• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ASPH在肝臟惡性腫瘤發(fā)生發(fā)展中作用和機(jī)制研究進(jìn)展

    2020-06-08 10:18:56鄒怡然王海波李俊沈鋒
    青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2020年2期
    關(guān)鍵詞:天冬酰胺細(xì)胞系生長(zhǎng)因子

    鄒怡然 王海波 李俊 沈鋒

    [摘要] 天冬氨酰-(天冬酰胺酰)β-羥化酶(ASPH)是α-酮戊二酸依賴性雙加氧酶,催化天冬氨酰和天冬酰胺基殘基的羥化。ASPH在肝細(xì)胞癌和肝內(nèi)膽管癌中均有表達(dá),對(duì)二者的發(fā)生和發(fā)展有作用。本文主要對(duì)ASPH的結(jié)構(gòu)和功能及其作用機(jī)制的研究進(jìn)展進(jìn)行綜述。

    [關(guān)鍵詞] 天冬氨酰-(天冬酰胺酰)β-羥化酶;α酮戊二酸依賴性雙加氧酶FTO;肝腫瘤;受體,Notch;綜述

    [中圖分類號(hào)] R345;R735.7 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0248-05

    doi:10.11712/jms.2096-5532.2020.56.101 [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

    [網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200521.1527.002.html;2020-05-22 08:50

    [ABSTRACT] Aspartyl-(asparaginyl)-β-hydroxylase (ASPH) is a α-ketoglutarate-dependent dioxygenase and catalyzes the hydroxylation of aspartyl and asparaginyl residues. ASPH is expressed in both hepatocellular carcinoma and intrahepatic cholangiocarcinoma and has an effect on the development and progression of these two diseases. This article reviews the research advances in the structure, function, and mechanism of ASPH.

    [KEY WORDS] aspartyl-(asparaginyl)-β-hydroxylase; alpha-ketoglutarate-dependent dioxygenase FTO; liver neoplasms; receptors, Notch; review

    原發(fā)性肝癌是世界范圍內(nèi)最常見(jiàn)的癌癥之一,也是癌癥相關(guān)死亡的重要原因[1]。根據(jù)腫瘤組織來(lái)源可分為肝細(xì)胞癌(HCC)和肝內(nèi)膽管癌(ICC)[2],一般HCC占70%~85%,ICC占10%~20%[3]。天冬氨酰-(天冬酰胺酰)β-羥化酶(ASPH)是一種高度保守的雙加氧酶,在包括HCC和ICC的多種惡性腫瘤中高表達(dá)[4]。ASPH可以調(diào)控原發(fā)性肝癌的發(fā)生及發(fā)展,可能是疾病藥物及免疫治療研究的新方向。本文簡(jiǎn)要綜述了ASPH在HCC和ICC發(fā)生發(fā)展中作用和機(jī)制的研究進(jìn)展。

    1 HCC與ICC的診療現(xiàn)狀

    1.1 HCC的診療現(xiàn)狀

    HCC是全球第五大常見(jiàn)的惡性腫瘤,也是與癌癥相關(guān)死亡的第二大原因[3]。HCC的發(fā)病率隨年齡升高而增高,且男性的發(fā)病率約為女性的2倍[5]。最常見(jiàn)的致病因素是慢性病毒性肝炎(HBV與HCV)、長(zhǎng)期飲酒和黃曲霉毒素暴露等[6]。尤其HBV感染,全球大約有60%的HCC病人發(fā)病與之相關(guān)[7]。肝切除(LR)和肝移植(LT)是早期腫瘤病人的首選治療方法,其中LR是臨床應(yīng)用最廣泛的治療手段,符合切除標(biāo)準(zhǔn)的病人接受LR術(shù)后能取得比較滿意的治療效果[8]。但是對(duì)于沒(méi)有條件接受LR、LT或者化學(xué)栓塞治療的晚期病人,其治療方式的選擇有限。然而令人欣喜的是,索拉菲尼——一種多酪氨酸激酶抑制劑的出現(xiàn)有效延長(zhǎng)了晚期肝癌病人的生存期[9-10]。同時(shí),新的分子靶向藥物也不斷被開(kāi)發(fā)和應(yīng)用:瑞戈非尼——一種口服多激酶抑制劑,作為索拉菲尼耐藥病人的二線用藥已進(jìn)入臨床應(yīng)用[11];樂(lè)伐替尼——一種血管內(nèi)皮生長(zhǎng)因子受體1~3抑制劑,成纖維細(xì)胞生長(zhǎng)因子受體1~4抑制劑,血小板衍生生長(zhǎng)因子受體α、轉(zhuǎn)染重排(RET)和KIT的抑制劑,在一項(xiàng)開(kāi)放性、多中心、非劣效性、隨機(jī)試驗(yàn)中顯示其生存率不低于索拉非尼[12];近期,卡博替尼經(jīng)批準(zhǔn)用于甲狀腺癌和腎癌的血管內(nèi)皮細(xì)胞生長(zhǎng)因子受體(VEGFR)2和RET抑制劑,在HCC的二線治療中與安慰劑相比顯示出生存收益[13]。這些新的化療藥物的出現(xiàn),改變了晚期HCC的治療策略,在一定程度上提高了晚期病人的預(yù)后。

    1.2 ICC的診療現(xiàn)狀

    ICC起源于肝內(nèi)膽管的上皮細(xì)胞,是第二常見(jiàn)的原發(fā)性肝癌[14]。在過(guò)去的30年里,ICC的發(fā)病率和與其相關(guān)的死亡率都呈現(xiàn)上升趨勢(shì)[15]。其主要危險(xiǎn)因素包括:慢性肝炎(主要為HCV)、肝硬化、膽管炎性疾病、肝膽吸蟲(chóng)、過(guò)量乙醇攝入和肥胖等[16]。ICC發(fā)病于肝內(nèi),病人最初沒(méi)有癥狀或只表現(xiàn)非特異癥狀,包括腹痛、食欲不振、體質(zhì)量下降、全身乏力和盜汗等,這種隱匿的發(fā)病特點(diǎn)使ICC的早期診斷困難[17]。ICC具有高度的侵襲性,手術(shù)切除是目前治療ICC的主要手段,并可提高特定病人的生存率[18]。研究普遍認(rèn)為切緣無(wú)腫瘤細(xì)胞切除(R0)是手術(shù)治療的金標(biāo)準(zhǔn),并且切緣的陽(yáng)性病理結(jié)果與預(yù)后不良有著密切的聯(lián)系[19-20]。鑒于以上特點(diǎn),僅30%的病人有接受手術(shù)治療的機(jī)會(huì)[21]。手術(shù)效果也難以令人滿意,術(shù)后5年的無(wú)復(fù)發(fā)生存率和總生存率僅為26.1%和33.9%[22-23]。輔助化療可以為晚期或侵襲性ICC病人提供一定的生存收益,但在臨床實(shí)踐中尚缺少有效的靶向治療藥物。近年來(lái)針對(duì)新輔助治療(NAT)的研究逐漸增多,但因?qū)ζ涫找娲嬖跔?zhēng)議并未在臨床推廣應(yīng)用。雖然支持晚期ICC病人應(yīng)用NAT的證據(jù)十分有限,但已經(jīng)有多項(xiàng)研究顯示病人手術(shù)前接受降期治療能夠改善預(yù)后[24-26]。

    2 ASPH的結(jié)構(gòu)及功能

    ASPH是分子量為8.6萬(wàn)的Ⅱ型跨膜蛋白,屬于α-酮戊二酸依賴性的雙加氧酶[27-33]。其基因全長(zhǎng)含有214 085個(gè)堿基,有33個(gè)外顯子,可編碼4種蛋白質(zhì),即ASPH、Junctin(肌漿網(wǎng)的結(jié)構(gòu)蛋白)、humbug(缺少催化結(jié)構(gòu)域)和Junctate[34-35]。ASPH催化某些蛋白質(zhì)(包括Notch1和Jagged)的表皮生長(zhǎng)因子(EGF)樣結(jié)構(gòu)域中的天冬氨酰和天冬酰胺基殘基的羥化[34,36-38],其在一般成人體內(nèi)組織中表達(dá)非常低[39-41],但是其在促進(jìn)細(xì)胞遷移和器官發(fā)育的過(guò)程中發(fā)揮一定作用,可在胚胎組織中表達(dá)[27-28]。研究人員在包括肝臟惡性腫瘤、肺癌、乳癌、結(jié)腸癌和神經(jīng)系統(tǒng)惡性腫瘤等的轉(zhuǎn)錄和翻譯水平都觀察到了ASPH的過(guò)度表達(dá)[42-43]。ASPH在HCC中過(guò)表達(dá)與病人手術(shù)后較高的復(fù)發(fā)率和較低的存活率之間存在顯著關(guān)聯(lián)[41]。盡管在ICC中也觀察到ASPH的過(guò)表達(dá),并且提示了ASPH與ICC術(shù)后不良預(yù)后的關(guān)系[44],但ASPH在ICC中的作用機(jī)制的相關(guān)研究較少,還有待進(jìn)一步深入探索。

    2.1 ASPH在HCC中的作用機(jī)制

    在HCC中存在ASPH過(guò)度表達(dá)的現(xiàn)象[45],且ASPH是HCC組織中表達(dá)最高的腫瘤抗原前體蛋白之一[46]。研究表明,與ASPH表達(dá)低的病人比較,ASPH表達(dá)高者腫瘤復(fù)發(fā)率高、生存率低,預(yù)后不良[41]。

    ASPH刺激可導(dǎo)致抗原特異性CD4+T細(xì)胞的形成,采用ASPH負(fù)載的樹(shù)突狀細(xì)胞免疫可以降低HCC小鼠模型中腫瘤復(fù)發(fā)的風(fēng)險(xiǎn)[47]。在HepG2細(xì)胞中,ASPH的表達(dá)可由胰島素和胰島素樣生長(zhǎng)因子1(IGF-1)通過(guò)ERK/MAPK和PI3K/AKT信號(hào)通路誘導(dǎo),并被胰島素受體底物1(IRS-1)的過(guò)度表達(dá)激活,從而導(dǎo)致HepG2細(xì)胞的運(yùn)動(dòng)性和侵襲性增加;反之,siRNA抑制ASPH表達(dá)可降低HepG2細(xì)胞的運(yùn)動(dòng)性和侵襲性[42]。在轉(zhuǎn)基因小鼠的肝臟中,乙型肝炎X蛋白(HBx)+/IRS-1+雙轉(zhuǎn)基因小鼠肝細(xì)胞不典型增生增加,繼而發(fā)展為HCC,且肝臟中ASPH的mRNA表達(dá)選擇性地增加,進(jìn)一步證明了ASPH的過(guò)度表達(dá)與肝細(xì)胞的惡性轉(zhuǎn)化之間存在聯(lián)系[48]。

    2.2 ASPH通過(guò)Notch信號(hào)通路作用于HCC

    Notch信號(hào)通路在HCC細(xì)胞系中起到重要作用,并且Notch信號(hào)通路與ASPH也存在一定的聯(lián)系。Notch信號(hào)級(jí)聯(lián)是一種高度保守的通路,具有多種功能,在胚胎發(fā)育過(guò)程中對(duì)細(xì)胞信號(hào)傳導(dǎo)和決定細(xì)胞命運(yùn)的控制具有重要作用[49-51]。不僅于此,其在肝臟的生成、修復(fù)和代謝等方面也發(fā)揮著重要作用。哺乳動(dòng)物中存在4種不同的Notch受體(Notch1~4),其應(yīng)答于5種不同的配體(Delta-like 1、3、4和Jagged1、Jagged2)[51]。研究結(jié)果顯示,在多種HCC細(xì)胞系中,Notch受體1、2、3和4以及配體Jagged1均有表達(dá),并且Notch細(xì)胞內(nèi)結(jié)構(gòu)域(NICDs)和活化的Notch2細(xì)胞內(nèi)結(jié)構(gòu)域在部分HCC細(xì)胞系中也有顯著地表達(dá),這一結(jié)果表明Notch信號(hào)通路存在于HCC細(xì)胞系中[52]。研究者已經(jīng)通過(guò)計(jì)算機(jī)輔助藥物設(shè)計(jì)并且開(kāi)發(fā)了ASPH的小分子抑制劑MO-I-1100,通過(guò)檢測(cè)發(fā)現(xiàn)該化合物能將ASPH的活性降低80%[53-55]。使用該化合物可降低HCC細(xì)胞中下游Notch調(diào)節(jié)的HES1和HEY1基因的表達(dá),成功抑制HCC細(xì)胞的遷移、侵襲和錨定依賴生長(zhǎng)[52]。在動(dòng)物模型中,抑制ASPH活性可通過(guò)抑制HCC的Notch信號(hào)級(jí)聯(lián)抑制原位和皮下小鼠模型體內(nèi)的HCC的生長(zhǎng),產(chǎn)生抗腫瘤作用 [55]。

    2.3 ASPH在ICC中的作用機(jī)制

    ASPH高度表達(dá)這一現(xiàn)象在膽管癌中尤為突出,其陽(yáng)性率>95%[43,53]。通過(guò)對(duì)ICC病人臨床數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)ASPH的表達(dá)與腫瘤大小、浸潤(rùn)性生長(zhǎng)方式、侵襲性組織學(xué)分級(jí)和血管侵犯等變量相關(guān),并且ASPH表達(dá)的增加是預(yù)后的危險(xiǎn)因素,提示ASPH在調(diào)節(jié)ICC細(xì)胞侵襲或轉(zhuǎn)移能力方面具有重要作用[44]。在ICC細(xì)胞系中,與高分化分型相比,ASPH在中分化或低分化腫瘤細(xì)胞中的表達(dá)更高,并通過(guò)促進(jìn)細(xì)胞運(yùn)動(dòng)的方式促進(jìn)ICC細(xì)胞的浸潤(rùn)性生長(zhǎng)[54]。但是,在人正常增殖膽管細(xì)胞和大鼠非膽管癌模型中,不存在ASPH的過(guò)表達(dá)現(xiàn)象,這表明ASPH的過(guò)度表達(dá)與膽管上皮細(xì)胞轉(zhuǎn)化為惡性腫瘤細(xì)胞有關(guān)[43]。此外,在大鼠ICC模型中,ASPH負(fù)載樹(shù)突狀細(xì)胞的免疫具有抗腫瘤作用,這些樹(shù)突狀細(xì)胞在體外對(duì)ICC細(xì)胞具有細(xì)胞毒性,抑制了肝內(nèi)腫瘤的生長(zhǎng)和轉(zhuǎn)移,并且還與CD3+T細(xì)胞向腫瘤浸潤(rùn)的增加相關(guān)[55]。這與HCC中CD4+T細(xì)胞向腫瘤浸潤(rùn)的增加類似卻又有所區(qū)別。

    2.4 ASPH通過(guò)Notch信號(hào)通路作用于ICC

    一些研究表明,Notch信號(hào)通路與ICC的發(fā)生和發(fā)展有關(guān):從機(jī)制上講,Notch信號(hào)級(jí)聯(lián)反應(yīng)的激活與ICC發(fā)生存在關(guān)聯(lián),ASPH過(guò)表達(dá)通過(guò)Notch1依賴的細(xì)胞周期蛋白D1(Cyclin D1)途徑,促進(jìn)Notch活化和調(diào)控ICC進(jìn)程。Notch下游靶點(diǎn)Cyclin D1在ICC細(xì)胞系中被Notch信號(hào)轉(zhuǎn)錄調(diào)控[56],提示它可能是調(diào)節(jié)細(xì)胞周期的重要效應(yīng)器。有研究者發(fā)現(xiàn)一種新的分子機(jī)制“ASPH-Notch-Cyclin D1”是ICC生長(zhǎng)和進(jìn)展的驅(qū)動(dòng)因子,并針對(duì)性使用ASPH的小分子抑制劑,成功在體外抑制ICC細(xì)胞的增殖[57]。

    3 ASPH的應(yīng)用前景

    近年來(lái),ASPH在HCC與ICC的研究中取得重要進(jìn)展,如前所述,針對(duì)性開(kāi)發(fā)的小分子抑制劑在細(xì)胞和動(dòng)物模型中能夠有效抑制腫瘤的生長(zhǎng)。與此同時(shí),在其他多種惡性腫瘤的分子靶向治療研究中,ASPH也展示出一定的開(kāi)發(fā)價(jià)值:ASPH小分子抑制劑MO-I-1100除了能夠抑制HCC,還在前列腺癌的研究中也展示出相似的腫瘤抑制效果[53]。在針對(duì)多形性膠質(zhì)母細(xì)胞瘤(GBM)的研究中,ASPH小分子抑制劑MO-I-1100和MO-I-1151能夠顯著降低GBM細(xì)胞的存活率和定向運(yùn)動(dòng)能力[58]。在乳癌中,以ASPH為靶點(diǎn)的人單克隆抗體(mAb)PAN-622在腫瘤細(xì)胞表面的放射性標(biāo)記是一種全新的顯像方法,并且有可能用于轉(zhuǎn)移性乳癌的治療[59]。

    4 結(jié)語(yǔ)

    越來(lái)越多的研究已關(guān)注到,ASPH在原發(fā)性肝癌的發(fā)生和發(fā)展過(guò)程中發(fā)揮著重要的作用。ASPH在HCC和ICC組織中的表達(dá)較正常組織都是升高的,無(wú)論是何種組織類型來(lái)源,ASPH在腫瘤組織中的高表達(dá)都與病人的不良預(yù)后存在關(guān)聯(lián),說(shuō)明圍繞ASPH機(jī)制進(jìn)一步深入研究在臨床應(yīng)用上有巨大前景和重要意義。從機(jī)制上看,ASPH在Notch通路中的調(diào)控作用在兩種主要原發(fā)性肝癌中均有所體現(xiàn),且針對(duì)Notch通路的ASPH小分子抑制劑能夠在動(dòng)物模型中抑制腫瘤的增殖和轉(zhuǎn)移,提示了一個(gè)新的靶向治療的研究方向和思路。

    [參考文獻(xiàn)]

    [1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.

    [2] SIA D, VILLANUEVA A, FRIEDMAN S L, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017,152(4):745-761.

    [3] MASSARWEH N N, EL-SERAG H B. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017,24(3):1073274817729245.

    [4] HOU G, XU B, BI Y, et al. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: a brief update[J]. Bosnian journal of basic medical sciences, 2018,18(4):297.

    [5] VILLANUEVA A. Hepatocellular carcinoma[J]. New England Journal of Medicine, 2019,380(15):1450-1462.

    [6] BUDNY A, KOZOWSKI P, KAMISKA M, et al. Epidemiology and risk factors of hepatocellular carcinoma[J]. Pol Merkur Lekarski, 2017,43(255):133-139.

    [7] AKINYEMIJU T, ABERA S, AHMED M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and National level Results from the global burden of disease study 2015[J]. JAMA Oncology, 2017,3(12):1683-1691.

    [8] KULIK L, EL-SERAG H B. Epidemiology and management of hepatocellular carcinoma[J]. Gastroenterology, 2019,156(2):477-491. e1.

    [9] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. New England Journal of Medicine, 2008,359(4):378-390.

    [10] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. The Lancet Oncology, 2009,10(1):25-34.

    [11] BRUIX J, QIN S K, MERLE P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on so-rafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet, 2017,389(164):56-66.

    [12] KUDO M, FINN R S, QIN S K, et al. Lenvatinib versus so-rafenib in first-line treatment of patients with unresectable he-patocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. The Lancet, 2018,391(1126):1163-1173.

    [13] ABOU-ALFA G K, MEYER T, CHENG A L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. New England Journal of Medicine, 2018,379(1):54-63.

    [14] ALJIFFRY M, ABDULELAH A, WALSH M, et al. Evidence-based approach to cholangiocarcinoma:a systematic review of the current literature[J]. Journal of the American College of Surgeons, 2009,208(1):134-147.

    [15] KHAN S A, EMADOSSADATY S, LADEP N G, et al. Ri-sing trends in cholangiocarcinoma:is the ICD classification system misleading us[J]? Journal of Hepatology, 2012,56(4):848-854.

    [16] PETRICK J L, YANG B, ALTEKRUSE S F, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare[J]. PLoS One, 2017,12(10):e0186643.

    [17] LAZARIDIS K N, GORES G J. Cholangiocarcinoma[J]. Gastroenterology, 2005,128(6):1655-1667.

    [18] BRIDGEWATER J, GALLE P R, KHAN S A, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2014,60(6):1268-1289.

    [19] SPOLVERATO G, YAKOOB M Y, KIM Y, et al. The impact of surgical margin status on long-term outcome after resection for intrahepatic cholangiocarcinoma[J]. Annals of Surgical Oncology, 2015,22(12):4020-4028.

    [20] YEH C N, HSIEH F J, CHIANG K C, et al. Clinical effect of a positive surgical margin after hepatectomy on survival of patients with intrahepatic cholangiocarcinoma[J]. Drug Design, Development and Therapy, 2015,9:163-174.

    [21] MOEINI A, SIA D, BARDEESY N, et al. Molecular pathogenesis and targeted therapies of intrahepatic cholangiocarcinoma[J]. Clinical Cancer Research, 2016,22(2):291-300.

    [22] CHAN K M, TSAI C Y, YEH C N, et al. Characterization of ? intrahepatic cholangiocarcinoma after curative resection:outcome,prognostic factor,and recurrence[J]. BMC Gastroente-rology, 2018,18(1):180.

    [23] DE JONG M C, NATHAN H, SOTIROPOULOS G C, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2011,29(23):3140-3145.

    [24] LE ROY B, GELLI M, PITTAU G, et al. Neoadjuvant che-motherapy for initially unresectable intrahepatic cholangiocarcinoma[J]. British Journal of Surgery, 2018,105(7):839-847.

    [25] KIM Y I, PARK J W, KIM B H, et al. Outcomes of concurrent chemoradiotherapy versus chemotherapy alone for advanced-stage unresectable intrahepatic cholangiocarcinoma[J]. Radiation Oncology, 2013,8(1):292.

    [26] LUNSFORD K E, JAVLE M, HEYNE K, et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series[J]. The lancet Gastroenterology & Hepatology, 2018,3(5):337-348.

    [27] GRONKE R S, VANDUSEN W J, GARSKY V M, et al. Aspartyl beta-hydroxylase:in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor Ⅸ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(10):3609-3613.

    [28] STENFLO J, HOLME E, LINDSTEDT S, et al. Hydroxy-lation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989,86(2):444-447.

    [29] SHIMIZU K, CHIBA S, KUMANO K, et al. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods[J]. Journal of Biological Chemistry, 1999,274(46):32961-32969.

    [30] ZIMRIN A B, PEPPER M S, MCMAHON G A, et al. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro[J]. Journal of Biological Chemistry, 1996,271(51):32499-32502.

    [31] MCGINNIS K, KU G M, VANDUSEN W J, et al. Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) beta-hydroxylase: evidence that histidine 675 has a role in binding Fe2+[J]. Biochemistry, 1996,35(13):3957-3962.

    [32] WANDS J R, LAVAISSIERE L, MORADPOUR D, et al. Immunological approach to hepatocellular carcinoma[J]. Journal of Viral Hepatitis, 1997,4:60-74.

    [33] HO S P, SCULLY M S, KRAUTHAUSER C M, et al. Antisense oligonucleotides selectively regulate aspartyl beta-hydroxylase and its truncated protein isoform in vitro but distribute poorly into A549 tumors in vivo[J]. Journal of Pharmacology and Experimental Therapeutics, 2002,302(2):795-803.

    [34] DINCHUK J E, HENDERSON N L, BURN T C, et al. As-partyl beta-hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin[J]. Journal of Biological Chemistry, 2000,275(50):39543-39554.

    [35] TREVES S, FERIOTTO G, MOCCAGATTA L, et al. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco (endo) plasmic reti-culum membrane[J]. Journal of Biological Chemistry, 2000,275(50):39555-39568.

    [36] MONKOVIC D D, VANDUSEN W J, PETROSKI C J, et al. Invertebrate aspartyl/asparaginyl beta-hydroxylase: potential modification of endogenous epidermal growth factor-like mo-dules[J]. Biochemical and Biophysical Research Communications, 1992,189(1):233-241.

    [37] DINCHUK J E, FOCHT R J, KELLEY J A, et al. Absence of post-translational aspartyl beta-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia[J]. Journal of Biological Chemistry, 2002,277(15):12970-12977.

    [38] CANTARINI M C, DE LA MONTE S M, PANG M Y, et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms[J]. Hepatology (Baltimore, Md.), 2006,44(2):446-457.

    [39] PATEL N, KHAN A O, MANSOUR A, et al. Mutations in ASPH cause facial dysmorphism, lens dislocation, anterior-segment abnormalities, and spontaneous filtering blebs, or Traboulsi syndrome[J]. American Journal of Human Gene-tics, 2014,94(5):755-759.

    [40] WANG Zhiwei, LI Yiwei, KONG Dejuan, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Current Drug Targets, 2010,11(6):745-751.

    [41] WANG Kui, LIU Jian, YAN Zhenlin, et al. Overexpression of aspartyl-(asparaginyl)-beta-hydroxylase in hepatocellular carcinoma is associated with worse surgical outcome[J]. Hepatology (Baltimore, Md.), 2010,52(1):164-173.

    [42] DE LA MONTE S M, TAMAKI S, CANTARINI M C, et al. Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness[J]. Journal of Hepatology, 2006,44(5):971-983.

    [43] INCE N, DE LA MONTE S M, WANDS J R. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation[J]. Cancer Research, 2000,60(5):1261-1266.

    [44] MAEDA T, TAGUCHI K, AISHIMA S, et al. Clinicopathological correlates of aspartyl (asparaginyl) beta-hydroxylase over-expression in cholangiocarcinoma[J]. Cancer Detection and Prevention, 2004,28(5):313-318.

    [45] LAVAISSIERE L, JIA S, NISHIYAMA M, et al. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma[J]. Journal of Clinical Investigation, 1996,98(6):1313-1323.

    [46] AREF A M, HOA N T, GE L, et al. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma[J]. Onco Targets and therapy, 2014,7:1061.

    [47] SHIMODA M, TOMIMARU Y, CHARPENTIER K P, et al. Tumor progression-related transmembrane protein aspartate-beta-hydroxylase is a target for immunotherapy of hepatocellular carcinoma[J]. Journal of Hepatology, 2012,56(5):1129-1135.

    [48] LONGATO L, DE LA MONTE S, KUZUSHITA N, et al. Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver[J]. Hepato-logy, 2009,49(6):1935-1943.

    [49] MIELE L, OSBORNE B. Arbiter of differentiation and death: Notch signaling meets apoptosis[J]. Journal of Cellular Phy-siology, 1999,181(3):393-409.

    [50] MIELE L, MIAO H, NICKOLOFF B J. NOTCH signaling as a novel cancer therapeutic target[J]. Current Cancer Drug Targets, 2006,6(4):313-323.

    [51] MIELE L. Notch signaling[J]. Clinical Cancer Research, 2006,12(4):1074-1079.

    [52] AIHARA A, HUANG C K, OLSEN M J, et al. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma[J]. Hepatology, 2014,60(4):1302-1313.

    [53] DONG X, LIN Q, AIHARA A, et al. Aspartate β-hydroxylase expression promotes a malignant pancreatic cellular phenotype[J]. Oncotarget, 2015,6(2):1231-1248.

    [54] MAEDA T, SEPE P, LAHOUSSE S, et al. Antisense oligodeoxynucleotides directed against aspartyl(asparaginyl)β-hydroxylase suppress migration of cholangiocarcinoma cells[J]. Journal of Hepatology, 2003,38(5):615-622.

    [55] NODA T, SHIMODA M, ORTIZ V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012,55(1):86-97.

    [56] SUGIMACHI K, AISHIMA S, TAGUCHI K, et al. The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma[J]. Journal of Hepatology, 2001,35(1):74-79.

    [57] HUANG C K, IWAGAMI Y, AIHARA A, et al. Anti-tumor effects of second generation beta-hydroxylase inhibitors on cholangiocarcinoma development and progression[J]. PLoS One, 2016,11(3):e0150336.

    [58] STURLA L M, TONG M, HEBDA N, et al. Aspartate-β-hydroxylase (ASPH): a potential therapeutic target in human malignant gliomas[J]. Heliyon, 2016,2(12):e00203.

    [59] REVSKAYA E, JIANG Z, MORGENSTERN A, et al. A radiolabeled fully human antibody to human aspartyl (asparaginyl) β-hydroxylase is a promising agent for imaging and therapy of metastatic breast cancer[J]. Cancer Biotherapy and Radiopharmaceuticals, 2017,32(2):57-65.

    (本文編輯 于國(guó)藝)

    猜你喜歡
    天冬酰胺細(xì)胞系生長(zhǎng)因子
    美國(guó)FDA批準(zhǔn)Rylaze(重組菊歐氏桿菌天冬酰胺酶-rywn)用于治療急性淋巴細(xì)胞白血病及淋巴母細(xì)胞淋巴瘤
    富天冬酰胺蛋白增強(qiáng)擬南芥輻射抗性的研究
    殼聚糖對(duì)天冬酰胺的吸附性能研究
    淺談L—天冬酰胺酶與其重組表達(dá)載體的研究
    STAT3對(duì)人肝內(nèi)膽管癌細(xì)胞系增殖與凋亡的影響
    鼠神經(jīng)生長(zhǎng)因子對(duì)2型糖尿病相關(guān)阿爾茨海默病的治療探索
    胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
    抑制miR-31表達(dá)對(duì)胰腺癌Panc-1細(xì)胞系遷移和侵襲的影響及可能機(jī)制
    E3泛素連接酶對(duì)卵巢癌細(xì)胞系SKOV3/DDP順鉑耐藥性的影響
    鼠神經(jīng)生長(zhǎng)因子修復(fù)周圍神經(jīng)損傷對(duì)斷掌再植術(shù)的影響
    安仁县| 惠来县| 朝阳市| 芜湖市| 神木县| 铜梁县| 安康市| 土默特左旗| 双城市| 山东省| 当阳市| 乌拉特中旗| 靖远县| 台北市| 晋州市| 安塞县| 吴旗县| 玛纳斯县| 石台县| 遂昌县| 五峰| 阿拉善盟| 满城县| 江孜县| 炎陵县| 河间市| 余庆县| 淮滨县| 曲沃县| 萨迦县| 游戏| 洛宁县| 深水埗区| 通城县| 西青区| 泰安市| 贡觉县| 四子王旗| 铁力市| 成都市| 阳朔县|