朱 帥,黃夢玲,吳倩倩,楊瑞鵬,張 敏,劉 云
專題報(bào)道(一)
蛋黃卵磷脂的結(jié)構(gòu)、提取、功能與脂質(zhì)體研究進(jìn)展
朱 帥1,黃夢玲1,吳倩倩1,楊瑞鵬2,張 敏2,劉 云1
(1. 北京化工大學(xué) 生命科學(xué)與技術(shù)學(xué)院,北京 100029;2. 蜜兒樂兒乳業(yè)(上海)有限公司,上海 200335)
綜述蛋黃卵磷脂的分子結(jié)構(gòu)、提取方法、功能活性,以及在脂質(zhì)體方面的最新研究現(xiàn)狀。蛋黃卵磷脂結(jié)構(gòu)主要是以甘油為骨架,通過?;I與磷酸和脂肪酸連接而成的一種磷脂類兩親分子,根據(jù)堿基基團(tuán)的不同,蛋黃卵磷脂包括了磷脂酰膽堿、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰絲氨酸、磷脂酸和磷脂酰甘油等6種。目前,提取蛋黃卵磷脂的方法主要有溶劑提取法和超臨界萃取法;蛋黃卵磷脂具有抗氧化、抗菌、抗炎、神經(jīng)保護(hù)和心腦血管保護(hù)等功能的生理活性;此外,還簡單介紹了蛋黃卵磷脂脂質(zhì)體的種類和應(yīng)用現(xiàn)狀。為蛋黃卵磷脂產(chǎn)品的開發(fā)提供良好的參考。
蛋黃卵磷脂;分子結(jié)構(gòu);提取方法;功能活性;脂質(zhì)體
蛋黃卵磷脂是從蛋黃中提取并精制得到的天然磷脂混合物,為兩親分子(一端為親水的含氮或磷的頭,另一端為疏水(親油)的長烴基鏈)。根據(jù)骨架醇種類的不同,蛋黃卵磷脂主要分兩類:一類是以甘油醇為骨架,稱為甘油磷脂(glycerophospholipids);另一類是以鞘氨醇為骨架,稱作鞘磷脂(sphingolipids)。
據(jù)報(bào)道,每百克蛋黃含有9.442 g磷脂、1 011 mg膽固醇、0.83 mg葉黃素、0.42 mg玉米黃素、0.53 mg角黃素和0.11 mg β-胡蘿卜素[1]。蛋黃體積約為全蛋的30%~32%,由脂肪(30%),蛋白質(zhì)(15%),水分(50%)等化學(xué)組成。Gazolu-Rusanova等利用SD-PAGE分離出蛋黃蛋白質(zhì)的種類和組成(如圖1右)[2]。經(jīng)冷凍離心后,蛋黃分上清(plasma)和沉淀(granules)兩部分。上清部分結(jié)構(gòu)主要為聚集體形式,沉淀部分主要為球狀(如圖1)。上清占蛋黃干物質(zhì)重77%~81%,沉淀占19%~23%。上清中含85%低密度脂蛋白(LDL)和15%卵黃蛋白(livetins)。沉淀中含70%高密度脂蛋白(HDL)、16%高磷蛋白(phosvitin)和12%低密度脂蛋白(LDL)[3]。
甘油卵磷脂的結(jié)構(gòu)特點(diǎn)是,甘油sn-1和sn-2上的羥基被飽和或者不飽和脂肪酸酯化,sn-3上的羥基被磷酸酯化,磷酸又與堿基連接,依據(jù)堿基基團(tuán)的不同,甘油卵磷脂主要種類包括磷脂酰膽堿(phosphatidylcholine, PC)、磷脂酰乙醇胺(phosphatidylethanolamine, PE)、磷脂酰肌醇(phosphatidylinositol, PI)、磷脂酰絲氨酸(phosphatidylserine, PS)、磷脂酸(phosphatidic acid, PA)和磷脂酰甘油(phosphatidylglycerol, PG)。除以上6種以外,甘油磷脂分子中甘油Sn-1位的脂?;婚L鏈醇取代形成乙烯醚,則稱為縮醛磷脂(plasmalogen glycerophospholipid)。甘油磷脂分子中磷?;涣姿狨セ〈Q為磷酸脂(phosphonolipid)。利用磷脂酶和特異性脂肪酶水解甘油卵磷脂,將產(chǎn)生溶血磷脂酰膽堿。Gazolu-Rusanova等研究表明,溶血磷脂酰膽堿油/水界面和液體膜特性起著非常重要的作用[2]。甘油磷脂的結(jié)構(gòu)與種類見圖2。
鞘磷脂(sphingolipid)由神經(jīng)鞘氨醇(sphingosine,簡稱鞘氨醇或神經(jīng)醇)、脂肪酸、磷酸與含氮堿基組成。脂?;c神經(jīng)醇的氨基以酰胺鍵相連,所形成的脂酰鞘氨醇又稱神經(jīng)酰胺;神經(jīng)醇的伯醇基與磷脂酰膽堿(或磷脂酰乙醇胺)以磷酸酯鍵相連。在神經(jīng)鞘磷脂中發(fā)現(xiàn)的脂肪酸有軟脂酸、硬脂酸、掬焦油酸、神經(jīng)烯酸等。鞘氨醇和神經(jīng)鞘磷脂的分子結(jié)構(gòu)如圖3所示。
圖1 蛋黃結(jié)構(gòu)與組成成分[2-3]
圖2 甘油磷脂種類與分子結(jié)構(gòu)[4]
圖3 鞘氨醇和神經(jīng)鞘磷脂的分子結(jié)構(gòu)
Ali等[5]采用超高效液相色譜耦合四極桿飛行時(shí)間質(zhì)譜 (UPLC-Q-TOF-MS)分析了鴨蛋、雞蛋和鵪鶉蛋中卵磷脂的分子結(jié)構(gòu),結(jié)果表明,上述3種不同來源禽蛋中主要卵磷脂結(jié)構(gòu)為磷脂酰膽堿(16:0/18:1), 磷脂酰膽堿(18:0/20:4Δ5,8,11,14),磷脂酰肌醇(18:0/18:2Δ9,12),磷脂酰絲氨酸(18:0/18:2Δ9,12),鞘磷脂(16:0/18:1Δ9)和溶血磷脂酰膽堿 (16:0) 等6種。研究表明,對卵磷脂結(jié)構(gòu)進(jìn)行改性,可以提高卵磷脂的理化特性[6-8]。Asomaning and Curtis采用sn-1,3特異性脂肪酶改性雞蛋卵磷脂,大大提高了卵磷脂的乳化性和營養(yǎng)價(jià)值,且脂肪酶重復(fù)使用10次,活力仍保持63%[9]。
有機(jī)溶劑提取法是提取蛋黃卵磷脂的常用方法,具有生產(chǎn)周期短、生產(chǎn)能力大、易于實(shí)現(xiàn)規(guī)?;慨a(chǎn)等優(yōu)點(diǎn)。Kovalcuks & Duma報(bào)道了蛋黃卵磷脂在極性溶劑乙醇和非極性溶劑正己烷中的分配系數(shù),結(jié)果表明,97.89% PC和99.81% PE溶解在乙醇中,只有2.11% PC和0.19% PE溶解在正己烷中[10]。因此,根據(jù)相似相溶原理,一般采用兩步法提取蛋黃卵磷脂,首先采用非極性溶劑(如正己烷、乙醚、氯仿、丙酮等)從蛋黃中脫去油脂,然后利用極性溶劑(如乙醇、丁醇等)從脫后的蛋黃殘?jiān)刑崛÷蚜字?。也有文獻(xiàn)報(bào)道,采用混合溶劑從蛋黃中提取總脂,然后用丙酮沉淀卵磷脂。根據(jù)蛋黃原料形態(tài)(鮮蛋黃和蛋黃粉)不同,溶劑提取卵磷脂工藝流程稍有不同。2005年,Palacios & Wang開發(fā)了一種利用乙醇從新鮮雞蛋中提取卵磷脂的方法(如圖4),文獻(xiàn)作者首先采用正己烷提取新鮮蛋黃中的中性脂,然后采用乙醇提取和丙酮沉淀卵磷脂,純度達(dá)95%[11]。同年,Palacios & Wang開發(fā)了以蛋黃粉為原料,采用乙醇直接提取和丙酮脫油/乙醇提取卵磷脂兩種工藝技術(shù)(如圖5),結(jié)果表明,蛋黃粉不脫油,乙醇直接提取,提取物得率23.9%,卵磷脂純度為36.7%;采用丙酮先脫除中性脂,然后乙醇提取,提取物得率13.5%,卵磷脂純度為53.3%。最近,Su等開發(fā)了只采用乙醇溶劑提取蛋黃卵磷脂工藝,65 ℃提取1 h后分離,乙醇提取液于4 ℃下低溫結(jié)晶,除去甘油三酯,然后50 ℃條件下用β-環(huán)糊精包埋,除去膽固醇,離心分離,獲得純度為51.47%的卵磷脂[12]。Puertas & Vázquez綜述蛋黃卵磷脂提取過程中膽固醇的去除方法[13]。Chen等對乙醇提取蛋黃粉中卵磷脂工藝進(jìn)行優(yōu)化,最佳工藝參數(shù)為乙醇濃度91.1%,提取溫度39.5 ℃,卵磷脂提取物中PC含量為75.59%。采用MALDI TOF-MS方法鑒定出9種PC結(jié)構(gòu)。文獻(xiàn)作者指出,PC通過調(diào)節(jié)乙酰膽堿脂酶和單氨氧化酶活性,以及丙二醛水平,來抑制東莨菪堿誘導(dǎo)的細(xì)胞神經(jīng)毒性和氧化應(yīng)激損傷[14]。Sun等采用乙醇提取蛋黃粉和正己烷二次提取蛋黃殘?jiān)に?,提取磷脂酰乙醇胺(PE),最佳工藝參數(shù)為乙醇濃度為98%,乙醇/正己烷比率4.6∶1,提取溫度40.7 ℃,所得PE濃度為58.94 μg/mL。采用MALDI TOF-MS方法鑒定出6種PE結(jié)構(gòu)。另外,作者采用電子自旋光譜儀研究了TLC純化后PE的抗氧化活性,濃度為6 mg/mL的PE清除自由基DPPH能力為69.15%[15]。Wang等研究不同濃度的乙醇和丁醇提取蛋黃卵磷脂效果,結(jié)果表明,在總脂提取過程中丁醇更有效,而75%乙醇提取卵磷脂得率和純度最高[16]。
圖4 以新鮮蛋黃為原料溶劑法提取卵磷脂的工藝流程[2]
圖5 以干燥蛋黃粉為原料溶劑法提取卵磷脂的工藝流程[2]
相比溶劑法,超(亞)臨界CO2萃取卵磷脂是一種綠色安全的生產(chǎn)技術(shù),且CO2臨界流體的密度很容易通過改變壓力和溫度來調(diào)節(jié)。Su等研究亞臨界丙酮萃取蛋黃油脂及其殘?jiān)鞍椎奶匦裕Y(jié)果表明,亞臨界萃取不僅可以獲得高品質(zhì)油脂,而且對殘?jiān)鞍椎娜榛再|(zhì)和溶解度沒有影響[17]。Navidghasemizad等報(bào)道了在壓力48.3 MPa,溫度70 ℃,CO2流速1 L/min條件下,萃取蛋黃卵磷脂,探討水分添加對卵磷脂萃取效果的影響,結(jié)果表明,壓力48.3 MPa和溫度70 ℃條件下,超臨界CO2從新鮮蛋黃中萃取得到純度為87%的卵磷脂[18]。Haq & Chun報(bào)道以90%乙醇為夾帶劑,超臨界CO2萃取卵磷脂,在40 ℃、27.5MPa和10%乙醇夾帶劑條件下,卵磷脂得率為6.9%,純度80.4%[19]。卵磷脂在超臨界CO2中的溶解度隨壓力和溫度的升高而增大。Jash等研究壓力為12.4~17.2 MPa和溫度為313~353 K條件下,卵磷脂在超臨界CO2中的溶解度,結(jié)果表明,卵磷脂在333 K和12.4 MPa條件下溶解度最高(2= 5.08×10?6),是最低條件下(313 K和17.2 MPa)的2.2倍[20]。Guclu-Ustundag & Temelli綜述油脂中游離脂肪酸、甘油一酯、甘油二酯、甘油三酯和脂肪酸酯在超臨界CO2中的溶解度[21],文獻(xiàn)作者還研究了磷脂和共溶劑在超臨界CO2中的溶解行為[22]。Savoire等報(bào)道超臨界CO2流體二步法萃取卵磷脂工藝,首先采用超臨界CO2和7%乙醇共溶劑萃取出中性脂質(zhì),然后采用CO2和30%乙醇共溶劑萃取卵磷脂[4]。
研究表明,蛋黃卵磷脂具有很多非常重要的生理功能,如抗氧化活性、抗菌活性、抗炎活性、改善脂肪代謝、保護(hù)視網(wǎng)膜、改善心血管理,以及益智健腦等[23-24](如圖6)。下面就簡單介紹蛋黃卵磷脂抗氧化、抗菌、抗炎、神經(jīng)保護(hù)和心腦血管保護(hù)等功能活性。
圖6 蛋黃卵磷脂的生理功能活性
早在1992年,King等報(bào)道蛋黃卵磷脂具有抗氧化活性,延緩食用鮭魚油的氧化降解,同時(shí),還證明添加N元素可以增強(qiáng)卵磷脂的抗氧化活性[25]。研究表明,蛋黃卵磷脂結(jié)構(gòu)上脂肪酸的不飽和程度與其抗氧化活性成正相關(guān)[26]。磷脂酰膽堿和磷脂酰乙醇胺側(cè)鏈羥胺基有較強(qiáng)的抑制油脂過氧化能力,表明蛋黃卵磷脂側(cè)鏈羥胺酸對于卵磷脂抗氧化活性非常重要[27]。蛋黃卵磷脂的抗油脂氧化已應(yīng)用于油脂生產(chǎn)中,實(shí)驗(yàn)表明卵磷脂在油中含量大于0.2%可明顯提高菜籽油、葵花籽油、魚油等的抗氧化作用。
蛋黃卵磷脂抗菌活性是指卵磷脂形成納米級脂質(zhì)體或者膠束,包埋抗菌活性物質(zhì),通過卵磷脂脂質(zhì)體與微生物細(xì)胞結(jié)合,釋放抗菌活性物質(zhì),從而達(dá)到殺死微生物或抑制微生物細(xì)胞生長的目的[23]。研究表明,天然蛋黃卵磷脂表面zeta電位為–10到+10之間[28],需要對卵磷脂表面陰陽離子功能化,提高zeta電位≥+30或者zeta電位≤–30,才能穩(wěn)定卵磷脂脂質(zhì)體,增加與微生物相互作用。
蛋黃卵磷脂抗炎活性機(jī)理是由于卵磷脂攝取,改變炎癥因子NF-κB和MAPK的代謝途徑,卵磷脂抑制炎癥因子的上調(diào)[29]。卵磷脂結(jié)構(gòu)脂肪酸鏈的不飽和程度與抗炎活性呈正相關(guān)。值得一提的是,卵磷脂代謝產(chǎn)物膽堿,被腸道微生物氧化成三甲胺,之后在肝臟中代謝后生成三甲胺-N-氧化物(TMAO)。這些代謝產(chǎn)物與心血管疾病相關(guān)。因此,蛋黃卵磷脂的緩慢吸收、腸道特定微生物菌群和血清TMAO水平之間的聯(lián)系,至今仍未十分清楚。
阿爾茨海默癥是一種神經(jīng)性退行疾病,使人體喪失記憶和缺乏認(rèn)知。攝食蛋黃卵磷脂可以提高人體記憶和認(rèn)識(shí)功能,延緩神經(jīng)退行性疾病的發(fā)生,尤其是蛋黃卵磷脂結(jié)構(gòu)中的不飽和脂肪酸鏈起到間接保護(hù)作用。研究者認(rèn)為,蛋黃卵磷脂可以通過抑制乙酰膽堿酯酶活性和下調(diào)氧化產(chǎn)物濃度,起到神經(jīng)保護(hù)功能。Che等報(bào)道0.2 mg/mL蛋黃卵磷脂能保護(hù)PC12細(xì)胞[30],Chung等指出,333 mg/mL蛋黃卵磷脂能提高老鼠體內(nèi)乙酰膽堿濃度和認(rèn)知功能[31],Lim等則認(rèn)為,5 g/100 g膳食能很好地提高老鼠的認(rèn)知能力和大腦功能[32]。
流行病學(xué)研究表明,高血壓是造成心血疾病如猝死和冠狀動(dòng)脈心臟病的主要因子。蛋黃卵磷脂通過抑制血管緊張素轉(zhuǎn)換酶(ACE)來降低血壓[33]。Skórkowska-Telichowska等指出每天給代謝綜合癥患者喂食15 mL卵磷脂,一天3次,癥狀明顯好轉(zhuǎn)[34]。此外,每天攝食1.2 mmol/L蛋黃卵磷脂,可以有效抑制膽固醇吸收和轉(zhuǎn)運(yùn),預(yù)防肥胖癥發(fā)生[35]。
蛋黃卵磷脂脂質(zhì)體作為藥物載體,具有鮮明的靶向性,是最新的第四代給藥系統(tǒng)中的一個(gè)重要制劑。蛋黃卵磷脂結(jié)構(gòu)上的脂肪酸組成與種類對于脂質(zhì)體性質(zhì)影響較大,比如,卵磷脂結(jié)構(gòu)中的飽和脂肪酸可以增強(qiáng)脂質(zhì)體膜的堅(jiān)固性和非滲透性,卵磷脂結(jié)構(gòu)中的不飽和脂肪酸,可以使脂質(zhì)體具有較低的相轉(zhuǎn)變,有很好的流動(dòng)性和低的粘滯性。截止目前,蛋黃卵磷脂脂質(zhì)體種類包括常規(guī)脂質(zhì)體[36-38]、PEG修飾脂質(zhì)體[39-41]、多功能脂質(zhì)體[42-44]和配體靶標(biāo)脂質(zhì)體[45-47]等4種(圖7),每一種脂質(zhì)體都有自己的優(yōu)勢和應(yīng)用領(lǐng)域。Kondratowicz等制備5種蛋黃卵磷脂脂質(zhì)體,比較它們的結(jié)構(gòu)和機(jī)械特性,結(jié)果表明,不僅脂質(zhì)體主要組成成分(如卵磷脂、甘油脂、膽固醇)種類及其比例,對脂質(zhì)體結(jié)構(gòu)特性影響較大,而且微量成分(如生育酚和胡蘿卜素)也有較大影響[48]。Trucillo等采用超臨界CO2輔助方法成功制備了卵磷脂/膽固醇和卵磷脂/磷脂酰乙醇胺兩種脂質(zhì)體,平均納米尺寸為200 nm,用于包埋茶葉堿,包埋率為98%。研究表明,脂質(zhì)體中添加部分膽固醇和磷脂酰乙醇胺,可以減緩茶葉堿的釋放效率[49]。
圖7 蛋黃卵磷脂脂質(zhì)體種類結(jié)構(gòu)示意圖[34]
[1] KOVALCUKS A, DUMA M. Distribution of phospholipids, cholesterol and carotenoids in two-solvent system during egg yolk oil solvent extraction[J]. International Scholarly and Scientific Research & Innovation, 2016, 10(5): 323-328.
[2] GAZOLU-RUSANOVA D, MUSTAN F, VINAROV Z, et al. Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions[J]. Food Hydrocolloids, 2020, 99: 105319-105332.
[3] ANTON M. Egg yolk: structures, functionalities and processes[J]. Journal of the Science of Food and Agriculture, 2013, 96(12): 2871-2880.
[4] SAVOIRE R, SUBRA-PATERNAULT P, BARDEAU T, et al. Selective extraction of phospholipids from food by-products by supercritical carbon dioxide and ethanol and formulating ability of extracts[J]. Separation and Purification Technology, 2020, 238: 116394.
[5] ALI A H, ZOU X, LU J, et al. Identification of phospholipids classes and molecular species in different types of egg yolk by using UPLC-Q-TOF-MS[J]. Food Chemistry, 2017, 221: 58-66.
[6] VAN NIEUWENHUYZEN W, TOMAS M C. Update on vegetable lecithin and phospholipid technologies[J]. European Journal of Lipid Science and Technology, 2008, 110(5): 472- 486.
[7] CHOJNACKA A, GLADKOWSKI W, KIELBOWICZ G, et al. Lipase-catalyzed interesterifification of egg-yolk phosphatidylcholine and plant oils[J]. Grasas Y Aceites, 2014, 65(4): 10.
[8] DOIG S D, DIKS R M M. Toolbox for modifification of the lecithin head group[J]. European Journal of Lipid Science and Technology, 2003, 105(7): 368-376.
[9] ASOMANING J, CURTIS J M. Enzymatic modifification of egg lecithin to improve properties[J]. Food Chemistry, 2017, 220: 385-392.
[10] ALEKSANDRS K, MARA D. Distribution of phospholipids, cholesterol and carotenoids in two-solvent system during egg yolk oil solvent extraction[J]. International Scholarly and Scientific Research & Innovation, 2016, 10(5): 323-328.
[11] LUZ E, PALACIOS, TONG W. Egg-yolk lipid fractionation and lecithin characterization[J]. Journal of the American Oil Chemists’ Society, 2005, 82(8): 571-578.
[12] SU Y, TIAN Y, YAN R, et al. Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk[J]. Journal of Food Science and Technology, 2015, 52: 4586-4592.
[13] PUERTAS G, VáZQUEZ M. Advances in techniques for reducing cholesterol in egg yolk: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 59: 2276-2286.
[14] CHEN J, LIN S, SUN N, et al. Egg yolk phosphatidylcholine: extraction, purifification and its potential neuroprotective effffect on PC12 cells[J]. Journal of Functional Foods, 2019, 56: 372-383.
[15] SUN N, CHEN J, BAO Z, et al. Egg yolk phosphatidylethanolamine: extraction optimization, antioxidative activity, and molecular structure profifiling[J]. Journal of Food Science, 2019, 84(5): 1002-1011.
[16] WANG H, YAO L, LEE S L, et al. Extraction of phospholipids from egg yolk flakes using aqueous alcohols[J]. Journal of the American Oil Chemists' Society, 2017, 94: 309-314.
[17] SU Y, JI M, LI J, et al. Subcritical fluid extraction treatment on egg yolk: Product characterization[J]. Journal of Food Engineering, 2020, 274: 109805-109813.
[18] NAVIDGHASEMIZAD S, TEMELLI F, WU J. Moisture impact on extractability of phospholipids from leftover egg yolk after enzymatic treatment using supercritical carbon dioxide[J]. Food Bioprod Process, 2015, 94: 473-481.
[19] HAQ M, CHUN B S. Characterization of phospholipids extracted from Atlantic salmon byproduct using supercritical CO2with ethanol as co-solvent[J]. Journal of Cleaner Production, 2018, 178: 186-195.
[20] JASH A, HATAMI T, RIZVI S S H. Phosphatidylcholine solubility in supercritical carbon dioxide: Experimental data, thermodynamic modeling, and application in bioactive- encapsulated liposome synthesis[J]. The Journal of Supercritical Fluids, 2020, 158: 104720-104729.
[21] GUCLU-USTUNDAG O, TEMELLI F. Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides and fatty acid esters in supercritical carbon dioxide[J]. Industrial and Engineering Chemistry Research, 2000, 39: 4756-4766.
[22] GUCLU-USTUNDAG O, TEMELLI F. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2005, 36: 1-15.
[23] WANG D Y, VAN DER MEI H C, REN Y, et al. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections[J]. Frontiers in Chemistry, 2020, 7: 872.
[24] XIAO N, ZHAO Y, YAO Y, et al. Biological activities of egg yolk lipids: A review[J]. Journal of Agricultural and Food Chemistry. 2020, doi: 10. 1021/acs. jafc. 9b06616.
[25] KING M F, BOYDLC, SHELDONBW. Antioxidant properties of individual phospholipids in a salmon oil model system[J]. Journal of the American Oil Chemists' Society, 1992, 69: 545- 551.
[26] YOUNG D, NAUF, PASCOM, et al. Identification of hen egg yolk-derived phosvitinphosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells[J]. Journal of agricultural and food chemistry. 2011, 59: 9207-9218.
[27] SAITO H, ISHIHARA K. Antioxidant activity and active sites of phospholipids as antioxidants[J]. Journal of the American Oil Chemists’ Society, 1997, 74: 1531-1536.
[28] SMITH M C, CRIST R M, CLOGSTON J D, et al. Zeta potential: a case study of cationic, anionic, and neutral liposomes[J]. Analytical and Bioanalytical Chemistry, 2017, 409: 5779-5787.
[29] TREEDE I, BRAUN A, SPARLA R, et al. Anti-inflammatory effects of phosphatidylcholine[J]. The Journal of biological chemistry, 2007, 282: 27155-27164.
[30] CHE H, FU X, ZHANG L, et al. Neuroprotective effects of n-3 polyunsaturated fatty acid-enriched phosphatidylserine against oxidative damage in PC12 cells[J]. Cellular and Molecular Neurobiology, 2018, 741(38): 657-668.
[31] CHUNG S Y, MORIYAMA T, UEZU E, et al. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia[J]. The Journal of Nutrition, 1995, 125: 1484-1489.
[32] LIM S Y, SUZUKI H. Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice[J]. The Journal of Nutrition, 2000, 130(6): 1629-1632.
[33] NOWACKI D, MARTYNOWICZ H, SKOCZY?SKA A, et al. Lecithin derived from ω-3 PUFA fortifed eggs decreases blood pressure in spontaneously hypertensive rats[J]. Scientific Reports, 2019, 7: 12373.
[34] SKóRKOWSKA-TELICHOWSKA K, KOSI?SKA J, CHWOJNICKA M, et al. Positive effects of egg-derived phospholipids in patients with metabolic syndrome[J]. Advances in Medical Sciences, 2016, 61(1): 169-174.
[35] YANG F, CHEN G, MA M, et al. Egg-yolk sphingomyelin and phosphatidylcholine attenuate cholesterol absorption in caco-2 cells[J]. Lipids, 2018, 764(53): 217-233.
[36] ROY A S, DAS S, SAMANTAA. Design, formulation and evaluation of liposome containing isoniazid[J]. International Journal of Pharmaceutics, 2018, 10: 52-56.
[37] DENG W, CHEN W, CLEMENT S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation[J]. Nature Communications, 2018, 9(1): 2713.
[38] GUPTA A S, KSHIRSAGAR S J, BHALEKAR M R, et al. Design and development of liposomes for colon targeted drug delivery[J]. Journal of Drug Targeting, 2013, 12(1): 146-160.
[39] WANG X, SONG Y, SU Y, et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine[J]. Drug Delivery, 2016, 23(4): 1092-1100.
[40] OSMAN G, RODRIGUEZ J, CHAN S Y, et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy[J]. Journal of Controlled Release, 2018, 285: 35-45.
[41] BISWAS S, DODWADKAR N S, DESHPANDE P P, et al. Liposomes loaded with paclitaxel and modifified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effffects in vitro and in vivo[J]. Journal of Controlled Release, 2012, 159: 393-402.
[42] GUAN J, SHEN Q, ZHANG Z, et al. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption[J]. Nature Communications, 2018, 9(1): 2982.
[43] FATHI S, OYELERE A K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice?[J]. Future medicinal chemistry, 2016, 8(17): 2091-2112.
[44] ELOY J O, PETRILLI R, TREVIZAN L N F, et al. Immunoliposomes: A review on functionalization strategies and targets for drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2017, 159: 454-467.
[45] WEI X, ZHAN C, SHEN Q, et al. AD-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery[J]. Angewandte Chemie International Edition, 2015, 54: 3023- 3027.
[46] BOBO D, ROBINSON K J, ISLAM J, et al. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date[J]. Pharmaceutical research, 2016, 33(10): 2373- 2387.
[47] LENT T, CAO V D, NGUYEN T N Q. Soy lecithin-derived liposomal delivery systems: surface modifification and current applications[J]. International journal of molecular sciences, 2019, 20: 4706-4733.
[48] KONDRATOWICZ A, WEISS M, JUZWA W, et al. Characteristics of liposomes derived from egg yolk[J]. Open Chemistry, 2019, 17(1): 763-778.
State-of-the-art of egg yolk lecithin: molecular structure, extraction strategies, bio-activities and liposome application
ZHU Shuai1, HUANG Meng-ling1, WU Qian-qian1, YANG Rui-peng2, ZHANG Min2, LIU Yun1
(1. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; 2. Mille Dairy (Shanghai) Co. Ltd, Shanghai 200335, China)
This review article addresses the state-of-the-art of egg yolk lecithin based on several aspects of molecular structures, extraction methods, functional activities and liposomes applications. Egg yolk lecithin are amphiphilic molecules, which structure is mainly composed of glycerol, phosphate acid and fatty acids through acyl group bond. According to lecithin base group, there are six kinds of lecithin, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), and phosphatidylglycerol (PG). Organosolvent extraction and supercritical CO2extraction are the common approaches for egg yolk extraction. It has been investigated that egg yolk lecithin has many physiological biological activities, such as anti-oxidation, anti-microbial, anti-inflammatory, nueroprotection, and cardiocerebral vascular protection. Finally, the clasification of lecithin liposomes and its application are briefly presented in this review article. We are undoubtedly sure that this review will pave the way towards R&D of egg yolk lecithin in future.
egg yolk lecithin; molecular structure; extraction methods; biological activity; liposomes
TS201.1
A
1007-7561(2020)03-0018-08
10.16210/j.cnki.1007-7561.2020.03.003
2020-03-02
企業(yè)委托項(xiàng)目(H2019167)
朱帥,1997年出生,男,碩士生,研究方向?yàn)槁蚜字a(chǎn)品的開發(fā)與應(yīng)用研究.
劉云(ORCID: 0000-0002-7521-3831),男,教授,博導(dǎo),研究方向?yàn)楣δ苁称泛蜕镔Y源利用,E-mail: liuyun@mail.buct.edu.cn.
2020-04-17 11:06:53
http://kns.cnki.net/kcms/detail/11.3863.TS.20200417.1017.002.html