• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analyses of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack

    2020-05-20 02:43:26CHENXiCHENJianqiangDONGSiweiXUGuoliangYUANXianxu
    空氣動力學學報 2020年2期
    關鍵詞:實線方根流向

    CHEN Xi, CHEN Jianqiang, DONG Siwei, XU Guoliang, YUAN Xianxu,*

    (1. State Key Laboratory of Aerodynamics, Mianyang 621000, China; 2. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China)

    Abstract:The stability of leeward streamwise vortices over a Mach 6 yawed cone with 6 degree angle of attack is investigated by using direct numerical simulation (DNS) and stability analyses including spatial BiGlobal and plane-marching parabolized stability equations (PSE3D). It is found that a pair of strong streamwise vortices inducing low-speed mushroom structure simultaneously emerge in the vicinity of the leeward plane. Theoretical results indicate that both low-frequency sinuous modes and high-frequency varicose modes may play an important role in the breakdown of the streamwise vortices.

    Keywords:instability of streamwise vortices;hypersonic boundary layer flow; DNS;spatial BiGlobal method;PSE3D method

    0 Introduction

    Laminar-turbulent boundary layer transition is one of key factors affecting vehicles that operate atsustained hypersonic speeds. A cone at a certain angle of attack (AoA) is frequently encountered in practice, and at the same time is also one of the simplest flow configuration to study the three-dimensional boundary layer transition. For a yawed cone, the pressure within the windward plane is much higher than that within the leeward plane. The resulting pressure gradient drives the fluid to move away from the windward plane towards the leeward plane, inducing strong cross flow in between and a pair of counter-rotating streamwise vortices near the leeward plane. The cross flow may support crossflow instabilities which eventually lead to turbulence through secondary

    instabilities, as has been extensively investigated[1-2]. On the other hand, although the transition within the leeward plane has been experimentally measured under various conditions[3-4], numerically documented[5]and theoretically considered[6], the underlying mechanism remains largely unclear.

    Since the leeward transition is most likely caused by the breakdown of streamwise vortices, the corresponding transition mechanism may thus be similar to other flow configurations with streamwise vortices being dominant. A typical example is the centerline transition of the HIFiRE-5 elliptic cone at zero AoA. Similar to the yawed cone, spanwise pressure gradients also cause cross flow over the elliptic cone surface and induce a pair of streamwise vortices and a mushroom-like low-speed streak around the center line. Since the centerline flow structures exhibit prominent variations in both the span and wall-normal directions, two-dimensional stability analysis or BiGlobal analysis should be utilized in order to adequately predict the stability characteristics along the center line. Choudhari et al.[7], without accounting for curvature effects, are the first to perform BiGlobal calculations for the centerline stability. Their results highlighted the necessity of considering spanwise variations in the vicinity of the center line. Through spatial BiGlobal analysis with the curvature effects being taken into account, Paredes and Theofilis[8-10]showed the coexistence of varicose and sinuous centerline modes whose wavenumbers and growth rates are nearly coincident at a low unit Reynolds number (1.89 × 106/m). Later, Paredes et al.[11]analyzed a larger unit Reynolds number (1.015 × 107/m) case for the same model, and found that the varicose mode is more unstable. The differences of these two cases are attributed to different mode distributions that the centerline instabilities in the latter case peak closer to the symmetry plane than those in the former, and thus are more sensitive to the symmetry characteristics. Recently, Li et al.[12]demonstrated that varicose and sinuous modes both possess two branches of instabilities, i.e., Y mode and Z mode. Y mode, similar to the unstable modes identified by Paredes and his coworkers, locates at the shoulder region of the mushroom structure, while Z mode resides in the stem region, with lower phase velocities, growth rates and frequencies than Y mode. Choudhari et al.[13]considered the centerline instabilities of the elliptic cone at a small AoA (-1.2°) under the HIFiRE5b flight experiment condition at one instant where a cold wall condition was prescribed. Their PSE3D results showed that sinuous fluctuations can first reach a peak N-factor of approximately 15 at the transition location estimated from the flight data. Similar centerline vortex structures also emerge in another flight model, BoLT. The centerline instabilities were experimentally measured[14-16]and numerically calculated via the dynamic mode decomposition method[17]. Their results indicate the presence of low-frequency disturbances. Nevertheless, detailed instability characteristics remain to be solved through extensive stability analyses. Beside the centerline structures on these three dimensional boundary layers, G?rtler vortices in a concave wall also manifest as a pair of counter-rotating streamwise vortices as well as low-speed mushroom structures. In contrast to the centerline instabilities of the elliptic cone, varicose and sinuous modes of G?rtler vortices exhibit quite different characteristics concerning with growth rates, frequencies and mode shapes (see, e.g., recent works of Chen et al.[18]and Li et al.[19]).

    In this paper, the boundary layer transition in the vicinity of the leeward plane on a yawed cone at Mach 6 is studied with help of DNS and stability analyses for the first time. The objective is to uncover the underlying transition mechanism, and to make comparison with other streamwise-vortices transitions.

    1 Flow configuration and basic state

    The model (Fig.1(a)) in the present study is a 7°straight circular cone with a nose radius of 1 mm placed at 6°angle of attack. The incoming flow conditions correspond to a free-stream unit Reynolds number of 1.0×107/m, Mach number of 6, static temperature of 79 K. Isothermal wall condition is utilized with the wall temperatureTW=300 K. The direct numerical simulation of boundary layer transition over the whole model was carried out using the OpenCFD developed by Li et al.[20]. The simulation strategy consists of two steps. First, the steady base flow of the entire cone is computed using the finite-volume algorithm with a second-order accurate scheme. In the second step, the calculated steady flow serves as initial and out-boundary conditions for the transition simulation which is performed for a smaller block (X∈[50 mm,700 mm]) without the nose part of cone. In the transition simulation, the inviscid fluxes are computed by using a seventh-order weighted essentially nonoscillatory (WENO) finite-difference scheme, while the viscous fluxes are discretized using a sixth-order central difference scheme. The time integration is performed using a third-order Runge-Kutta scheme. Steady blowing and suction fluctuations (wall-normal velocity varying in the range of ±0.1% of streamwise velocity), randomly distributed in the azimuthal and streamwise direction are forced in the range ofX∈[90 mm, 100 mm] to trigger the transition (see also Li et al.[5]).

    (a) Sketch of the cone model with the body oriented coordinate and flow conditions

    (b) Crossplane contours of streamwise velocity are shown at axial locations from X=120 mm to 350 mm with a step of approximately 16.4 mmFig.1 Model and time-averaged flow structure圖1 模型和時均流場結構

    A structured grid is used, with 3000 in the axial direction, 1500 in the azimuthal direction, and 300 in the surface normal direction, amounting to a total of 1.35 billion grid points. The grid convergence has been examined by comparing the base flow with a coarse grid with 0.5 billion points and the discrepancy is negligible.

    Figure 1(b) depicts the crossplane contours of time averaged streamwise velocity at selected stations along the cone length from the transition simulation. The velocity contours clearly indicate a roll up of low-speed fluid forming a huge mushroom structure in the vicinity of the leeward symmetry plane, along with a series of nearby cross vortices. The pair of vortex structures within the sides of the mushroom cap appear to be lifted up in the downstream due to the self induction of vortices in parallel, resulting in a rapid growth of the height of the mushroom structure.

    2 Linear stability theory

    2.1 Spatial BiGlobal method

    We consider the stability characteristics in the cross-section by decomposing the flow field in a body-oriented coordinate system as follows

    (1)

    (2)

    for the spatial approach whereαis to be solved withωbeing given. Here,A0,A1,A2are linear operators. The boundary conditions are

    (3)

    These linear operators are discretized using the fourth order finite difference scheme in theηdirection. Since we only focus on the modes whose mode shapes exclusively concentrate within the mushroom structure, the eigenvalue problem is not sensitive to the spanwise boundary conditions so that we can simply apply periodic boundary conditions and use Fourier collocation method in theθdirection. The eigenvalues are then determined by using the Arnoldi’s method. Because of the azimuthal symmetry of the basic state, the disturbances within the mushroom structure can be divided into symmetric (varicose) and antisymmetric (sinuous) modes on the basis of the distribution of the temperature perturbation. The sinuous modes are associated with zero temperature fluctuations at the symmetry plane, whereas the varicose modes have zero azimuthal temperature gradient fluctuations. Therefore, we only need to consider one side of the symmetry plane. The grid distribution and points number have been adjusted to assure the convergence of the eigenvalues.

    2.2 PSE3D method

    In contrast to the local stability analysis introduced above, PSE3D incorporate initial conditions and nonparallel effects. In the PSE3D formulation, the disturbance is decomposed into a rapidly varying wave-like part and a slowly varying shape function as follows

    (4)

    (5)

    (6)

    where

    (7)

    and the asterisk denotes the complex conjugate. This iteration continued until the latest change was less than 10-5. Note that the curvature effects have been included in the linear operators of both BiGlobal and PSE3D.

    3 Results and discussion

    3.1 Theoretical results

    Figures 2 and 3 show development of growth rates fromX=80 mm throughX=280 mm for unstable varicose and sinuous modes, respectively. It can be observed that leeward-plane instabilities are continually enhanced before approximatelyX=200 mm, and are gradually stabilized further downstream. For the varicose modes, modes V1 and V2 first appear; mode V1 remains to be mild, with the peak frequency increasing from around 50 kHz to 120 kHz in the downstream direction; after a rapid growth between the first two slices, mode V2 becomes dominant except at the fourth slice where mode V4 with higher frequencies is most unstable; other modes possess moderate growth rates, and thus may play a secondary role during the transition process. The results for the sinuous modes closely resemble those for the varicose modes. The most prominent discrepancy is that the low-frequency modes, S1 and S6, appear to be always dominant.

    The similarity and difference between the varicose and sinuous modes can be further illustrated by Fig.4 which compares the growth rates and phase velocities, and by Fig.5 which compares the mode shapes atX=200 mm. Several observations can be made. First, each varicose-sinuous mode pair (with the same mode number, e.g. modes V1 and S1) bear a strong resemblance in phase velocities and mode shapes, while the growth rates may differ greatly. Second, the modes can be roughly divided into two groups according to phase velocities and mode shapes. Modes V1, V6, S1 and S6 possess low phase velocities (≈0.8) and reside almost exclusively in the stem region of the mushroom structure. Therefore they are conveniently referred to inner modes. The other modes possess higher phase velocities (≈0.9) and mainly concentrate on the shoulder region, hence can be referred to outer modes. It is interesting to note that the inner modes look similar to the “Z mode” of centerline instability for the HIFiRE-5 elliptic cone[12]and the stem mode of secondary instability for G?rtler vortices[18-19,21], while the outer modes appear to be closely related to the “Y mode” of centerline instability for the HIFiRE-5 elliptic cone[10,12]and other modes than the stem mode for G?rtler vortices. Since inner modes lie closer to the symmetry plane of the mushroom structure than the outer modes do, inner modes are thus more sensitive to the symmetry than outer modes. This explains why the inner modes exhibit remarkable discrepancies in growth rates for each varicose-sinuous mode pair, while the growth rates of each varicose-sinuous outer modes nearly coincide. Similar phenomenon has also been observed by Choudhari et al.[13]in the HIFiRE-5 model.

    (a) Growth rate

    Fig.4 Comparison of growth rate and phase velocity of unstable varicose modes (filled symbols) and sinuous modes (unfilled symbols) atX=180 mm

    圖4X=180 mm站位處,對稱模態(tài)(實心符號)和 反對稱模態(tài)(空心符號)的增長率和相速度分布對比

    Fig.5 Comparison of normalized mode shapes (temperature) for the unstable varicose modes V1~V6 (a~f) and sinuous modes S1~S6 (g~l) at X=200 mm. The frequency is chosen to be the most unstable component of each mode. The temperature base flow is also displayed.圖5 X=200 mm站位處的六個對稱模態(tài)(a~f)和反對稱模態(tài)(g~l)的形狀函數(溫度)分布對比 (所選頻率是各個模態(tài)最不穩(wěn)定的分量, 溫度基本流用實線表示)

    Figure 6 displays the normalized amplitude distribution of the streamwise velocity gradient components, |?U/?η| and |?U/?θ|. It can be observed that the instabilities all reside in the high-shear regions. In particular, modes V1, V3, V4 and V6 appear to be associated with the spanwise shear, while the other modes seem to be related to the wall-normal shear. The same holds for the sinuous modes.

    (a) |?U/?η| (b) |?U/?θ|

    Fig.6 The normalized amplitude distribution of the streamwise velocity gradients atX=200 mm (The solid lines show the streamwise velocity contours)

    圖6 歸一化后的流向速度梯度,X=200 mm (實線表示流向速度等值線)

    At last, the spatial structures of the dominant varicose and sinuous modes atX=120 mm andX=200 mm are reconstructed in Fig.7. The relative positions of the outer modes (a, c) and the inner modes (b, d) are clearly shown. In the upstream, the dominant varicose mode resides in the top of the mushroom structures, which is similar to the typical varicose instability of G?rtler vortices (see e.g. Chen et al.[18]). At the next slice, both instabilities manifest as helical structures, as are also observed in the HIFiRE-5 model[9], the BoLT model[17,22]and G?rtler vortex flows[23].

    To characterize the axial evolution of the unstable disturbances and establish a topological connection between the mode shapes at different axial stations, PSE3D are performed across a range of mode frequencies. The amplitude evolutions shown in Fig.8(a) clearly indicate that sinuous modes (solid lines) can reach much higherN-factors than varicose modes (dashed lines) do, of which the most amplified sinuous component is 80 kHz while the most amplified varicose components are 120 kHz originating from V2 and 260 kHz from V4. Figures 8(b, c) compares the amplitude evolutions obtained by DNS, BiGlobal and PSE3D for the most amplified varicose component 260 kHz and sinuous component 80 kHz, respectively. Two observations can be made. First, the theoretical results favorably agree with the DNS results. The discrepancies in the beginning and in the late stage are attributed to the transient behaviors of DNS disturbances (i.e., consisting of multiple types of fluctuations) and nonlinear effects of disturbances (appearing first in the varicose mode), respectively. Second, PSE3D and BiGlobal results are very close except for the initial stage where the initial profiles provided by BiGlobal will undergo a transient stage in PSE3D.

    The mode shape evolution of the dominant varicose (260 kHz) and sinuous (80 kHz) modes are shown in

    Fig.7 Spatial structures illustrated by isosurfaces of normalized temperature mode shape (±0.2) for mode V2, mode S1 atX=120 mm, and of mode V4 and mode S1 atX=200 mm, together with the base flow isosurface (1.87Te) (The streamwise scale is equal to two wavelengths of each mode)

    圖7 溫度等值面顯示的模態(tài)空間結構(流向尺度為兩個模態(tài)流向波長)

    (a) N-factors obtained by PSE3D for some sinuous modes (solid lines) and varicose modes (dashed lines); the most amplified modes have been labelled

    (b) The varicose mode of 260 kHz

    (c) The sinuous mode of 80 kHz

    Fig.8 Disturbance amplitude evolution of a single frequency. Comparison of amplitude evolutions from DNS, BiGlobal and PSE3D have been made for two most amplified mode. Note that the amplitude from DNS is obtained by the average of the (fast Fourier transformation) amplitudes in certain frequency bands (250~270 kHz and 70~90 kHz).

    圖8 PSE3D預測的單頻擾動幅值演化(N值曲線)及與BiGlobal和DNS結果的對比(其中N值曲線中不同模態(tài)最不穩(wěn)定的頻率分量用彩色線條標記)

    Figs.9(a-f) and (h-l), respectively. For the varicose mode, the disturbances initially locate at the mushroom cap, and gradually shift down to the shoulder region with another small peak emerging in the inner side since the slice of Fig.9(c). In contrast, the fluctuations of the sinuous mode reside in the stem region in the upstream region, and gradually spread outwards along with the rolling of the fluid, inducing another peak in the cap.

    3.2 Statistic results from DNS

    In this subsection, the statistic results from DNS are presented to highlight the transition process upon comparison with the results from the stability analyses above. Figure 10 displays the normalized r.m.s. distribution at three streamwise slices. The spectra obtained at the local r.m.s. peak positions are also shown. In the upstream, the disturbances concentrate on the top of the mushroom structure, which is consistent with the predominance of mode V2 there (see Fig.7(a)). However, the corresponding spectrum exhibits a peak frequency of approximately 600 kHz, nearly three times higher than the dominant frequency (around 200 kHz) of mode V2. Where such high-frequency disturbances arise is unclear yet. At the next slice, r.m.s. distribution forms new local maximums in the shoulder and stem regions of the mushroom structure, in addition to a weak one on the head. The dominant disturbance frequencies for the head region are in range of [160 kHz, 220 kHz], and move to a slight higher frequency range for the shoulder region. The spectra and the filtered r.m.s. distribution (in Fig.11) indicate that the disturbances at these two regions consist of the outer modes, of which the disturbances at the shoulder region likely evolve mode V4/S4 with the disturbances in the head region being mainly contributed by other outer modes. At the stem region, two peaks appear in the spectrum, one similar to that at the shoulder region, the other one lying in a much lower frequency range, which indicates the coexistence of two types of instabilities there. Comparison between the filtered r.m.s. distribution (Fig.11(c)) with the mode shapes from the PSE3D results indicates that the low-frequency peak corresponds to mode S1. For the last slice, the r.m.s. has spread to the whole mushroom structure. The spectrum at the shoulder region displays a broad plateau for [0,200 kHz], while the spectrum at the stem region shows a prominent peak at approximately 90 kHz. The high-frequency disturbances in the range of [200 kHz, 400 kHz] become relatively insignificant compared to the spectra at the previous one. This trend is consistent with the results of stability analyses which predict that low-frequency instabilities gradually take over in the downstream region.

    Fig.9 Mode shape (normalized temperature fluctuations) evolution of the dominant varicose mode at f=260 kHz (a~f) and of the dominant sinuous mode at f=80 kHz (g~l) predicted by PSE3D. The slices start from X=112.7 mm to X=261.7 mm with a step of approximately 28 mm. The temperature base flow is shown by the solid lines.圖9 PSE3D得到的最不穩(wěn)定對稱模態(tài)(260 kHz)和反對稱模態(tài)(80 kHz)的形狀函數沿流向的演化

    Fig.10 Normalized root-mean-square distribution of temperature disturbances at three slices, (a)X=120 mm, (b)X=200 mm, (c)X=280 mm, together with the base flow isolines. The corresponding spectra at the sampling points (denoted by the symbols) are also shown in (d,e,f).

    圖10 三個流向站位處的DNS擾動均方根分布和極值點處的頻譜

    Fig.11 Normalized root-mean-square distribution of temperature disturbances over certain frequency ranges at X=200 mm, together with the base flow isolines.圖11 X=200 mm處DNS特定頻段處的擾動均方根分布

    4 Conclusions

    In this paper, sophisticated stability analyses (spatial BiGlobal and PSE3D) and DNS are performed to reveal the leeward-plane transition mechanisms on a hypersonic yawed cone for the first time. The low-speed mushroom structure induced by the leeward streamwise vortices is shown to be susceptible to multiple unstable modes. The unstable modes can be further classified as outer modes and inner modes. Outer modes with higher phase velocities and frequencies, reside in the shoulder and head regions of the mushroom structure, whereas inner modes being located at the stem region possess lower phase velocities and frequencies. Both outer modes and inner modes contain varicose and sinuous components. The sinuous components dominate for inner modes, while for outer modes the varicose components are more unstable in the upstream but gradually collapse with the sinuous components in the downstream. Good agreement between the stability analysis and DNS results are obtained, except that the disturbances from DNS in the upstream region show much higher frequencies than prediction.

    Stability of leeward streamwise vortices is found to bear a remarkable resemblance with instabilities of streamwise vortices in other flow configurations (e.g. elliptic cone, the BoLT model and G?rtler vortex flows) in the sense that varicose and sinuous instabilities coexist, covering a wide unstable frequency range from tens to hundreds of kHz.

    猜你喜歡
    實線方根流向
    關于調整上海道路非必要超長實線及高速監(jiān)控探頭強光燈建議
    方根拓展探究
    小溪啊!流向遠方
    井岡教育(2020年6期)2020-12-14 03:04:42
    秋天來啦
    娃娃畫報(2019年10期)2019-12-17 08:02:09
    戒煙
    詩潮(2019年8期)2019-08-23 05:39:48
    疊疊看 真神奇
    啟蒙(3-7歲)(2019年3期)2019-04-03 01:39:28
    均方根嵌入式容積粒子PHD 多目標跟蹤方法
    自動化學報(2017年2期)2017-04-04 05:14:28
    十大漲幅、換手、振副、資金流向
    揭開心算方根之謎
    流向逆轉的啟示
    www.999成人在线观看| 色综合站精品国产| 婷婷精品国产亚洲av在线| 国产视频一区二区在线看| 国产激情偷乱视频一区二区| 亚洲不卡免费看| 欧美xxxx黑人xx丫x性爽| 超碰av人人做人人爽久久| 亚洲18禁久久av| 国产午夜精品久久久久久一区二区三区 | av天堂在线播放| 九九在线视频观看精品| 国产午夜精品论理片| 在线观看舔阴道视频| 国产色爽女视频免费观看| 级片在线观看| 午夜精品久久久久久毛片777| 九九热线精品视视频播放| a级毛片免费高清观看在线播放| 丰满人妻一区二区三区视频av| 自拍偷自拍亚洲精品老妇| 久久热精品热| 每晚都被弄得嗷嗷叫到高潮| 变态另类成人亚洲欧美熟女| 欧美乱色亚洲激情| 欧美一级a爱片免费观看看| 国产综合懂色| 免费看日本二区| 亚洲欧美激情综合另类| 别揉我奶头~嗯~啊~动态视频| 免费大片18禁| 亚洲狠狠婷婷综合久久图片| a级毛片a级免费在线| 国产成人福利小说| 99在线人妻在线中文字幕| 日韩欧美三级三区| 亚洲国产高清在线一区二区三| 国产视频内射| 丁香欧美五月| 在线播放国产精品三级| 757午夜福利合集在线观看| 日韩大尺度精品在线看网址| 亚洲人成网站在线播| 国内久久婷婷六月综合欲色啪| 别揉我奶头 嗯啊视频| 色哟哟·www| 淫秽高清视频在线观看| 午夜福利免费观看在线| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 欧美午夜高清在线| 精品人妻视频免费看| 国产精品不卡视频一区二区 | 国产精品亚洲av一区麻豆| 国产91精品成人一区二区三区| 亚洲自拍偷在线| 97碰自拍视频| 97碰自拍视频| 久久精品人妻少妇| 国产av在哪里看| 久久久久久九九精品二区国产| 看黄色毛片网站| 真人一进一出gif抽搐免费| 成年人黄色毛片网站| 男女之事视频高清在线观看| 一进一出好大好爽视频| 无遮挡黄片免费观看| 每晚都被弄得嗷嗷叫到高潮| 又黄又爽又免费观看的视频| 好看av亚洲va欧美ⅴa在| 两性午夜刺激爽爽歪歪视频在线观看| 国产在视频线在精品| 人妻久久中文字幕网| 1024手机看黄色片| 午夜精品在线福利| 最近在线观看免费完整版| 国产精品嫩草影院av在线观看 | 我的老师免费观看完整版| 成年版毛片免费区| 久久伊人香网站| 成人亚洲精品av一区二区| 高清在线国产一区| 最新在线观看一区二区三区| 男人的好看免费观看在线视频| 久久精品国产亚洲av香蕉五月| 国产精品98久久久久久宅男小说| www.熟女人妻精品国产| 亚洲精品456在线播放app | 精品久久久久久久久亚洲 | 如何舔出高潮| 国产成人欧美在线观看| 99久久精品国产亚洲精品| 嫁个100分男人电影在线观看| 听说在线观看完整版免费高清| 国产91精品成人一区二区三区| 国产精品久久久久久亚洲av鲁大| 又黄又爽又免费观看的视频| 少妇熟女aⅴ在线视频| 搡老熟女国产l中国老女人| 人妻丰满熟妇av一区二区三区| 特大巨黑吊av在线直播| 亚洲欧美精品综合久久99| 男人狂女人下面高潮的视频| 麻豆av噜噜一区二区三区| 婷婷丁香在线五月| 在线免费观看不下载黄p国产 | 亚洲综合色惰| 九九久久精品国产亚洲av麻豆| 婷婷精品国产亚洲av在线| 日本成人三级电影网站| 一区二区三区激情视频| 亚洲电影在线观看av| 国产精品综合久久久久久久免费| 亚洲中文日韩欧美视频| 免费在线观看日本一区| 国产又黄又爽又无遮挡在线| 国内精品久久久久精免费| 精品久久久久久久人妻蜜臀av| 亚洲第一电影网av| 亚洲在线自拍视频| 人妻丰满熟妇av一区二区三区| 看免费av毛片| 精品国内亚洲2022精品成人| 成人美女网站在线观看视频| 可以在线观看毛片的网站| 一个人看视频在线观看www免费| 99久久九九国产精品国产免费| 激情在线观看视频在线高清| 网址你懂的国产日韩在线| 网址你懂的国产日韩在线| 国内少妇人妻偷人精品xxx网站| 少妇高潮的动态图| 1000部很黄的大片| 久久人人精品亚洲av| 日韩欧美三级三区| 亚洲av美国av| 露出奶头的视频| 制服丝袜大香蕉在线| 日韩av在线大香蕉| 亚洲人成电影免费在线| 精品日产1卡2卡| 亚洲va日本ⅴa欧美va伊人久久| 老司机福利观看| 国产成人a区在线观看| 日本三级黄在线观看| av专区在线播放| 黄色一级大片看看| 国产av在哪里看| 88av欧美| av视频在线观看入口| 青草久久国产| 色综合欧美亚洲国产小说| 嫁个100分男人电影在线观看| 欧美一区二区亚洲| 亚洲精品久久国产高清桃花| 1024手机看黄色片| 又爽又黄无遮挡网站| 国产色爽女视频免费观看| 老司机深夜福利视频在线观看| 欧美+日韩+精品| 九九在线视频观看精品| 日本五十路高清| 久久久久久九九精品二区国产| 可以在线观看毛片的网站| 婷婷亚洲欧美| 欧美+亚洲+日韩+国产| 国产一区二区在线观看日韩| 成年女人永久免费观看视频| 18美女黄网站色大片免费观看| 桃红色精品国产亚洲av| 真人一进一出gif抽搐免费| 亚洲精品乱码久久久v下载方式| 看片在线看免费视频| 日本成人三级电影网站| 91av网一区二区| 欧美精品国产亚洲| 欧美成人一区二区免费高清观看| 51国产日韩欧美| 中文字幕人妻熟人妻熟丝袜美| 91狼人影院| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av在线| 亚洲av成人av| 久久九九热精品免费| 亚洲欧美日韩高清专用| 亚洲人成电影免费在线| 国产视频内射| 免费黄网站久久成人精品 | 97碰自拍视频| 亚洲自偷自拍三级| 久久亚洲真实| 欧美xxxx黑人xx丫x性爽| 亚洲欧美精品综合久久99| 丁香六月欧美| 99久久九九国产精品国产免费| 亚洲专区中文字幕在线| 99久久精品热视频| 黄色视频,在线免费观看| 午夜老司机福利剧场| 非洲黑人性xxxx精品又粗又长| www.熟女人妻精品国产| 免费一级毛片在线播放高清视频| 亚洲最大成人中文| 亚洲成人免费电影在线观看| 国产真实伦视频高清在线观看 | 久久久成人免费电影| 亚洲最大成人av| 天天躁日日操中文字幕| 亚洲成人久久爱视频| 精品午夜福利视频在线观看一区| 极品教师在线视频| 国产激情偷乱视频一区二区| 日本黄色视频三级网站网址| 神马国产精品三级电影在线观看| 大型黄色视频在线免费观看| 日韩中字成人| 成人特级av手机在线观看| 欧美乱妇无乱码| 给我免费播放毛片高清在线观看| 一级作爱视频免费观看| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 色哟哟哟哟哟哟| 中文字幕人成人乱码亚洲影| 国产一区二区激情短视频| 国产伦人伦偷精品视频| 18禁裸乳无遮挡免费网站照片| 精品欧美国产一区二区三| 极品教师在线视频| 欧美潮喷喷水| 在线天堂最新版资源| avwww免费| 国产国拍精品亚洲av在线观看| 亚洲精品久久国产高清桃花| 国产精品久久电影中文字幕| 色5月婷婷丁香| 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| 久久久久久国产a免费观看| 91在线精品国自产拍蜜月| x7x7x7水蜜桃| 精品久久久久久久久久久久久| 亚洲人成网站高清观看| 熟女电影av网| 日韩成人在线观看一区二区三区| 丰满人妻一区二区三区视频av| a级毛片免费高清观看在线播放| 舔av片在线| 亚洲欧美日韩高清专用| 亚洲av成人精品一区久久| 亚洲色图av天堂| 欧美zozozo另类| 久久99热这里只有精品18| 久久6这里有精品| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 精华霜和精华液先用哪个| 亚洲av一区综合| 成人性生交大片免费视频hd| 亚洲三级黄色毛片| 全区人妻精品视频| 久久中文看片网| 国产高清有码在线观看视频| 老司机午夜福利在线观看视频| 91九色精品人成在线观看| 中文字幕av成人在线电影| 午夜福利免费观看在线| 亚洲国产色片| 人妻丰满熟妇av一区二区三区| 黄色日韩在线| 久久久久久久久大av| 日韩欧美精品免费久久 | 精品人妻偷拍中文字幕| 久久人人爽人人爽人人片va | 国产又黄又爽又无遮挡在线| 国产老妇女一区| 亚洲av成人av| aaaaa片日本免费| 麻豆一二三区av精品| av中文乱码字幕在线| 超碰av人人做人人爽久久| 老司机午夜福利在线观看视频| 国产免费男女视频| 中文字幕人成人乱码亚洲影| 一区二区三区四区激情视频 | 亚洲精华国产精华精| 少妇人妻精品综合一区二区 | 亚洲第一欧美日韩一区二区三区| 色5月婷婷丁香| 精品人妻视频免费看| 国产黄色小视频在线观看| 性欧美人与动物交配| h日本视频在线播放| 亚洲片人在线观看| 亚洲av日韩精品久久久久久密| 日本 欧美在线| 精品久久久久久久久久免费视频| 欧美区成人在线视频| 欧美精品国产亚洲| 久9热在线精品视频| 一本精品99久久精品77| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 小蜜桃在线观看免费完整版高清| 两个人的视频大全免费| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 成年女人看的毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99精品久久久久人妻精品| 级片在线观看| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 亚洲最大成人手机在线| 99精品在免费线老司机午夜| 精品国产亚洲在线| 欧美精品国产亚洲| 国产精品嫩草影院av在线观看 | 精品熟女少妇八av免费久了| 成人欧美大片| 97人妻精品一区二区三区麻豆| 中亚洲国语对白在线视频| 国产在视频线在精品| 悠悠久久av| 99国产综合亚洲精品| 日韩欧美在线二视频| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 久久久国产成人精品二区| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 成人性生交大片免费视频hd| 欧美+日韩+精品| 欧美午夜高清在线| 一本一本综合久久| 日日夜夜操网爽| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| 国产乱人视频| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 亚洲精品在线美女| 国产精品爽爽va在线观看网站| 成年免费大片在线观看| .国产精品久久| 成年女人永久免费观看视频| 亚洲第一欧美日韩一区二区三区| .国产精品久久| 国产黄a三级三级三级人| 如何舔出高潮| 国产一区二区三区视频了| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 搞女人的毛片| 国产91精品成人一区二区三区| 欧美色视频一区免费| 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | 性色avwww在线观看| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 国产探花在线观看一区二区| 美女免费视频网站| 久久久色成人| 亚洲va日本ⅴa欧美va伊人久久| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 午夜a级毛片| 麻豆成人午夜福利视频| 国产精品国产高清国产av| 变态另类丝袜制服| 中出人妻视频一区二区| 国产极品精品免费视频能看的| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 午夜免费激情av| 国产亚洲精品av在线| 黄片小视频在线播放| 女人被狂操c到高潮| 欧美三级亚洲精品| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 99久国产av精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇熟女久久| 麻豆国产av国片精品| 久久久久免费精品人妻一区二区| 精品国产三级普通话版| 18禁黄网站禁片午夜丰满| 色5月婷婷丁香| 亚洲精品色激情综合| 国产精品久久久久久久久免 | 男女下面进入的视频免费午夜| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 十八禁网站免费在线| 久久久久性生活片| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 在线观看66精品国产| 色哟哟·www| av黄色大香蕉| 色在线成人网| 亚洲五月婷婷丁香| 免费av观看视频| 国产精品,欧美在线| 久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 偷拍熟女少妇极品色| 淫妇啪啪啪对白视频| 精品人妻视频免费看| 在现免费观看毛片| 亚洲国产精品合色在线| 国产亚洲欧美在线一区二区| 国产单亲对白刺激| 又黄又爽又免费观看的视频| 国产三级黄色录像| 日韩欧美精品免费久久 | 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 国内精品久久久久久久电影| 亚洲专区国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 亚洲精品在线观看二区| www.www免费av| 色5月婷婷丁香| 一二三四社区在线视频社区8| 久久久久性生活片| 欧美日韩综合久久久久久 | 国产一区二区三区视频了| 变态另类丝袜制服| 亚洲人成网站在线播| 国产三级在线视频| 精品欧美国产一区二区三| 日韩精品中文字幕看吧| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕 | 一个人观看的视频www高清免费观看| 精品日产1卡2卡| 熟女电影av网| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 全区人妻精品视频| 一个人免费在线观看电影| 久久久精品大字幕| 香蕉av资源在线| 国产精品久久电影中文字幕| 日韩成人在线观看一区二区三区| 性色avwww在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品影院6| 丰满人妻熟妇乱又伦精品不卡| 村上凉子中文字幕在线| 可以在线观看的亚洲视频| 欧美区成人在线视频| 亚洲av一区综合| 免费av观看视频| 有码 亚洲区| 亚洲人成网站高清观看| 久久久成人免费电影| 色综合欧美亚洲国产小说| 国产极品精品免费视频能看的| 性插视频无遮挡在线免费观看| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 日日夜夜操网爽| avwww免费| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 真人做人爱边吃奶动态| 久久99热这里只有精品18| 99久国产av精品| 无遮挡黄片免费观看| 简卡轻食公司| 身体一侧抽搐| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 亚洲av日韩精品久久久久久密| 国产综合懂色| avwww免费| 麻豆av噜噜一区二区三区| 亚洲 国产 在线| 男插女下体视频免费在线播放| 757午夜福利合集在线观看| 国产精品日韩av在线免费观看| 尤物成人国产欧美一区二区三区| 中文字幕人成人乱码亚洲影| 老司机午夜福利在线观看视频| 成人国产一区最新在线观看| 日本一二三区视频观看| h日本视频在线播放| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 久久久久九九精品影院| 成人国产综合亚洲| 午夜亚洲福利在线播放| 一本综合久久免费| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看| 日本免费a在线| 9191精品国产免费久久| 淫秽高清视频在线观看| 国产综合懂色| 亚洲av.av天堂| 尤物成人国产欧美一区二区三区| 人人妻人人澡欧美一区二区| 亚洲av成人av| 精品久久久久久久久久久久久| 此物有八面人人有两片| aaaaa片日本免费| 亚洲成人久久性| 禁无遮挡网站| 免费在线观看影片大全网站| 日本一二三区视频观看| 精品一区二区三区视频在线观看免费| 丝袜美腿在线中文| h日本视频在线播放| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 国产精品久久电影中文字幕| 亚洲综合色惰| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 夜夜看夜夜爽夜夜摸| 欧美黄色淫秽网站| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻| 在线免费观看的www视频| 国产伦一二天堂av在线观看| 青草久久国产| 日韩成人在线观看一区二区三区| 国产 一区 欧美 日韩| 国产精品女同一区二区软件 | 丁香欧美五月| 国产在线精品亚洲第一网站| 亚洲最大成人av| 九九在线视频观看精品| 欧美黄色淫秽网站| 黄片小视频在线播放| 国产精品99久久久久久久久| 真人一进一出gif抽搐免费| av国产免费在线观看| 欧美潮喷喷水| 色精品久久人妻99蜜桃| 12—13女人毛片做爰片一| 男人狂女人下面高潮的视频| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 很黄的视频免费| 99热只有精品国产| 人妻制服诱惑在线中文字幕| 国产成人aa在线观看| 国产高清激情床上av| 国产av麻豆久久久久久久| 观看美女的网站| 每晚都被弄得嗷嗷叫到高潮| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 日韩欧美在线乱码| 免费观看的影片在线观看| 婷婷色综合大香蕉| 午夜视频国产福利| 99riav亚洲国产免费| 国产三级在线视频| 日韩大尺度精品在线看网址| 女人十人毛片免费观看3o分钟| 悠悠久久av| 成人亚洲精品av一区二区| 九九热线精品视视频播放| 黄色一级大片看看| 狂野欧美白嫩少妇大欣赏| 免费电影在线观看免费观看| 亚洲欧美日韩东京热| 日韩 亚洲 欧美在线| 色吧在线观看| 亚洲欧美日韩东京热| 51国产日韩欧美| 亚洲,欧美精品.| 国产毛片a区久久久久| 国内精品久久久久久久电影| 男女床上黄色一级片免费看| 内射极品少妇av片p| 给我免费播放毛片高清在线观看| 亚洲国产精品sss在线观看| 日日摸夜夜添夜夜添小说| 老鸭窝网址在线观看| 日韩精品青青久久久久久| 国产高清三级在线| 亚洲国产精品成人综合色| 国产男靠女视频免费网站| av在线老鸭窝| 91在线精品国自产拍蜜月| 此物有八面人人有两片| 精品久久久久久久久久免费视频| 免费观看人在逋| 12—13女人毛片做爰片一|