice in the design of railgun barrel, which has high specific stiffness and strength and design flexibility.However,cure reaction and winding tension in the manufacturing process,especially with the high tension winding technology, may cause initial residual stress in the winding products [1-4]. It will affect the mechanical properties of the winding products. Therefore many researchers have developed a series of methods, such as theoretical analysis methods [5-7], numerical simulation methods [8-11] and experimental technology[12-15],to investigate on the winding tension and the residual prestress caused by it for different winding products. And the pretension winding technology adopted in the manufacturing process of the filament wound composite barrel for railgun can increase the fiber volume fraction and arrange the fiber in orderly for the barrel.Also it can produce prestress in barrel[16],which can improve the stiffness and seal performance for the barrel bore.But the research for it is less reported.Therefore,the residual prestress caused only by winding tension in the filament wound composite barrel for railgun will be investigated in this paper.

    In addition, if the interior structures of winding layers can be considered as the liner,rails and insulators in bore form the liner of filament wound composite barrel for railgun. It is different from most winding products’ liners with one kind of homogeneous material,which are often winded in circumferential direction with one kind fiber. And the composite barrels of railguns are winded with a variety of fiber types based on consideration of insulation and mechanical properties. These factors may make the residual prestress in the barrel more complex.Referring to the design theory of filament winding pressure vessel, a theoretical model for the residual prestress in the round composite barrel for railgun will be established in this work, which is based on the elastic theory of cylindrical shells and the theory of composite laminates. Through joining the temperature differential method and the element birth and death technology,a finite element numerical simulation will be done to analyze the residual prestress in the railgun barrel,which is leaded only by winding tension. Furthermore, the residual prestress in the composite barrels for railgun which are under different control modes of winding tension will be analyzed by the 3D numerical simulation.

    2. Theoretical model of the residual prestress in composite barrel for railgun

    The filament wound composite barrel of railgun is assumed to behave as a hybrid filament wound cylinder with an isotropic liner.The structural coordinate system(cylindrical coordinate system:θz-r) for the barrel is defined by rotating the material coordinate system (1-2-3) for the filament wound composite housing with winding angle α around 3-axis. And the 3-axis is paralleling to raxis.Here r,θ and z are denoted as radial,circumferential and axial coordinates.And 1-axis is along the fiber direction.The cylinder is composed of n layers,and the innermost layer is its liner.According to the composite laminate theory, the constitutive equation in the structural coordinate system for the kth filament wound layer is given as follows [17-19]:

    where Qij(i,j = 1,2,3) are elastic constants, and k = 1,2, …,n-1.

    If the radial, circumferential and axial displacements can be considered as [18,19]:

    Based on the axisymmetric assumptions,it can be deduced from Eqs. (1) and (2):

    Then the equilibrium equations for the kth layer are simplified as:

    And the strains in the kth can be expressed as:

    Thus,from Eqs.(1)-(5),the radial displacement of kth layer can be written as:

    For the winding layers:

    For the liner:

    The interfaces for the adjacent layers in barrel should satisfy the continuity conditions:

    The normal stresses in the inner surface of barrel and the outer surface of the kth layer are:

    In addition, the conditions of equilibrium of axial forces and torque are shown in Eqs. (10) and (11) respectively:

    After that, the stress and strain in every layer which are inside the newly winding layer can be obtained by Eqs.(1)and(5)-(7).At last, after all winding have been completed, the residual prestress and prestrain in each layer of barrel can be got by linear superposition.

    3. Numerical simulation model of the residual prestress in composite barrel for railgun

    Fig.1. The structure of railgun barrel.

    A round railgun barrel is adopted in this work [20], and its geometric structure is shown in Fig. 1(a). It includes two copper rails, ceramic insulators and filament wound composite housing(glass fiber layers and carbon fiber layers). The radius of bore is 25 mm, the length of barrel L is 4 m, and the thickness of carbon fiber layers is 25 mm. Both thicknesses of glass fiber layers 1 and glass fiber layers 2 are 5 mm.And the winding angles in fiber layers are±45°.The copper rails and Ceramic insulators are considered as isotropic materials. Material properties for copper rails are:density = 8900.00 kg/m3, Poisson’s ratio = 0.31, yield stress= 320.00 MPa,Young’s modulus = 117.00 GPa.And the material parameters for ceramic insulator are: density = 3896.00 kg/m3, Poisson’s ratio = 0.218, Young’s modulus = 293.15 GPa. The filament wound composite housing are composed by carbon fiber layers and glass fiber layers, and their orthotropic material parameters are provided in Table 1.

    The bonds among rails, insulators in bore and each winding layer are assumed to be perfect. A 3D finite element model of the filament wound composite barrel for railgun is built in the software ANSYS,as exhibited in Fig.1(b).The rails and insulators in bore are modeled with isotropic solid elements. While the filament wound composite housing is meshed with laminated elements,12 layers elements along its radial direction. And each laminated element has four layers.The liner of barrel is comprised of rails and ceramic insulators.All degrees of freedom on the two end faces of liner are restrained.

    3.1. Loading of the winding tension

    The effects of thermal loads in winding process, such as curing process, are supposed to be not considered. After the equivalent thermal expansion coefficient is defined for each layer, winding pretension in fiber can be modeled by loading certain temperature.Here, we assume that the stress of 1 MPa generated in the fiber direction with the change of temperature of 1°C. And the loading temperature(ΔT)can be gained according to the initial prestress in the fiber bundles.

    Table 1 Material parameters of filament wound layers.

    Thus the equivalent thermal expansion coefficients in all directions for each winding layer can be calculated:

    where σiand Eiare initial fiber prestresses and elastic moduli in all directions for each winding layer, respectively.

    3.2. Simulation for the winding process

    Owing to the great number of layers,the finite element model is set up in one time to simulate the winding process by using the element birth and death technology. The birth and death of element will be achieved by modifying the element stiffness.If the element stiffness is multiplied with a small coefficient, the parameters of loading,mass and damping of this element are all set to zero.It means that this element is killed.Once the death element is activated, the above parameters for this element return to the original ones. When the jth is winding, the layers (≤j) are all activated,and the layers(>j)are all killed.This method can be used to simulate the jth layer winding undisturbed by the subsequent winding layers. And when the (j+1)th layer is activated to be calculated,it can start with the outer diameter of the wrapped layer j rather than the one modeled at the beginning for the jth layer.

    4. Calculation and discussion

    In order to verify the results’ reliability, the liner in the above barrel model is assumed to be simplified as a copper liner,and the constant tension winding method is adopted in this model. The results gained from the theoretical model and numerical simulation model are compared with each other. The distributions of all direction components of residual prestress through the wall thickness for this simplified barrel model are shown in Fig. 2. It reveals that the distribution trends of residual prestress obtained by two methods are consistent,and the stresses in all directions of liner are mainly compressive stresses. Stresses in the interfaces among different materials appear various degrees of fluctuation,especially in the interfaces of liner and filament wound layers, inner glass fiber layers and carbon fiber layers.The differences of the stresses’ values in the liners for two kinds of models are relatively bigger,especially for the axial stress component.It is influenced by several factors,such as the constraints on the end faces of liner for the numerical simulation model, and theory of thin walled cylindrical shell for the theoretical model. But the distributions of residual prestress in the filament winding layers is close, so the numerical model is reliable to some extent, especially for the analysis of the residual prestress of the filament wound composite housing.

    Fig.2. Distributions of Residual prestress through the wall thickness for the simplified barrel model. (Method 1-Finite element method, Method 2- theoretical model).

    Then this numerical simulation method is applied to the simulation of residual prestress in the non-simplified filament wound composite barrel for railgun in Fig. 1(a). Three common winding tension control models,constant tension,constant torque and taper tension,are employed in the railgun’s barrels.In addition,with the taper tension winding, the initial fiber prestress along the fiber direction for the kth layer,which is also equal to the initial prestress in the fiber bundle listed in Eqs. (12) and (13), can be found as follows [6,21]:

    According to Eq.(16),if β=0,the winding tension control mode is simplified to the constant tension mode. While β = 1, the one turns into the constant torque mode. Furthermore, other taper tension winding modes(β=0.25,0.75)are also used in this work.The distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers with different β are given in Fig. 3.

    The distributions of residual stress caused by different winding tension control modes in the filament wound composite barrel for railgun are gained by the numerical simulation. Since the barrel liner consists of two different materials, two paths are defined on the section of barrel, which is located on the half length of barrel.Path oS1 is along the oy-axis and through the middle of the rail,while path oS2 is along the ox-axis and through the middle of the ceramic insulator, as shown in Fig.1(a). The variations of residual prestress components in all directions through the wall thickness of barrel for these two paths are displayed in Fig.4 and Fig.5.It can be also observed that the stresses in all directions of liner are mainly compressive stresses. And the stresses in the interfaces among different materials also present various degrees of fluctuation,especially in the interfaces of liner and filament wound composite housing, inner glass fiber layers and carbon fiber layers. With the taper coefficient increasing, the level of residual stress in barrel drops. It is because that the decreasing amplitude of winding tension enlarges gradually, which can be seen in Fig. 3. While β = 0(constant tension mode), the circumferential and axial residual prestresses become greater from the inner layer to the outer layer of the filament wound layers,obviously in the carbon fiber layers.It presents a feature of “internal looseness and external tightness”.And when β = 1 (constant torque mode), the circumferential and axial residual prestresses in the filament wound layers are relatively more uniform,especially in the carbon fiber layers.It is closer to the requirement of iso-stress design for filament winding.

    Fig. 3. Distributions of initial fiber prestress in fiber direction through the wall thickness for the filament wound layers.

    Fig. 4. Variations of residual prestress in all directions through the wall thickness of barrel for path oS1.

    Fig. 5. Variations of residual prestress in all directions through the wall thickness of barrel for path oS2.

    The residual prestress contours for all directions in railgun barrel, which is under the constant torque mode, are exhibited in Fig. 6. Clearly, residual stress in liner is variable along the circumference. It is due to the fact that the liner is made up of different materials which distributing along the circumference.It is also can be observed in Figs. 4 and 5. Therefore, there are differences for residual prestresses on the path oS1 and oS2.In which the axial and circumferential residual prestresses in rail liner are bigger than the ones in ceramic liner.But the differences for residual prestresses in filament wound layers on the two paths are relatively smaller.

    Moreover, the electromagnetic load in the railgun barrel is incomplete axial symmetry. When the electromagnetic load is greater, the contact interfaces between the rails and ceramic insulators will appear separation because of larger normal stress and shear stress on the interfaces [20]. And it will cause the failure of bore seal. Here, a constant electromagnetic pressure (200Mpa) is assumed to be loaded on the inner sides of rails.Then the path AB is defined on the contact plane(in circumference 60°)along the radial direction, as depicted in Fig. 1(a). And it is also on the section of barrel, which is located on the half length of barrel.

    The normal stress and shear stress on the path AB for the barrel only under the electromagnetic load, and the residual prestress in normal and shear direction on the path AB for the barrel after filament winding, are compared in Fig. 7. It presents that the normal stress on the contact interface for the liner only with the electromagnetic pressure is mainly tensile tress.And after filament winding with fiber prestress,the normal residual prestress on this contact interface is compressive stress.So the normal tensile stress leaded by the electromagnetic load can be weakened in a fiber prestress winding barrel during its launching. Similarly, the directions of the shear stresses on the contact interface under these two loading conditions are opposite to each other. Hence, it can enhance the bond strength for the interfaces and slow the separation of contact interfaces.Then the seal performance of bore will be improved. And with the decreasing of β, the normal residual prestress on the contact interface is larger, while the change of shear residual prestress is smaller.It means that reducing the value of β is better for improving the seal performance of bore. But the same kinds of stresses in the filament wound layers with two loading conditions respectively are in the same direction, so they are superimposed with each other.And the intensified stresses are bigger with the decline of β,which will lead to a higher stress level in the winding layers. This will reduce the strength of the composite housing for barrel.

    5. Conclusions

    In this work, a theoretical analysis model for the residual prestress only caused by the fibre pretension in the round composite barrel of railgun is developed. Based on the elastic theory and the theory of composite laminates,the barrel is simplified as a hybrid filament wound cylinder with an isotropic liner in this model. Then the residual prestress in this railgun barrel model is also simulated in a 3D finite element model through combining the temperature differential method with the element birth and death technology.

    Fig. 6. Residual prestress contours for all directions in railgun barrel with β = 1(unit:Pa).

    Fig. 7. Normal stress and Shear stress on the path AB.

    Comparing the results of two methods, it indicates that the distribution trends of residual prestress are consistent. And the difference for residual prestress in the filament wound composite housing of barrel is relatively small. Furthermore, the residual prestresses in the non-simplified composite barrels for railgun,which are wound with different winding tension modes, are analyzed by using the same numerical simulation method. The results reveal some rules of the distributions of residual prestresses of the barrel with different control modes of winding tension, and their effects on some mechanical performances of barrel. It can provide a reference to the optimal design of filament winding for railgun barrel.

    Declaration of competing interest

    No conflict of interest exits in the submission of this manuscript,and manuscript is approved by all authors for publication.I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere.All the authors:Dong-mei Yin, Bao-ming Li and Hong-cheng Xiao.

    We deeply appreciate your consideration of our manuscript,and we look forward to receiving comments from the reviewers.If you have any queries,please don’t hesitate to contact me at the address below.

    成年人免费黄色播放视频| 亚洲图色成人| 色5月婷婷丁香| 国产成人精品无人区| 最新中文字幕久久久久| 法律面前人人平等表现在哪些方面| 男男h啪啪无遮挡| 老汉色∧v一级毛片| 精品久久久久久,| 日本黄色日本黄色录像| 国产熟女午夜一区二区三区| 久久久久久久久免费视频了| 日本黄色视频三级网站网址 | 国产欧美日韩一区二区精品| 免费观看精品视频网站| 欧美 日韩 精品 国产| av视频免费观看在线观看| 日本a在线网址| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| 国产精品免费视频内射| 又紧又爽又黄一区二区| 色综合婷婷激情| 色综合婷婷激情| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| xxx96com| 国产aⅴ精品一区二区三区波| 欧美大码av| 熟女少妇亚洲综合色aaa.| 99久久综合精品五月天人人| aaaaa片日本免费| 一进一出抽搐动态| 久久九九热精品免费| 黄片大片在线免费观看| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 在线看a的网站| 国产精品亚洲av一区麻豆| 午夜91福利影院| 女人被躁到高潮嗷嗷叫费观| 国产精品九九99| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 一进一出抽搐gif免费好疼 | 99riav亚洲国产免费| 校园春色视频在线观看| 国产视频一区二区在线看| 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| 国产精品永久免费网站| 国产亚洲av高清不卡| 黄色女人牲交| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 麻豆乱淫一区二区| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 午夜91福利影院| 国产日韩欧美亚洲二区| а√天堂www在线а√下载 | 99精品欧美一区二区三区四区| 夜夜爽天天搞| svipshipincom国产片| 精品福利观看| 黄色女人牲交| 亚洲五月婷婷丁香| 久久久久国产一级毛片高清牌| www.熟女人妻精品国产| 少妇的丰满在线观看| 精品一区二区三区四区五区乱码| 国产区一区二久久| 欧美日韩福利视频一区二区| 国产麻豆69| 欧美日韩一级在线毛片| 免费在线观看黄色视频的| 国产麻豆69| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区字幕在线| 在线观看免费视频网站a站| cao死你这个sao货| 黄色a级毛片大全视频| 成人特级黄色片久久久久久久| 午夜福利,免费看| 中文欧美无线码| 黄色a级毛片大全视频| 激情视频va一区二区三区| 午夜福利,免费看| 嫁个100分男人电影在线观看| 精品熟女少妇八av免费久了| 亚洲中文日韩欧美视频| 九色亚洲精品在线播放| 久久久精品免费免费高清| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 飞空精品影院首页| 久久精品人人爽人人爽视色| 亚洲综合色网址| 手机成人av网站| 午夜福利一区二区在线看| 免费看十八禁软件| 热re99久久国产66热| 91成人精品电影| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 久久久久久久午夜电影 | 国产成人精品久久二区二区免费| 亚洲精品在线观看二区| 久久亚洲真实| 欧美大码av| 老汉色∧v一级毛片| 十八禁网站免费在线| 日韩人妻精品一区2区三区| 视频区图区小说| 欧美午夜高清在线| 一区二区三区精品91| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 母亲3免费完整高清在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 国产亚洲欧美在线一区二区| 性少妇av在线| 一边摸一边抽搐一进一出视频| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 国产主播在线观看一区二区| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 一进一出好大好爽视频| 午夜精品在线福利| 丁香六月欧美| 色在线成人网| 国产黄色免费在线视频| 亚洲色图综合在线观看| av欧美777| 18禁裸乳无遮挡免费网站照片 | 久热这里只有精品99| 18禁裸乳无遮挡免费网站照片 | 91麻豆精品激情在线观看国产 | 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看 | 国产视频一区二区在线看| 日韩三级视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 一级毛片精品| 亚洲美女黄片视频| 成人手机av| 99久久99久久久精品蜜桃| 精品一区二区三卡| 在线观看日韩欧美| 老司机在亚洲福利影院| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 99精国产麻豆久久婷婷| 久久热在线av| av线在线观看网站| 18禁裸乳无遮挡免费网站照片 | 人人妻人人爽人人添夜夜欢视频| bbb黄色大片| 又黄又粗又硬又大视频| 午夜福利,免费看| 精品无人区乱码1区二区| 在线十欧美十亚洲十日本专区| 亚洲视频免费观看视频| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 日本a在线网址| 搡老乐熟女国产| 国产深夜福利视频在线观看| 男人的好看免费观看在线视频 | 中亚洲国语对白在线视频| 国产日韩一区二区三区精品不卡| 欧美av亚洲av综合av国产av| 亚洲人成电影免费在线| 亚洲欧美日韩另类电影网站| 国产精品.久久久| 校园春色视频在线观看| 日韩欧美国产一区二区入口| 两性夫妻黄色片| netflix在线观看网站| av欧美777| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 一级a爱视频在线免费观看| 国产一区二区三区综合在线观看| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| cao死你这个sao货| 久久精品国产综合久久久| 在线永久观看黄色视频| 成年女人毛片免费观看观看9 | 99国产精品一区二区蜜桃av | 久久人妻福利社区极品人妻图片| 亚洲色图综合在线观看| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 乱人伦中国视频| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 国产午夜精品久久久久久| 狂野欧美激情性xxxx| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| av一本久久久久| 欧美日韩亚洲高清精品| 久久久久久久久久久久大奶| 欧美乱色亚洲激情| 国产精品二区激情视频| 日本一区二区免费在线视频| 亚洲精品国产色婷婷电影| 韩国av一区二区三区四区| www.自偷自拍.com| 亚洲精品一二三| 啪啪无遮挡十八禁网站| 亚洲成国产人片在线观看| 757午夜福利合集在线观看| 丝袜在线中文字幕| 黄色女人牲交| 天天操日日干夜夜撸| 日本a在线网址| 高清av免费在线| 窝窝影院91人妻| 亚洲国产欧美日韩在线播放| 国产精品二区激情视频| 亚洲人成电影免费在线| 国产精品免费大片| 亚洲欧美一区二区三区久久| 十八禁高潮呻吟视频| 欧美黑人精品巨大| 香蕉丝袜av| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区视频在线观看免费 | 亚洲精品美女久久久久99蜜臀| 久久精品国产综合久久久| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 精品电影一区二区在线| 男人的好看免费观看在线视频 | avwww免费| 国产欧美日韩综合在线一区二区| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 久久国产精品男人的天堂亚洲| 午夜精品久久久久久毛片777| 免费日韩欧美在线观看| 欧美激情高清一区二区三区| 午夜免费鲁丝| 精品国产美女av久久久久小说| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 男女之事视频高清在线观看| 美国免费a级毛片| 美女高潮喷水抽搐中文字幕| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡免费网站照片 | 五月开心婷婷网| 国产高清国产精品国产三级| 成年动漫av网址| 中亚洲国语对白在线视频| 啦啦啦在线免费观看视频4| 丰满饥渴人妻一区二区三| 亚洲精品国产精品久久久不卡| 久久久精品国产亚洲av高清涩受| 少妇猛男粗大的猛烈进出视频| 激情视频va一区二区三区| 五月开心婷婷网| 日本wwww免费看| 精品福利观看| 一区二区日韩欧美中文字幕| 国产精品九九99| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 每晚都被弄得嗷嗷叫到高潮| 十八禁网站免费在线| 女人精品久久久久毛片| 欧美日韩精品网址| 国产一卡二卡三卡精品| 日韩人妻精品一区2区三区| 色尼玛亚洲综合影院| 曰老女人黄片| 黄片小视频在线播放| 香蕉国产在线看| 热re99久久国产66热| 国产真人三级小视频在线观看| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 亚洲精品在线美女| 男女下面插进去视频免费观看| 在线国产一区二区在线| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 99国产极品粉嫩在线观看| 亚洲精品自拍成人| xxxhd国产人妻xxx| av线在线观看网站| 精品国产一区二区三区久久久樱花| 成人三级做爰电影| 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 两性夫妻黄色片| 国产1区2区3区精品| 国产成人系列免费观看| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 91字幕亚洲| 51午夜福利影视在线观看| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 欧美日韩中文字幕国产精品一区二区三区 | 久久这里只有精品19| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 国产精品av久久久久免费| 99精品在免费线老司机午夜| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 日韩欧美三级三区| 最新美女视频免费是黄的| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲九九香蕉| 丝袜美足系列| 久久精品国产亚洲av香蕉五月 | 亚洲精品在线美女| 99国产综合亚洲精品| 日本vs欧美在线观看视频| 欧美日韩av久久| av欧美777| 又大又爽又粗| 黑人操中国人逼视频| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩乱码在线| 老司机福利观看| 麻豆乱淫一区二区| 国产精品.久久久| 色综合欧美亚洲国产小说| 欧美日韩黄片免| 一夜夜www| 精品久久久精品久久久| 黄频高清免费视频| 亚洲成人手机| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| av天堂久久9| 亚洲成人国产一区在线观看| 午夜免费鲁丝| 国产精品九九99| 啦啦啦在线免费观看视频4| 久久久水蜜桃国产精品网| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 久久人妻av系列| 亚洲视频免费观看视频| 91老司机精品| 久久香蕉国产精品| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 亚洲专区字幕在线| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 国产精品偷伦视频观看了| 亚洲欧美激情在线| 成人黄色视频免费在线看| 久久婷婷成人综合色麻豆| 久久久国产成人免费| 老汉色∧v一级毛片| 久久久国产成人免费| 中文字幕制服av| 99riav亚洲国产免费| 欧美性长视频在线观看| 99精品欧美一区二区三区四区| 成人三级做爰电影| av视频免费观看在线观看| av有码第一页| 免费观看精品视频网站| 国产免费现黄频在线看| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 国产精品久久久久成人av| 亚洲国产精品一区二区三区在线| 久久国产精品影院| 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 一a级毛片在线观看| svipshipincom国产片| 亚洲精品一二三| 人人澡人人妻人| 99re6热这里在线精品视频| 亚洲欧美日韩高清在线视频| 精品久久久久久久毛片微露脸| 一本综合久久免费| 男女下面插进去视频免费观看| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 三上悠亚av全集在线观看| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 亚洲精品国产一区二区精华液| 精品国产美女av久久久久小说| 久久人人爽av亚洲精品天堂| 美女高潮到喷水免费观看| 91在线观看av| 高清黄色对白视频在线免费看| 亚洲专区国产一区二区| 久久久国产成人免费| 黑人巨大精品欧美一区二区蜜桃| 国产单亲对白刺激| 丰满的人妻完整版| av国产精品久久久久影院| 国产三级黄色录像| 午夜福利影视在线免费观看| 99国产精品一区二区蜜桃av | 别揉我奶头~嗯~啊~动态视频| 黑人巨大精品欧美一区二区蜜桃| 777米奇影视久久| 国产蜜桃级精品一区二区三区 | 国产有黄有色有爽视频| 国产精品98久久久久久宅男小说| 欧美色视频一区免费| www.自偷自拍.com| 色综合欧美亚洲国产小说| 国产不卡av网站在线观看| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 麻豆成人av在线观看| 中文欧美无线码| 日韩制服丝袜自拍偷拍| 老司机福利观看| 宅男免费午夜| 亚洲成人手机| 免费人成视频x8x8入口观看| 老汉色∧v一级毛片| 性少妇av在线| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 狠狠婷婷综合久久久久久88av| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 乱人伦中国视频| 成熟少妇高潮喷水视频| 国产精品二区激情视频| 欧美乱码精品一区二区三区| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 国产成人欧美在线观看 | 中文字幕av电影在线播放| 日韩欧美免费精品| 侵犯人妻中文字幕一二三四区| 一级作爱视频免费观看| 国产在线观看jvid| 黑人欧美特级aaaaaa片| 精品国产一区二区三区久久久樱花| 欧美日韩精品网址| 男人操女人黄网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一区二区在线不卡| 亚洲中文av在线| 757午夜福利合集在线观看| 男人的好看免费观看在线视频 | 欧美激情高清一区二区三区| 国产视频一区二区在线看| 国产国语露脸激情在线看| 日韩成人在线观看一区二区三区| 久久影院123| 国产精品九九99| 欧美性长视频在线观看| 国产色视频综合| 黑人巨大精品欧美一区二区蜜桃| 午夜久久久在线观看| 免费在线观看完整版高清| 亚洲av成人一区二区三| 亚洲av欧美aⅴ国产| 丝袜在线中文字幕| 大码成人一级视频| 91精品三级在线观看| 午夜91福利影院| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| 亚洲avbb在线观看| 日韩三级视频一区二区三区| 欧美激情久久久久久爽电影 | 亚洲五月天丁香| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 亚洲av成人av| 欧美日韩瑟瑟在线播放| 69精品国产乱码久久久| 精品一区二区三卡| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av | 99久久综合精品五月天人人| 91精品三级在线观看| 欧美人与性动交α欧美软件| 十八禁人妻一区二区| 日本五十路高清| 久久久久精品国产欧美久久久| 国产免费现黄频在线看| 一二三四在线观看免费中文在| 人人妻人人澡人人看| 久久精品aⅴ一区二区三区四区| 一级毛片女人18水好多| 大型av网站在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲成a人片在线一区二区| 在线观看一区二区三区激情| 少妇的丰满在线观看| 美女午夜性视频免费| 国产激情久久老熟女| 久热这里只有精品99| 成人18禁在线播放| 国产精品国产av在线观看| 国产片内射在线| 亚洲男人天堂网一区| 欧美最黄视频在线播放免费 | 亚洲精品在线观看二区| 99热网站在线观看| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 欧美不卡视频在线免费观看 | 欧美日韩亚洲高清精品| 精品熟女少妇八av免费久了| 久久精品国产a三级三级三级| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 欧美久久黑人一区二区| 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 精品国产一区二区三区久久久樱花| 久久精品亚洲熟妇少妇任你| 中亚洲国语对白在线视频| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 悠悠久久av| 99久久精品国产亚洲精品| 丁香欧美五月| 欧美精品av麻豆av| 免费高清在线观看日韩| 一区二区三区激情视频| 中出人妻视频一区二区| 国产欧美日韩精品亚洲av| 在线十欧美十亚洲十日本专区| 欧美日韩福利视频一区二区| 久久精品aⅴ一区二区三区四区| 亚洲av成人一区二区三| 青草久久国产| 国产不卡一卡二| 啦啦啦视频在线资源免费观看| 免费人成视频x8x8入口观看| av线在线观看网站| 两个人看的免费小视频| 国产成人精品久久二区二区91| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 中文字幕另类日韩欧美亚洲嫩草| 每晚都被弄得嗷嗷叫到高潮| 色尼玛亚洲综合影院| 国内毛片毛片毛片毛片毛片| 飞空精品影院首页| 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 热re99久久国产66热| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 亚洲精品国产精品久久久不卡| 国产精品久久久久成人av| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看 | 19禁男女啪啪无遮挡网站| 变态另类成人亚洲欧美熟女 | 日本wwww免费看| 亚洲av美国av| 9热在线视频观看99| 免费不卡黄色视频| 老汉色av国产亚洲站长工具| 欧美日韩av久久| 十分钟在线观看高清视频www| 国产欧美亚洲国产| 国产视频一区二区在线看| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 精品国产超薄肉色丝袜足j| 国产精品久久电影中文字幕 | 看片在线看免费视频|